
A NOTE ON ENTIRE FUNCTIONS

LUCA GOLDONI

Abstract. In this article we consider certain power series with
real coefficients that represent an entire function and provide suf-
ficient conditions for the unboundedness of these functions on the
real axis.

1. Introduction

Let us consider a function of complex variable

(1) f(z) =
∞∑
n=0

anz
2n.

with an > 0 for each n ∈ N. Trivially, such a function is upper un-
bounded on the real axis. Suppose we alter infinite coefficients an
making them negative. It can well happen that the new function is
bounded on the real axis. For example, if we consider

f(z) =
∞∑
n=0

z2n

(2n)!

and we alternating the signs, we get

g(z) =
∞∑
n=0

(−1)n
z2n

(2n)!
= cos z

which is bounded on R. Under what conditions the series continues to
be an entire function upper unbounded on the real axis?

2. A first result

Theorem 1. Let f(z) be an entire function as in (1) and let be (cn)n
a sequence of positive real numbers. Let

bn =

 an if n ≡ 1 (mod 3) ,
an if n ≡ 2 (mod 3) ,
−cn/3 if n ≡ 0 (mod 3) , n > 0.
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be a real sequence such that the function

(2) g(z) =
∞∑
n=0

bnz
2n

is still entire. If, for each n ∈ N, it is

(3) cn ≤ 2
√
a3n−1a3n+1

then the function g is upper unbounded on the real axis.

Proof. If x ∈ R, we can write

g(x) = a0 + a1x
2 +

∞∑
n=1

x6n−2
(
a3n−1 − cnx2 + a3n+1x

4
)

and we can call, for each n ∈ N, n ≥ 1

pn(x) = a3n−1 − cnx2 + a3n+1x
4.

Since, by hypothesis, it is

c2n − 4a3n−1a3n+1 ≤ 0.

we have that pn(x) ≥ 0 for each x ∈ R and for each n ≥ 1. Hence

g(x) ≥ a0 + a1x
2.

and so g is an upper unbounded entire function on the real axis. �

Corollary 1. If there is k ∈ N, k ≥ 2 such that (3) for each n ≥ k
then then the function g is upper unbounded on the real axis.

Proof. We can write

g(x) = qk(x) +
+∞∑
n=k

x6n−2
(
a3n−1 − cnx2 + a3n+1x

4
)
.

where

qk(x) = a0 + a1x
2 +

k−1∑
h=1

x6h−2ph(x).

By reasoning as before, we have that g(x) ≥ qk(x) ∀x ∈ R. Now, since
the leading term of qk(x) is given by a3k−2x

6k−4, we have that

lim
x→±∞

qk(x) = +∞.

thus the function g is upper unbounded on the real axis. �

Corollary 2. With the same hypothesis as before, if

lim
n→+∞

sup
c2n

a3n−1a3n+1

≤ L < 4.

then the function g is upper unbounded on the real axis.
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Proof. By definition of lim
n→+∞

sup, we have that

∀ε > 0∃n (ε) : ∀n > n (ε)⇒ c2n
a3n−1a3n+1

< L+ ε.

If we choose 0 < ε ≤ 4− L, then we have that

∀n > n (ε) ⇒ c2n
a3n−1a3n+1

≤ L+ 4− L = 4.

By Corollary 1 we have that the function g is upper unbounded on the
real axis. �

In particular, we have that

Corollary 3. If

lim
n→+∞

c2n
a3n−1a3n+1

= L < 4.

then the function g is upper unbounded on the real axis.

Of course we have that

Corollary 4. Let

g(z) =
∞∑
n=0

anz
n

be an entire function such that

(1) an ∈ R,
(2) There exists n1 ∈ N such that n > n1, n odd ⇒ an = 0,

(3) If pn1 (z) =
n1∑
n=0

anz
n the function f(z) = g(z)− pn1 (z) satisfies

the hypothesis of Corollary 3.

then g is upper unbounded on the real axis.

Proof. Trivial. �

3. A second result

Theorem 2. Let f(z) be an entire function as in (1) and let be (cn)n,
(dn)n two sequences of positive real numbers such that the function

g(z) =
+∞∑
n=0

bnz
n

is entire, with  b0 = a0
b1 = a1
b2 = a2
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and

bn =


an if n ≡ 2 (mod 4) ,
cn+1

4
if n ≡ 3 (mod 4) ,

−dn
4

if n ≡ 0 (mod 4) ,
an if n ≡ 1 (mod 4) .

for n ≥ 3. If

(4) lim
n→+∞

sup
d2n

cna4n+1

< L < 3.

then g is upper unbounded on the real axis.

Proof. We write

g(x) = a0 + a1x
2 +

∞∑
n=1

x8n−4qn (x) .

where

qn (x) = a4n−2 + cnx
2 − dnx4 + a4n+1x

6 ∀n ≥ 1.

We observe that

q′n(x) = 2x
(
cn − 2dnx

2 + 3a4n+1x
4
)
∀n ≥ 1.

thus, if

(5) d2n < 3cna4n+1 ∀n ≥ 1

the qn(x) has only a point of local minimum at x = 0 we have that
qn(0) = a4n−2 > 0 by hypothesis. By condition (4) there exists an
n1 ∈ N such that for each n > n1 the condition (5) holds. Therefore
we have that

g(x) = a0 + a1x
2 +

n1∑
n=1

x8n−4qn (x) +
∞∑

n=n1+1

x8n−4qn (x) .

It follows that

g(x) ≥ a0 + a1x
2 +

n1∑
n=1

x8n−4qn (x) = p(x).

Since the leading term of p(x) is a4n1+1x
8n1+2, we have that

lim
x→±∞

p(x) = +∞.

thus g is upper unbounded on the real axis. �
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4. A third result

Theorem 3. Let f(z) be an entire function as in (1) and let be (cn)n,
(dn)n two sequences of positive real numbers such that the function

g(z) =
+∞∑
n=0

bnz
n

is entire, with {
b0 = a0
b1 = a1

and

bn =

 −cn if n ≡ 3 (mod 5)
−dn if n ≡ 0 (mod 5)
an elsewhere

If

(6)


lim

n→+∞
sup

c2n+3

an+2an+4
< L2 < 4

lim
n→+∞

sup
an+2d2n+5+c

2
n+3an+6

an+2an+4an+6
< L3 < 4

then g is upper unbounded on the real axis.

Proof. We write

g(x) = a0 + a1x
2 +

∞∑
n=0

x10npn(x)

where

pn(x) = a5n+2x
4 − c5n+3x

6 + a5n+4x
8 − d5n+5x

10 + a5n+6x
12 ∀n ≥ 1.

We consider now the ternary quadratic forms

φn(y1, y2, y3) = an+2y
2
1−cn+3y1y2+an+4y

2
2−dn+5y2y3+an+6y

2
3 ∀n ≥ 1.

and we observe that

φn(x2, x4, x6) = pn(x) ∀n ∈ N,∀x ∈ R

For each n ≥ 1 let

An =

 α11 α12 α13

α12 α22 α23

α13 α23 α33

 =

 an+2 − cn+3

2
0

− cn+3

2
an+4 −dn+5

2

0 −dn+5

2
an+6


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be the matrices associated with the quadratic forms φn. It is well
known that if, for each n ≥ 1 it is

∆1(n) = α11 > 0

∆2(n) = det

(
α11 α12

α12 α22

)
> 0

∆3(n) = det

 α11 α12 α13

α12 α22 α23

α13 α23 α33

 > 0

then the quadratic forms φn are strictly positive definite. We have that
α11 = an+2 > 0 by hypothesis, and

(7)


∆2(n) > 0⇔ c2n+3

an+2an+4
< 4

∆3(n) > 0⇔ an+2d2n+5+c
2
n+3an+6

an+2an+4an+6
< 4

Since condition (6) holds, there exist a natural number n1 such that
for each n > n1 condition (7) holds also. Arguing as in the proofs of
the previous theorems, we have that g is upper unbounded on the real
axis. �

In particular we have that

Corollary 5. With the same hypothesis of Theorem 6,if
lim

n→+∞
sup

a2n+3

an+2an+4
< L2 < 4

lim
n→+∞

sup
an+2a2n+5+a

2
n+3an+6

an+2an+4an+6
< L3 < 4

then g is upper unbounded on the real axis.

Example 1. The entire function

g(z) = 1 +
z2

1!
+

1

2!
z4− 1

3!
z6 +

1

4!
z8− 1

5!
z6 +

1

6!
z12 +

1

7!
z14− 1

8!
z16 + · · ·

is upper unbounded on the real axis because

lim
n→+∞

a2n+3

an+2an+4

= 1.

and

lim
n→+∞

an+2a
2
n+5 + a2n+3an+6

an+2an+4an+6

= 1.
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5. Conclusions

We can generalize somewhat the procedure in order to obtain further
sufficient conditions, at least in principle. Indeed, if we take any fixed
k ∈ N with k ≥ 3 and if we take λk = 2k − 1 then we can consider the
polynomials

pn,k(x) = aλkn+2x
2 + aλkn+3x

4 + · · · aλkn+λk+1x
4k n ≥ 1.

and we can write

f(x) = a0 + a1x
2 +

∞∑
n=0

x4k−2pn,k(x).

where

pn,k(x) =
2k∑
h=2

aλkn+hx
2h.

Now, if we consider k positive real sequences (cn,j)n, j = 1..k and we
assume that the function

g(x) = a0 + a1x
2 +

∞∑
n=0

x4k−2qn,k(x)

where

qn,k(x) = aλkn+2x
2 − c(1)(λkn+3)x

4 + aλkn+4x
6 − c(2)(λkn+3)x

4 · · · aλkn+λk+1x
4k.

is still entire, then we can consider the quadratic forms in k variables

φn,k (y1, · · · yk) = aλkn+2y
2
1−c

(1)
(λkn+3)y

2
2+aλkn+4y

2
3−c

(2)
(λkn+3)x

4 · · · aλkn+λk+1y
2
k

and we can require that this forms are strictly positive definite. Doing
so, at least in principle, it is possible to obtain a set of conditions like
those of (7).
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