A NOTE ON ENTIRE FUNCTIONS
LUCA GOLDONI

ABSTRACT. In this article we consider certain power series with
real coefficients that represent an entire function and provide suf-
ficient conditions for the unboundedness of these functions on the
real axis.

1. INTRODUCTION

Let us consider a function of complex variable

(1) flz) = anz2".

n=0
with a, > 0 for each n € N. Trivially, such a function is upper un-
bounded on the real axis. Suppose we alter infinite coefficients a,
making them negative. It can well happen that the new function is
bounded on the real axis. For example, if we consider

o 20
2) =
and we alternating the signs, we get
o0 —
g(z) = nz_o (—1) o) =cosz

which is bounded on R. Under what conditions the series continues to
be an entire function upper unbounded on the real axis?

2. A FIRST RESULT

Theorem 1. Let f(z) be an entire function as in (1) and let be (¢p)n
a sequence of positive real numbers. Let

a, ifn=1 (mod 3),
b, = a, ifn=2 (mod 3),
—cpy3if n=0 (mod 3), n>0.
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be a real sequence such that the function

(2) 9(2) =D b2
n=0
1s still entire. If, for each n € N, it is
(3) Cn < 24/A3n—103041
then the function g is upper unbounded on the real axis.

Proof. It x € R, we can write

o

g(z) = ag + a2 + Z 2972 (agp_1 — co® + agnpr2”)

n=1

and we can call, for each n € N, n > 1
Pu(1) = agn_1 — cp® + agp1 0t
Since, by hypothesis, it is
2 — 4dag,—1azn11 < 0.
we have that p,(z) > 0 for each # € R and for each n > 1. Hence
g(z) > ag + ay2°.

and so g is an upper unbounded entire function on the real axis. [

Corollary 1. If there is k € N, k > 2 such that (3) for each n > k
then then the function g is upper unbounded on the real axis.

Proof. We can write

+o0o
g(,I) = Qk‘(l‘) + Z xﬁn_Q (a3n—1 - Cnlz + a3n+1x4)-
n==k
where
k—1
a(z) = ap + ayz® + Zl‘ﬁh_2ph(l‘).
h=1

By reasoning as before, we have that g(x) > gx(x) Vo € R. Now, since
the leading term of g (z) is given by as;_»2%, we have that

lim gx(z) = +oo.
T—Fo00

thus the function ¢ is upper unbounded on the real axis. U

Corollary 2. With the same hypothesis as before, if
2

) c
lim sup——— < L < 4.
n—+4o00 A3p—-103n+1

then the function g is upper unbounded on the real axis.
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Proof. By definition of lim sup, we have that

n—-+00
2

Ve>03dn(e) :Vn>n(e) = R
A3n—143n+1

If we choose 0 < ¢ <4 — L, then we have that

2
Vn>n(e) = — " <L 4+4-L=4
a3n—1a3n+1

By Corollary 1 we have that the function g is upper unbounded on the
real axis. O

In particular, we have that

Corollary 3. If

c2

lim —2— =1L < 4.
n—+00 A3p—103n+1

then the function g is upper unbounded on the real axis.
Of course we have that

Corollary 4. Let

’) = 0

n=0
be an entire function such that

(1) a, € R,
(2) There exists ny € N such that n > ny, n odd = a, =0,

(3) If pu, (2) = % a,z" the function f(z) = g(z) — pn, (2) satisfies
n=0
the hypothesis of Corollary 3.

then g is upper unbounded on the real axis.

Proof. Trivial. Il

3. A SECOND RESULT

Theorem 2. Let f(z) be an entire function as in (1) and let be (¢p)n,
(dp)n two sequences of positive real numbers such that the function

+o0o
9(z) =Y bu2"
n=0

18 entire, with
bo = ag
b = a;
by = ay
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and
a, if mn=2 (mod4),
b — cnr if n=3 (mod 4),
") —do if n=0 (mod4),
a, if n =1 (mod4).
forn > 3. If
d2
(4) lim sup —"— < L < 3.

n—r+00 CnQ4n+1
then g s upper unbounded on the real axis.

Proof. We write

g(x) = ag + ayz® + Z ¥ g, (z).

n=1
where
Gn (T) = Qup_o + cn2?® — dpa* + agnp12® VY > 1.

We observe that
q,(z) =2z (¢, — 2d,2° + 3asn1z*) Vn > 1.

thus, if

(5) d? < 3cpaumyr Y >1

the ¢,(z) has only a point of local minimum at z = 0 we have that
4,(0) = a4y,—2 > 0 by hypothesis. By condition (4) there exists an
ny € N such that for each n > n; the condition (5) holds. Therefore
we have that

ni 00
g(x) = ag + ay2® + Z ¥ g, (z) + Z ¥ g, (z).

n=1 n=ni1+1

It follows that

ni
9(z) > ag + a2’ + Y 2™ g, (z) = p(z).

n=1

8ni1+2

Since the leading term of p(z) is an, 112 , we have that

lim p(z) = +o0.

r—F00

thus g is upper unbounded on the real axis. Il
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4. A THIRD RESULT

Theorem 3. Let f(z) be an entire function as in (1) and let be (¢p)n,
(dp)n two sequences of positive real numbers such that the function

—+00

g(z) = Z by z"
n=0
18 entire, with
bo = Qo
b1 aq
and
—¢, if n=3 (mod 5)
b, =1 —d, if n=0 (mod 5)
a, elsewhere
If
2
3 Cn+43
i s < <
(6) o
lim sup 22t gy
n——4oo An+4-20n+40n4-6

then g 1s upper unbounded on the real axis.
Proof. We write

g(x) = ag + ayz* + Z 2%, ()

n=0

where

_ 4 6 8 10 12
Pn(T) = A5p20" — Copp32° + 5p4a®” — dspis” + Asppe - VN 2> 1.
We consider now the ternary quadratic forms

¢n(3/17 Y2, yz) = an+2y%_Cn+3y1y2+an+4y§_dn+5y2y3+an+6y§ Vn > 1.

and we observe that
On (2%, 2, 2%) = p,(x) ¥n € N,Vz € R

For each n > 1 let

_tnt3
Q11 Q2 0g3 (42 2 b
— — Cn+43 +5
A= a1z am ags | = =72 ape —75

d
Q13 Qa3 (I33 0 — 25 a6
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be the matrices associated with the quadratic forms ¢,. It is well
known that if, for each n > 1 it is

( Al(n) =a;;1 >0

Ay(n) = det ( G dn ) >0

Q2 (g9

Q11 Q12 O3
Ag(n) = det 19 Q9o (93 >0
L Q13 Qg3 (33

then the quadratic forms ¢,, are strictly positive definite. We have that
Q11 = apso > 0 by hypothesis, and

Az(n)>0<:>c’2“‘4<4

An4-20n+4

(7)

Ag(n) > 0 e “2fhustehusnis

An420n+4+40n+6

Since condition (6) holds, there exist a natural number n; such that
for each n > n; condition (7) holds also. Arguing as in the proofs of
the previous theorems, we have that g is upper unbounded on the real

axis. [
In particular we have that

Corollary 5. With the same hypothesis of Theorem 6,if

2
lim sup —=43 _ < L, < 4

n——4o0o An4+20n+44

2 2

. Anp42a “+a An+6

lim sup 2205 sttt - 1o < 4
n——4o0o An+20n4+40n+6

then g 1s upper unbounded on the real axis.
Example 1. The entire function

2?1, 1, Ly g 15 14 14
g(z):1~|—ﬂ+§z — 5 + a7 Bk +az T +--
18 upper unbounded on the real axis because

2
lim _Ony3 1.
n—=+00 Upy2Qn44
and

2 2
. Qn420y, 5+ Ay 1 30n16
lim ntd nt3 =1.

n—+00 Ap420n440n16
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5. CONCLUSIONS

We can generalize somewhat the procedure in order to obtain further
sufficient conditions, at least in principle. Indeed, if we take any fixed
k € N with £ > 3 and if we take A\, = 2k — 1 then we can consider the
polynomials

2 4 4k
P k(%) = ann42®” + axne3” + 0 Axnpa12 0> L

and we can write

f(z) =ag + a12® + Z % 2p, w(2).
n=0

where
2k
2h
pn,k(x)zg Appn+h T
h=2

Now, if we consider k positive real sequences (c,;),, 7 = 1..k and we
assume that the function

g9(x) = ao+ ama® + > a* g, 4 ()
n=0
where

_ 2 (1) 4 6 (2) 4 4k
Uk (T) = axntor” — Clopnin) L F Oan+aT” = €y T Qg 41T -

is still entire, then we can consider the quadratic forms in k£ variables

1 2
¢n7/€ (yh o 'yk) = a)\kn+2y%_CEAin+3)y§+a)\kn+4y?2)_cgkin+3)x4 o '&/\knJr)\kJrlylz
and we can require that this forms are strictly positive definite. Doing
so, at least in principle, it is possible to obtain a set of conditions like
those of (7).
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