Saccharomyces cerevisiae and Torulaspora delbrueckii Intra- and Extra-Cellular Aromatic Amino Acids Metabolism

M. Antonia Álvarez-Fernández[†], Edwin Fernández-Cruz[†], M. Carmen Garcia-Parrilla[†], Ana M.

Troncoso[†], Fulvio Mattivi^{#,§}, Urska Vrhovsek[#], Panagiotis Arapitsas^{#,*}

[†]Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de

Farmacia. Universidad de Sevilla. C/ P. García González nº 2. Sevilla 41012, Spain.

[#]Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione

Edmund Mach-Istituto Agrario San Michele all'Adige-Trento (Italy).

[§]Center Agriculture Food Environment, University of Trento, Trento, Italy

*corresponding author: Panagiotis Arapitsas, email addresses panagiotis.arapitsas@fmach.it and

panagiotis.arapitsas@gmail.com

Supporting Information

- 1. Supporting Information Table S1. Standards
- 2. Supporting Information Table S2. Composition of synthetic must
- 3. Supporting Information Table S3. Calibration curve information
- 4. Supporting Information Figure S1. ANOVA analysis of QA intracellular samples.
- 5. Supporting Information Figure S2. ANOVA analysis of RF intracellular samples.
- 6. **Supporting Information Figure S3.** ANOVA analysis of *Torulaspora delbrueckii* intracellular samples.
- 7. Supporting Information Figure S4. ANOVA analysis of QA extracellular samples.
- 8. Supporting Information Figure S5. ANOVA analysis of RF extracellular samples.
- 9. **Supporting Information Figure S6.** ANOVA analysis of *Torulaspora delbrueckii* extracellular samples.
- 10. Supporting Information Figure S7. Reducing sugar consumption kinetics.
- 11. **Supporting Information Figure S8.** Clustered heat-map of the measured metabolites including both extracellular and intracellular samples of the three yeast strains (the Saccharomyces cerevisiae strains QA23 and RF, and the *Torulaspora delbrueckii* Td) at three time points of the fermentation process (2, 5 and 15 days). This figure shows it was quantified many more compounds in extracellular samples than in intracellular samples.
- 12. **Supporting Information Figure S9.** Kinetics of selected compounds of the QA intracellular samples.
- 13. **Supporting Information Figure S10.** Kinetics of selected compounds of the RF and *Torulaspora delbrueckii* intracellular samples.

- 14. **Supporting Information Figure S11.** Kinetics of selected compounds of the QA extracellular samples.
- 15. **Supporting Information Figure S12.** Kinetics of selected compounds of the RF extracellular samples.
- 16. **Supporting Information Figure S13**. Kinetics of selected compounds of the *Torulaspora delbrueckii* extracellular samples.

Abbreviations Used

TOL: tryptophol; NIC: nicotinamide; TYR-EE: tyrosine ethyl ester; TYL: tyrosol; IAA-EE: indole acetic acid methyl ester; PHE: phenylalanine; OH-Ph-Py: OH-phenyl-pyruvic acid; N-TRP-EE: N-acetyl-tryptophan ethyl ester; Ph-Py: phenyl-pyruvic acid; KYNA: kynurenic acid; N-TYR-EE: N-acetyl-tyrosine ethyl ester; ANT: anthranilic acid; CH3O-IAA: methoxy-indole acetic acid; IPY: indole pyruvic acid; IAA: indole acetic acid; ICA: indole carboxaldehyde; 2AA: 2-aminoacetophenone; E-ICA ethyl indole carboxaldehyde; ILA: indole lactic acid; TRP-EE: tryptophan ethyl ester; TOL-SO3H: sulfonated tryptophol; TRP-ME: tryptophan methyl ester; TRP: tryptophan; KYN: kynurenine; IBA: indole butyric acid; MEL: melatonin.

Supporting	Information	Table S1.	Standards

Sigma-Aldrich SL Madrid, Spain	Sigma-Aldrich Quimica SL Milan, Italy				
tryptamine (TRYPT)	1-cyclohexene-1-carboxylic acid	phenyl pyruvic acid (Ph-Py)			
3-Indole acetic acid (IAA)	2-amino acetophenone (2AA)	picolinic acid			
3-indole butyric acid (IBA)	2-hydroxy-phenyl acetic acid	shikimic acid			
3-indole pyruvic acid (IPy)	3-ethyl-indole carboxylic acid (E-I Ca)	tryptophan methyl ester (TRP ME)			
4-hydroxy-phenyl acetic acid (OH-Ph-AA)	3-hydroxy kynurenine (OH-KYN)	tyramine (TYRA)			
5-hydroxy-L-tryptophan (OH-TRP)	3-hydroxy-anthranilic acid (OH-ANT)	tyrosine (TYR)			
5-Methoxytryptamine (5MOT)	3-indole acetic acid ethyl ester (IAA-EE)	tyrosine methyl ester (TYRME)			
5-Metoxy tryptophan (CH ₃ O-TRP)	3-indole lactic acid (ILA)	formic acid (LC-MS grade)			
5-metoxy-3-indole acetic acid (CH ₃ O-IAA)	3-indole propionic acid (IPA)	methanol (LC-MS grade)			
5-Metoxytryptophol (5-HTOL	3-methoxy tyramine				
6-Hydroxymelatonin (OH-MEL)	3-methyl-indole (CH ₃ -IND)				
DL-kynurenine (KYN)	3-nitrotyrosine(IS)				
DL-tryptophan methyl ester (TRP-ME)	3,4-dihydroxy-3-methoxyphenyl propionic acid				
hydroxy indole -3-acetic acid (5H-IAA)	3(2,4-dihydroxy) phenyl propionic acid				
kynurenic acid (KYNA)	4-hydroxy-phenyl pyruvic acid (OH-Ph-Py)				
L-Tyrosine (TYR)	5-methoxy tryptophol				
L-tyrosine methyl ester (TYR-ME)	6-benzyloxy-6-methoxy indole				
melatonin (MEL)	abscisic acid				
N-acetyl serotonin (N-SER)	anthranilic acid (ANT)				
N-acetyl tryptophan ethyl ester (N-TRP-EE)	dopamine (DOPA)				
N-acetyl-L-tyrosine ethyl ester (N-TYR-EE)	ethyl anthranilate				
phenyl acetic acid (Ph-AA)	indole (IND)				
serotonine (SERO)	indole acetamide				
tryptophan (TRP)	indole acetic acid methyl ester (IAAME)				
tryptophan ethyl ester (TRP-EE)	indole carbinol (I3C)				
tryptophol (TOL)	indole carboxaldehyde (ICA)				
tyrosine ethyl ester (TYR-EE)	indole-2-carboxylic acid				
tyrosol (TYL)	indoxyl sulphate				
	methyl-indole acetic acid (M-IAA)				
Cymit Quimica S.L., Barcelona, Spain.	nicotinamide (NIC)				
N-acetyl-5-methoxy kynureanine hydrochloride (AMK)	nicotinic acid				
sulfatoxy melatonin (6-aMTs)	phenyl alanine (PHE)				
N-γ-acetyl-N-2-formyl-5-methoxy kynureamine (AFMK) phenyl lactic acid (Ph-LA)				

	Compound	g L-1
	Glucose	100
	Fructose	100
s	CaCl2	0.155
alt	KH2-PO4	0.75
Ň	K ₂ SO ₄	0.5
ral	$MgSO_4:7H_2O$	0.25
ine.	NaCl	0.25
X	NUL CI	0.2
		0.46
ts	$COCl_2 \cdot 6H_2O$	0.4
en	CuSO ₄ ·5H ₂ O	l
em	H ₃ BO ₃	1
Ele	KI	1
e	MnSO ₄ ·H ₂ O	4
rac	(NH4)6M07O24	1
H	$ZnSO_4$ ·H ₂ O	4
	21004 1120	0/ wt/wt
	ammoniacal nitrogen 18.6% wt/wt	18.6
	NILC1	20.5
		20.5
	L-proline	16.9
	L-glutamine	1.25
	L-arginine	6
	L-tryptophan	4.9
S	L-alanine	4
rce	L-glutamic acid	2.6
no	L-serine	2.6
1 S	L-threenine	1.6
6G	L_leucine	1.5
IO	L-separtia agid	1.5
Ξ		1.5
-		1.5
	L-phenylalanine	1.1
	L-isoleucine	1.1
	L-histidine	1.1
	L-methionine	0.6
	L-tyrosine	0.6
	L-glycine	0.6
	L-lysine	0.6
s	y ****	σ 100 mL ⁻¹
oic	Oleic acid	0.5
ict of	Ergosterol	1.5
Ae Fa	Tween 80	1.5
r	I weell 80	0.5
		mg mL ⁻¹
~	Biotin	0.003
in.	Calcium pantothenate	1.5
am	Chlorohydrate pyridoxine	0.25
/its	Chlorohydrate thiamine	0.25
~	Myoinositol	20
	Nicotinic acid	2

Supporting Information Table S2. Composition of synthetic must

#	Metabolite	Degree of linearity	LOD (µg L ⁻¹)	LOQ (µg L ⁻¹)	a (slope)	b	R^2
1	nicotinamide (NIC)	5	1.39	4.2	26513.9	-42.33	0.9968
2	5-OH-tryptophan (OH-TRP)	5	1.29	3.90	52940.5	304.35	0.9937
3	5-CH ₃ O-tryptophan (CH ₃ O-TRP)	4	3.47	10.5	122841	483.08	0.9836
4	kynurenine (KYN)	5	5.41	16.40	42790.8	526.02	0.9973
5	phenylalanine (PHE)	4	14.82	44.9	249486	17879.20	0.9286
6	3-nitrotyrosine (IS)	5	1.29	3.90	177335	187.22	0.9481
7	4-OH-phenyl pyruvic acid (OH-Ph-Py)	2	391.35	1185.9	3300.82	2873.89	0.9436
8	3-OH-anthranilic acid (OH-ANT)	5	1.06	3.2	72356	466.56	0.8761
9	tryptophan (TRP)	4	3.70	11.2	98314.8	4081.96	0.9877
10	tyrosine ethyl ester (TYR-EE)	3.5	39.4	13.00	369979	2051.90	0.8211
11	N-acetyl serotonin (N-SER)	6	3.00	9.1	44447.7	978.03	0.9233
12	tyrosol (TYL)	4	11.88	36	2436.93	1894.53	0.9762
13	tryptophol sulphonate (TOL-SO ₃ H)	4	1.39	4.2	4381.18	121.92	0.9531
14	kynurenic acid (KYNA)	3	3.40	10.30	23423.8	2061.11	0.9259
15	4-OH-phenyl acetic acid (OH-Ph-AA)	4	416.57	1262.33	3300.82	2873.89	0.9714
16	tryptophan methyl ester (TRP-ME)	4	72.9	24.06	252041	243204	0.9464
17	phenyl pyruvic acid (Ph-Py)	4	14.26	0.24	302509	-111.49	0.9730
18	indole pyruvic acid (IPy)	3	0.77	0.77	10091	9560.45	0.9977
19	anthranilic acid (ANT)	4	3.10	9.4	110637	729.00	0.9900
20	tryptophan ethyl ester (TRP-EE)	4	82.9	27.36	174531	574258	0.9666
21	phenyl lactic acid (Ph-LA)	3	68.81	208.5	1784.52	155.74	0.9986
22	3-indole lactic acid (ILA)	4	0.14	0.45	105262	46607514	0.9969
23	N-acetyl-L-tyrosine ethyl ester (N-TYR-EE)	5	0.56	1.7	384108	155.93	0.9970
24	indole carboxaldehyde (ICA)	5	0.03	0.09	666814	-11821468	0.9996
25	melatonin (MEL)	5	0.21	0.65	189985	-122.89	0.9993
26	5-CH ₃ O-indole acetic acid (CH ₃ O-IAA)	5	0.05	0.16	801.95	37458.61	0.9991

Supporting Information Table S3. Calibration curve information. The parameters were calculated by the TargetLynx tool of the MassLynx software, and the injection volume was 2 µL.

#	Metabolite	Degree of	f LOD LOQ		<i>a</i> (slope)	b	R^2
		linearity	(µg L⁻¹)	(µg L ⁻¹)			
27	tryptophol (TOL)	5	23.43	71.00	39496.2	2187.56	0.9758
28	3-indole acetic acid (IAA)	5	0.17	0.52	31.7	18572.02	0.9932
29	phenyl acetic acid (Ph-AA)	3	55.08	166.9	4120.67	1687.99	0.9133
30	2-aminoacetophenone (2AA)	4	0.04	0.15	734168	6005504	0.9995
31	indole (IND)	3	0.06	0.19	10736	-5728107	0.9989
32	3-indole propionic acid (IPA)	5	0.06	0.19	282.95	38674.00	0.9988
33	N-acetyl tryptophan ethyl ester (N-TRP-EE)	5	1.5	0.50	146982	3.48	0.9994
34	3-indole butyric acid (IBA)	4	0.02	0.08	133.08	-1775.78	0.9997
35	methyl-indole acetic acid (M-IAA)	5	0.9	2.8	901707	784.32	0.9973
36	3-CH ₃ -indole (CH ₃ -IND)	4	2.18	6.60	89361.3	589.29	0.9942
37	3-indole acetic acid ethyl ester (IAA-EE)	5	0.02	0.06	907.12	495.01	0.9998
38	3-ethyl-indole carboxylic acid (E-ICa)	5	0.06	0.18	495659	-21751351	0.9988

Supporting Information Table S3. Continued

One-way ANOVA

f.value	p-value	-log10(p)	FDR	Tukey's HSD
25.975	1.0403e-07	6.9828	2.0806e-06	3-1; 3-2
17.104	6.0035e-06	5.2216	6.0035e-05	3-1; 3-2
10.443	0.00026508	3.5766	0.0015412	2-1; 3-1
10.206	0.00030824	3.5111	0.0015412	2-1; 3-1
9.3655	0.00053117	3.2748	0.0018477	2-1; 3-1
9.3008	0.0005543	3.2563	0.0018477	2-1; 3-2
6.9755	0.0027521	2.5603	0.0078631	3-1; 3-2
6.4943	0.003906	2.4083	0.009765	3-1; 3-2
4.3867	0.019728	1.7049	0.04384	3-1; 3-2
	f.value 25.975 17.104 10.443 10.206 9.3655 9.3008 6.9755 6.4943 4.3867	f.valuep-value25.9751.0403e-0717.1046.0035e-0610.4430.0002650810.2060.000308249.36550.000531179.30080.00055436.97550.00275216.49430.0039064.38670.019728	f.valuep-value-log10(p)25.9751.0403e-076.982817.1046.0035e-065.221610.4430.000265083.576610.2060.000308243.51119.36550.000531173.27489.30080.00055433.25636.97550.00275212.56036.49430.0039062.40834.38670.0197281.7049	f.valuep-value-log10(p)FDR25.9751.0403e-076.98282.0806e-0617.1046.0035e-065.22166.0035e-0510.4430.000265083.57660.001541210.2060.000308243.51110.00154129.36550.000531173.27480.00184779.30080.00055433.25630.00184776.97550.00275212.56030.00786316.49430.0039062.40830.0097654.38670.0197281.70490.04384

Supporting Information Figure S1. ANOVA analysis of QA intracellular samples. The points highlighted in red are the compounds with *p*-value ≤ 0.05 .

INC	20.474	1.27470 00	5.0070	0.05200 00	51,52
ICA	18.18	3.853e-06	5.4142	1.9265e-05	2-1; 3-1; 3-2
E-I Ca	15.867	1.2449e-05	4.9049	4.7112e-05	3-1; 3-2
TYR-EE	15.626	1.4134e-05	4.8497	4.7112e-05	2-1; 3-1
TYL	7.1726	0.0024514	2.6106	0.0070041	2-1; 3-1
CH ₃ O.IAA	4.9081	0.013215	1.8789	0.033037	3-1; 3-2
Ph-Py	4.2982	0.021419	1.6692	0.047599	3-1

Supporting Information Figure S2. ANOVA analysis of RF intracellular samples. The points highlighted in red are the compounds with *p*-value ≤ 0.05 .

One-way ANOVA

Name	f.value	p.value	-log10(p)	FDR	Tukey's HSD
ILA	217.7	3.4425e-21	20.463	6.8849e-20	2-1; 3-1
PHE	144.41	3.3249e-18	17.478	3.3249e-17	2-1; 3-1
TOL	35.831	2.2098e-09	8.6557	1.3832e-08	2-1; 3-1; 3-2
E-I Ca	35.175	2.7664e-09	8.5581	1.3832e-08	3-1; 3-2
ICA	26.658	6.7632e-08	7.1698	2.7053e-07	2-1; 3-1
NIC	23.347	2.7657e-07	6.5582	9.2191e-07	2-1; 3-2
TYR-EE	10.078	0.00032073	3.4939	0.00091637	2-1; 3-1
IAA	9.8625	0.0003689	3.4331	0.00092224	3-1; 3-2
KYN	8.8237	0.00073568	3.1333	0.0016348	3-2
KYNA	7.1091	0.00244	2.6126	0.0048801	2-1; 3-2
TOL SO ₃ H	6.4112	0.004068	2.3906	0.0073963	2-1; 3-2
Ph-Py	5.241	0.0099072	2.004	0.016512	2-1; 3-1

Supporting Information Figure S3. ANOVA analysis of *Torulaspora delbrueckii* (Td) intracellular samples. The points highlighted in red are the compounds with p-value ≤ 0.05 .

Name	f.value	p.value	-log10(p)	FDR	Tukey's HSD
IAA	132.53	4.2757e-11	10.369	1.0689e-09	2-1; 3-1; 3-2
IAA-EE	67.975	7.765e-09	8.1099	9.7062e-08	2-1; 3-1
N-TRP-EE	62.186	1.5161e-08	7.8193	1.2634e-07	2-1; 3-1
NIC	45.007	1.6165e-07	6.7914	9.1852e-07	2-1; 3-1; 3-2
2AA	44.208	1.837e-07	6.7359	9.1852e-07	3-1; 3-2
TOL	38.286	5.0593e-07	6.2959	2.108e-06	3-1; 3-2
TRP	27.028	5.2501e-06	5.2798	1.6564e-05	2-1; 3-2
CH ₃ O-IAA	26.989	5.3004e-06	5.2757	1.6564e-05	2-1; 3-1
KYN	25.162	8.3059e-06	5.0806	2.3072e-05	3-1; 3-2
E-I Ca	20.419	3.0195e-05	4.5201	7.5488e-05	3-1; 3-2
PHE	15.118	0.00016883	3.7725	0.00038371	2-1; 3-1
ANT	10.809	0.0009357	3.0289	0.0019494	2-1; 3-2
N-TYR-EE	5.834	0.011775	1.9291	0.022643	3-2
ICA	5.6206	0.013375	1.8737	0.023884	3-1
OH-Ph-Py	5.2553	0.016713	1.7769	0.027855	3-1; 3-2
TRP-EE	4.356	0.029693	1.5273	0.045521	2-1
TYR-EE	4.2932	0.030955	1.5093	0.045521	2-1
IBA	4.1915	0.033128	1.4798	0.046011	3-1

Supporting Information Figure S4. ANOVA analysis of QA extracellular samples. The points highlighted in red are the compounds with p-value ≤ 0.05 .

Compounds

Name	f.value	p.value	-log10(p)	FDR	Tukey's HSD
N-TRP-EE	217.41	2.5173e-12	11.599	6.2932e-11	2-1; 3-1; 3-2
IAA	196.34	5.519e-12	11.258	6.8987e-11	2-1; 3-1
IAA-EE	122.17	2.0358e-10	9.6913	1.6965e-09	2-1; 3-1
ICA	91.553	1.7389e-09	8.7597	1.0868e-08	2-1; 3-1
TOL	77.391	5.9348e-09	8.2266	2.9674e-08	3-1; 3-2
2AA	57.833	4.7549e-08	7.3229	1.9812e-07	3-1; 3-2
PHE	47.715	1.807e-07	6.7431	6.4534e-07	2-1; 3-1; 3-2
CH ₃ O-IAA	25.189	1.1396e-05	4.9433	3.5612e-05	2-1; 3-1
NIC	23.476	1.7414e-05	4.7591	4.8373e-05	2-1; 3-1; 3-2
E-I Ca	21.31	3.0801e-05	4.5114	7.7003e-05	3-1; 3-2
N-TYR-EE	19.331	5.3888e-05	4.2685	0.00012247	3-1; 3-2
TRP-EE	17.195	0,00010333	3.9858	0.00021526	3-1; 3-2
OH-Ph-Py	14,061	0.00029904	3.5243	0.00057508	2-1; 3-1
KYN	9.4862	0.0019194	2.7168	0.0034274	3-1; 3-2
ILA	6.8293	0.0071739	2.1442	0.011957	3-1; 3-2
ANT	4.75	0.024024	1.6194	0.037538	3-1

Supporting Information Figure S5. ANOVA analysis of RF extracellular samples. The points highlighted in red are the compounds with p-value ≤ 0.05 .

One-way ANOVA

Compounds

Name	f.value	p.value	-log10(p)	FDR	Tukey's HSD
IAA	276.19	3.9428e-13	12.404	9.8571e-12	2-1; 3-1
IAA-EE	177.6	1.1913e-11	10.924	1.4892e-10	2-1; 3-1
NIC	129.25	1.332e-10	9.8755	1.11e-09	2-1; 3-1; 3-2
PHE	70.818	1.1264e-08	7.9483	7.0401e-08	2-1; 3-1
E-I Ca	38.892	7.1768e-07	6.1441	3.5884e-06	2-1; 3-1; 3-2
TOL	36.875	1.0202e-06	5.9913	4.2507e-06	3-1; 3-2
N-TYR-EE	23.486	1.7371e-05	4.7602	6.2039e-05	2-1; 3-1; 3-2
CH ₃ O-IAA	22.628	2.1665e-05	4.6642	6.7702e-05	2-1; 3-1
ICA	20.347	4.0243e-05	4.3953	0.00011179	2-1; 3-1
OH-Ph-Py	14,604	0.00024618	3.6087	0.00061546	2-1; 3-1
IPy	13.397	0.00038181	3.4182	0.00086774	2-1; 3-1
Ph-Py	9.4916	0.0019146	2.7179	0.0039888	2-1; 3-1
MEL	8.5267	0.0030146	2.5208	0.0057974	3-1
2AA	7.9826	0.0039404	2.4045	0.0070365	3-1; 3-2
TOL_SO ₃ H	5.5924	0.0144	1.8416	0.024	2-1; 3-1
TRP-EE	5.3645	0.016486	1.7829	0.025759	2-1
ILA	5.2593	0.017561	1.7554	0.025825	3-2

Supporting Information Figure S6. ANOVA analysis of *Torulaspora delbrueckii* (Td) extracellular samples. The points highlighted in red are the compounds with p-value≤ 0.05.

Supporting Information Figure S7. Graphic representation of variability of reducing sugar consumption through sampling time of the six folds of the three strain of yeast studied

Supporting Information Figure S8. Clustered heatmap of the measured metabolites including both extracellular and intracellular samples of the three yeast strains (the Saccharomyces cerevisiae strains QA23 and RF, and the Torulaspora delbrueckii Td) at three time points of the fermentation process (2, 5 and 15 days). This figure shows it was quantified many more compounds in extracellular samples than in intracellular samples.

Supporting Information Figure S9. Kinetics of selected compounds of QA intracellular samples. *significant differences (p<0.05). The concentration is expressed in μ g L^{-r}.

Supporting Information Figure S10. Kinetic of selected compounds of RF and *Torulaspora. delbrueckii* (Td.) intracellular samples. *significant differences (p<0.05). The concentration is expressed in μ g L⁻¹.

Supporting Information Figure S11. Kinetics of selected compounds of QA extracellular samples. *significant differences (p<0.05). The concentration is expressed in μ g L⁻¹.

Supporting Information Figure S12. Kinetics of selected compounds of RF extracellular samples. *significant differences (p<0.05). The concentration is expressed in μ g L⁻¹.

Supporting Information Figure S13. Kinetics of selected compounds of the *Torulaspora delbrueckii* (Td) extracellular samples. *significant differences (p<0.05). The concentration is expressed in μ g L⁻¹.