
Even within the current data collection, a variety of results

remain to be explored. Part of the metagenomic reads that could

not be mapped against our extended bacterial and archaeal

resource are likely coming from viral and eukaryotic genomes.

For example, we found substantial amounts of viruses (>0.5%

relative read depth in 101 samples for bacteriophages never

found as prophages in reference bacterial genomes), of the in-

testinal eukaryotic parasite Blastocystis (>0.5% in 158 samples),

and of the skin fungus Malassezia (>0.5% in 297 samples).

Considering that de novo discovery of non-bacterial genomes

is very challenging and should receive more attention in the

future, eukaryoticmicroorganisms and virusesmay thus account

for some of the remaining unmappable sequences in these data

(Figure 2). These results help to pinpoint microbes unique to

a particular population, environment, or exposure, and most

importantly, future work may then be able to more easily capture

A

B

D

C

E

Figure 7. Quality of the Single-Sample Assembled Genomes against Multiple Alternative Genome Reconstruction Approaches

(A) Percentage identity between genomes from isolates (I) and genomes we reconstructed from metagenomes (M) for five Bifidobacterium species from the

FerrettiP_2018 dataset (Ferretti et al., 2018). Wemark isolates andmetagenomes coming from the same specimen (big filled circles) and coming from specimens

of the same mother-infant pair (small filled circles). In all cases, our automatic pipeline reconstructs genomes from metagenomes that are almost identical to the

genomes of the expected isolated strains.

(B) The strains of S. aureus and P. aeruginosa isolated from three patients are almost perfectly matching the genomes reconstructed from sputummetagenomes

sequenced at multiple time points. In the only case in which a S. aureus genome from ametagenome is not matching the strain isolated from a previous time point

in the same patient, we verified with MLST typing that a clinical event of strain-replacement from ST45 to ST273 occurred.

(C) In the dataset by Nielsen et al. (2014), we successfully recover at >99.5% identity the strain of aB. animalis subspecies lactis present in a commercial probiotic

product that was consumed by the enrolled subjects, even if the probiotic strain was at low relative abundance in the stool microbiome (<0.3% on average

[Nielsen et al., 2014]).

(D) Comparison of the 46 manually curated genomes (using anvi’o) with automatically assembled (using metaSPAdes) and binned (using MetaBAT2) genomes.

(E) Example comparison between the set of single-sample assembled genomes and co-assembled genomes for a time series (n = 5) of gut metagenomes from a

newborn. Several genomes reconstructed with the two approaches have the same phylogenetic placement, with single-sample assembly retrieving the same (or

a very closely related) genome at multiple time points, and both methods retrieving some unique genomes. This is an example of the comprehensive comparison

performed in the STAR Methods and reported in Table S2 and Figure S7B.
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specific strains or microbial molecular mechanisms that are

causal in microbiome-associated human health conditions.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Stool samples from Madagascar cohort Golden et al., 2017 N/A

Stool samples from Ethiopian cohort This paper N/A

Critical Commercial Assays

PowerSoil DNA Isolation Kit MoBio Laboratories Carlsbad, USA Catalog No. 12888-50

NexteraXT DNA Library Preparation Kit Illumina, California, USA FC-131-1096

Deposited Data

Raw sequencing data (Madagascar cohort) This paper NCBI-SRA BioProject: PRJNA485056

Raw sequencing data (Ethiopian cohort) This paper NCBI-SRA BioProject: PRJNA504891

Data for all genomes This paper http://segatalab.cibio.unitn.it/data/Pasolli_et_al.html

Representative genome for Ca. Cibiobacter

qucibialis

This paper DDBJ/ENA/GenBank accession SAUS00000000

Software and Algorithms

metaSPAdes (version 3.10.1) Nurk et al., 2017 https://github.com/ablab/spades/releases

MEGAHIT (version 1.1.1) Li et al., 2015 https://github.com/voutcn/megahit

MetaBAT2 (version 2.12.1) Kang et al., 2015 https://bitbucket.org/berkeleylab/metabat

CheckM (version 1.0.7) Parks et al., 2015 https://github.com/Ecogenomics/CheckM

CMSeq (version 1.0.0) This study https://bitbucket.org/CibioCM/cmseq

Mash (version 2.0) Ondov et al., 2016 https://github.com/marbl/Mash

MetaPhlAn2 (version 2.0) Segata et al., 2012b; Truong et al., 2015 https://bitbucket.org/biobakery/metaphlan2

HUMANn2 (version 0.7.1) Franzosa et al., 2018 https://bitbucket.org/biobakery/humann2/

Bowtie2 (version 2.2.9) Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

Prodigal (version 2.6.3) https://github.com/hyattpd/Prodigal

Pyani (version 0.2.6) Pritchard et al., 2016 https://github.com/widdowquinn/pyani

StrainPhlAn (version 2.0.0) Truong et al., 2017 https://bitbucket.org/biobakery/metaphlan2

Anvi’o (version 4) Eren et al., 2015 https://github.com/merenlab/anvio

BWA (version 0.7.17) Li and Durbin, 2009 https://github.com/lh3/bwa

CONCOCT (version 0.5.0) Alneberg et al., 2014 https://github.com/BinPro/CONCOCT

RPSBlast Marchler-Bauer et al., 2003 ftp://ftp.ncbi.nih.gov/blast/executables/

PhyloPhlAn (version dev, 0.25) Segata et al., 2013 https://bitbucket.org/nsegata/phylophlan

Diamond (version 0.9.9.110) Buchfink et al., 2015 https://github.com/bbuchfink/diamond

mafft (version 7.310) Katoh and Standley, 2013 https://github.com/The-Bioinformatics-Group/

Albiorix/wiki/mafft

trimal (version 1.2rev59) Capella-Gutiérrez et al., 2009 https://github.com/scapella/trimal

RAxML (version 8.1.15) Stamatakis, 2014 https://github.com/stamatak/standard-RAxML

IQ-TREE (version 1.6.6) Nguyen et al., 2015 https://github.com/Cibiv/IQ-TREE

Roary (version 3.8) Page et al., 2015 https://github.com/sanger-pathogens/Roary

blastn (version 2.6.0+) Altschul et al., 1990 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast

FastTree (version 2.1.9) Price et al., 2010 https://github.com/PavelTorgashov/FastTree

ecodist R package Goslee and Urban, 2007 https://github.com/cran/ecodist

GraPhlAn (version 1.1.3) Asnicar et al., 2015 https://bitbucket.org/nsegata/graphlan/

FigTree (version 1.4.3) N/A http://tree.bio.ed.ac.uk/software/figtree/

Prokka (version 1.12) Seemann, 2014 https://github.com/tseemann/prokka

EggNOG mapper (version 1.0.3) Huerta-Cepas et al., 2017 https://github.com/jhcepas/eggnog-mapper

HMM Eddy, 2011 https://github.com/guyz/HMM
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, reagents, and software should be directed to andwill be fulfilled by the Lead Contact,

Nicola Segata (nicola.segata@unitn.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects enrolled in our study are adults from the Madagascar and Ethiopian non-Westernized cohorts described in the Methods

below. Ethical approvals were given by the Madagascar Ministry of Health and the Office for the Protection of Human Subjects at

the Harvard T.H. Chan School of Public Health, protocol #22826 for the Madagascar cohort, and by the Research Ethics Committee

of the Valencia University (reference number: H1484811493170) and also by the Ethics Committee of the Consejo Superior de Inves-

tigaciones Cientı̀ficas (Madrid, Spain), number 058/2018, for the Ethiopia cohort. Informed consent was obtained for all individuals.

METHOD DETAILS

Overview of the approach
Our approach to reconstruct bacterial and archaeal genomes from the human microbiome (Figure 6A) exploits metagenomic single-

sample assembly, contig binning, and species-level inter-sample genome grouping at the scale of the many thousands of metage-

nomes now available in public repositories.

In brief, we first collected and curated a metagenomic resource comprising a total of 9,428 metagenomes (from public resources

and samples sequenced in this study, see below) and then applied metagenomic assembly - metaSPAdes (Nurk et al., 2017) or

MEGAHIT (Li et al., 2015) - to each sample separately. Each metagenomic assembly was then quality controlled for minimum length

and the 204M contigs were subjected to sample-specific contig binning based on tetranucleotide frequency and contig abundance

usingMetaBAT2 (Kang et al., 2015) resulting in over 345,000 putative genome bins (Figure 6A). Genome bins were then strictly quality

controlled to identify reconstructed genomes with quality at least comparable with the typical quality of isolate genome sequencing.

By controlling genome completeness and contamination using CheckM (Parks et al., 2015) and strain heterogeneity with the CMSeq

pipeline described below, we identified 70,178 high-quality genomes and 84,545 additional MQ genomes (Figure 6A).

The 154,723 reconstructed genomes and the 80,990 reference genomes retrieved from public repositories (see below) were then

clustered based on whole-genome nucleotide similarity estimation using Mash (Ondov et al., 2016). The cutoff on the hierarchical

clustering was tuned based on the intra- and inter-species diversity of the confidently taxonomically labeled subset of the 80,990

reference genomes resulting in species-level genome bins (SGBs) spanning �5% genetic diversity, as independently proposed

elsewhere (Jain et al., 2018). Overall we obtained 16,332 SGBs that were further divided in known SGBs (kSGB) that contain at least

one reference genome, unknown SGBs (uSGBs) without any reference genomes, and non-human SGBs containing only reference

genomes and no genomes reconstructed from our assembly of the human microbiome (Figure 6A). The kSGBs were then taxonom-

ically labeled with the species label (if available) of the reference genome(s) present in the bin, whereas uSGBs were assigned the

phylum of their closest reference genome, and to a genus-level and family-level annotation when possible.

Meta-analyzed publicly available metagenomic datasets
We collected publically available metagenomic samples from 46 different studies, totaling 9,316 metagenomes and 4.1e11 Illumina

reads. Overall, the samples cover 31 countries: USA (1,431 samples), China (1,342), Israel (956), Sweden (600) andDenmark (580) are

the 5 most represented. The metagenomes were sampled from 5 major body sites: 7,783 samples from the gut (stool samples), 783

from the oral cavity, 503 from the skin (including 93 samples from anterior nares), 88 from the vagina, and 9 from maternal milk

(excluded for visualization from the figures). Samples from adults (19 to 65 years of age) account for 6,615 samples, but all age cat-

egories are covered with 1,098 newborns (< 1 year of age), 465 children (age R1 year and <12 years), 216 school-age individuals

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Barrnap (version 0.9) N/A https://github.com/tseemann/barrnap

RDP (version 2.11) Cole et al., 2014; Wang et al., 2007 https://github.com/rdpstaff/classifier

Other

curatedMetagenomicData Pasolli et al., 2017 https://github.com/waldronlab/

curatedMetagenomicData

UniProt The UniProt Consortium, 2017 https://github.com/ebi-uniprot

NCBI GenBank database NCBI Resource Coordinators, 2013 https://www.ncbi.nlm.nih.gov/genbank/

RefSeq (viral genomes and plasmids) Brister et al., 2015; O’Leary et al., 2016 https://www.ncbi.nlm.nih.gov/refseq/
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(age R12 and <19 years), and 876 from adults and seniors (age R19 and >65 years; merged with the class ‘‘adult’’ in Figure 1).

Despite manual curation efforts, 46 samples from public repositories used here still miss the metadata for age category. All these

and other manually-curatedmetadata fields are available in Table S1 and are included in the curatedMetagenomicData package (Pa-

solli et al., 2017) together with all the taxonomic (Segata et al., 2012b; Truong et al., 2015) and functional potential profiles (Franzosa

et al., 2018) of the microbial species with available reference genomes. To cross-validate the results on the raw-reads mappability,

we also retrieved 384 additional metagenomes not used to reconstruct the SGBs. Specifically, we considered 303 Westernized gut

metagenomes, 52 Westernized oral metagenomes and 29 non-Westernized oral metagenomes as reported in Table S1.

Enrollment of participants from non-Westernized populations from Madagascar and Ethiopia
We enrolled, sampled, and sequenced the gut microbiome of individuals from the Madagascar Health and Environmental Research

(MAHERY) study cohort that was set up in 2004 in a remote rainforest region in north-eastern Madagascar to study the impact of

environmental change on human health (Golden et al., 2017). The cohort includes local people (Betsimisaraka and Tsimihety

ethnicity) whose diet relies heavily on self-grown rice and wild plants and meats. Samples were collected between January 2013

and May 2014 from two subsistence communities (A and B) adjacent to the Makira Natural Park, approximately 10 km away from

each other. A subset of the households in the two communities were randomly selected to be enrolled in the study (95 households

out of 160 in Community A and 57 households out of 157 in Community B), for a total of 719 individuals < 74 years old. Enrolled people

were subjected to clinical visits and questionnaires about dietary intake, and were asked to collect biological samples (fingernails,

blood, faeces) to assess health and nutritional status. The samples considered in this study were collected from a total of 112 healthy

volunteers (54 females and 58 males, Table S1). The gut microbiome of five female individuals were also sampled from a previously

established cohort in Gimbichu (Ethiopia, Oromia Region).

Sample collection of non-Westernized cohorts
Faecal samples from the Madagascar cohort were self-collected in sterile polypropylene screw cap collection tubes (Sarstedt) after

defecation on the waxy side of a banana leaf, and returned to the local research team within five hours of collection (Golden et al.,

2017). Three ml of 97% ethanol were added to stabilize samples before storing them at�23�Cwithin 14 days of collection. Samples

were then shipped on dry ice to the USA to be stored at �80�C. Faecal samples from Ethiopian individuals were collected in REAL

MiniSystem ‘‘Total - fix’’ (Durviz S.L., Valencia, Spain) and kept frozen at �80�C.

DNA extraction and sequencing
DNA was extracted with the PowerSoil DNA Isolation Kit (MoBio Laboratories) after pre-heating to 65�C for 10 min and to 95�C for

10 min (HMP Consortium, 2012). Libraries were prepared with the NexteraXT DNA Library Preparation Kit (Illumina) and sequenced

on the HiSeq2500 machine (Illumina). The metadata for this cohort are available in Table S1 and are included in the curatedMetage-

nomicData package together with the taxonomic and functional potential profiles of the specieswith available reference genomes.We

sequenced the 117 samples for a total of 593.9 Gb (5.3Gb average per sample after quality control, 3.87Gb standard deviation, Table

S1). The raw reads were submitted to the NCBI-SRA archive and are available under the BioProjects PRJNA485056 (Madagascar

cohort) and PRJNA504891 (Ethiopian cohort).

Description of the non-Westernized cohorts
Westernization and urbanization are complex processes that occurred during the last few centuries involving profound lifestyle

changes compared to populations prior to the modern era. These changes include increased hygiene and sanitized environments,

introduction and large availability of antibiotics and other drugs, switch toward a high-calorie high-fat dietary regimes and toward

processed sterilized food, enhanced exposure to xenobiotics and pollutants, reduced contact with wildlife and domesticated ani-

mals, and transition from autarchic food production systems to a controlled food chain in a global economy. All these factors are

thought to have dramatic effects on the human microbiome that co-evolved with our our body for hundred thousands of years in

non-Westernized conditions. In this work, we adopt the terms ‘‘Westernized’’ and ‘‘non-Westernized’’ as umbrella terms to depict

populations that differ by at least the majority of the above factors even though this definition comprises very heterogeneous

populations.

In addition to the sequenced Madagascar cohort (above), 480 additional samples were annotated as ‘‘non-Westernized’’ from a

total of 5 studies spanning 4 populations. These were a traditional Fijian population (Brito et al., 2016) (172 stool samples and 140

saliva samples), the hunter-gatherer Hadza population (Tanzania) from two different studies (Rampelli et al., 2015; Smits et al.,

2017) (67 stool samples in total), the traditional agro-pastoral Mongolian population (Liu et al., 2016) (65 stool samples), and a Peru-

vian rural community (Obregon-Tito et al., 2015) (36 stool samples). With the Madagascar cohort, this work thus considers a total of

592 non-Westernized compared with 8,836 Westernized samples.

Isolate genomes and available metagenomic assemblies used as references
We considered the whole set of 17,607 microbial species (16,959 bacteria, 648 archaea) available as of March 2018 in the UniProt

portal (The UniProt Consortium, 2017) for which at least one proteome (the set of coding sequences associated with the genome) is

available. Quality control performed byUniProt to retain the proteomes and the associated genomes include the availability of a set of
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annotated coding sequences and the check that the number of coding sequences is statistically consistent with the one of proteomes

of neighboring species. We then considered all the available annotated genomes for these species and downloaded them from the

NCBI GenBank database (NCBI Resource Coordinators, 2013) obtaining a total of 80,853 genomes. This large genome set

comprises both complete (12%) and draft (88%) genomes, and it is the largest set of microbial isolate genomes with taxonomic

assignments and quality-controlled sequences available as of March 2018. Draft genomes include also metagenomic species

that are explicitly labeled with the ‘‘MAG’’ abbreviation (n = 37) and co-abundance gene groups metagenomic assemblies (CAGs,

n = 377) (Nielsen et al., 2014). We further added this genome set to the 137 isolate genomes collected in (Browne et al., 2016) for

a total of 80,990 considered as reference genomes. We refer to this set of 80,990 as ‘‘isolate genomes’’ for brevity, but they also

comprise previousmetagenomic assembly asmentioned above. To further expand the set of reference genomeswe also considered

all the 159,803 assemblies available in NCBI as of September 2018.

Metagenomic assembly and contig binning
Each of the 9,428 samples were processed with the standard quality-control employed by metaSPAdes (Nurk et al., 2017) which

includes the read corrector BayesHammer (Nikolenko et al., 2013) and then independently subjected to de-novo metagenomic

assembly throughmetaSPAdes (Nurk et al., 2017) (version 3.10.1; default parameters), which exhibited the best accuracies in recent

comparisons amongmetagenomic assemblers (Forouzan et al., 2018; van der Walt et al., 2017). Samples that failed to be processed

due to memory requirements (>1Tb of RAM), and samples with only unpaired reads, were assembled through MEGAHIT (Li et al.,

2015) (version 1.1.1; default parameters). An extended comparison between metaSPAdes and MEGAHIT assemblers across all

the datasets considered in this study confirmed that metaSPAdes performs consistently better especially in recovering long contigs

(Figure S7A). Contigs shorter than 1,000 nt were discarded from further processing. This resulted in 2.04e8 different contigs for

a total length of 8.67e11 nt. Reads were mapped to contigs using Bowtie2 (Langmead and Salzberg, 2012) (version 2.2.9;

option ‘--very-sensitive-local’) and the mapping output was used for contig binning through MetaBAT2 (Kang et al., 2015) (version

2.12.1; option ‘-m 1500’), which showed good performance in comparison with other binning methods (Meyer et al., 2018).

MetaBAT2 achieved the best performances among single-sample binning tools also in the evaluation performed in the Metawrap

paper (Uritskiy et al., 2018), a recent tool for multiple binning. The multiple binning approach looks promising, although lack of inde-

pendent validation and high computational requirements make it infeasible to be used in the large-scale scenario exploited in this

paper at this stage. The procedure of binning through MetaBAT2 generated 345,654 bins (i.e., putative genomes) for a total length

of 6.55e11 nt indicating that 75% of the assembled contigs were grouped into bins.

The relative abundance of each reconstructed genome in the 9,428 metagenomes was calculated from the alignments of the raw

reads against the assemblies of the same sample (performed using BowTie2 as reported above). This avoids spurious read assign-

ments (i.e., reads mapping sufficiently well against more than one genome in the same or different species). Indeed, as a direct

consequence of the assembly-based approach, it is very rare (< 0.01%) that a read can be assigned to more than one contig assem-

bled from ametagenome containing the read itself. Thus, the relative genome abundance in each sample was defined as the number

of reads aligning to each contig of the genome normalized by the total number of reads in the sample. Only primary alignments with

alignment length R50 nt and edit-distance with respect to the contig %2 nt were considered. Abundances at SGB level in each

sample were computed as the sum of the abundances of the reconstructed strains belonging to the same SGB.

Quality control of metagenomic assemblies
Putative genomes were subjected to quality control to generate the final set of reconstructed draft genomes. Three main measures

were taken into account: i) completeness; ii) contamination; and iii) strain heterogeneity. Completeness and contamination were esti-

mated using CheckM (Parks et al., 2015) (version 1.0.7; lineage specific workflow), while strain heterogeneity was estimated through

a strategy we developed to identify assemblies resulting from strain mixtures even when the strains were very closely related.

Following this procedure, reads were mapped against the reconstructed genomes from the same sample using Bowtie2 (Langmead

and Salzberg, 2012) (version 2.2.9; option ‘--very-sensitive-local’) and dominant and non-dominant alleles were determined over all

protein coding nucleotides. We only considered base calls with a PHRED quality score of at least 30 and only those positions with a

coverage of at least 10x. We considered a position as non-polymorphic if the dominant allele frequency was >80%. In order to calcu-

late the polymorphic rate, we then considered only polymorphic positions corresponding to non-synonymous mutations. Validation

experiments performed by mixing simulated metagenomic sequencing (with Illumina error models) of 5 randomly selected pairs of

strains from each of the the 10 Bacteroides species of Figure 4 at decreasing dominant strain frequency (and thus higher nucleotide-

level heterogeneity) confirmed that this approach reflects indeed the expected level of strain mixture. The strain heterogeneity esti-

mation tool is available at https://bitbucket.org/CibioCM/cmseq.

Based on these quality estimated and on recent guidelines (Bowers et al., 2017), we selected as medium-quality (MQ) genomes

those having completeness >50% and contamination <5% resulting in a total of 154,723 microbial genomes. Stricter quality control

reduced the set of near-complete, high-quality (HQ) genomes to 70,178 with completeness >90% and no evidence of strong intra-

sample strain heterogeneity (<0.5% polymorphic positions). The strain heterogeneity threshold removed 3,653 reconstructed ge-

nomes (5.2%) of otherwise HQ genomes, and we verified that these genomes tended to have higher CheckM contamination

(although always below the recommended 5% threshold) with a median of 0.74% against 1.56% (p < 1e-50). This provides an

additional indication that the CMSeq heterogeneity score helps in controlling strain mixtures and contaminations.
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We evaluated the presence of plasmids and viruses within reference genomes and reconstructed SGBs by mapping the 13,924

plasmids and 10,529 viruses in RefSeq against the 80,990 reference genomes and the 154,723 genomes in the SGBs with BLAST

(Altschul et al., 1990). We filtered alignments shorter than 500 nucleotides and with less than 80% identity. A plasmid or virus was

considered to be present if at least 50% of its sequence was covered by any genome or SGBs in our catalog. We found that 37%

of the fully sequenced plasmids in the RefSeq repository were represented in the reconstructed genomes (95% in the available refer-

ence genomes). The 16S rRNA sequences in the SGB genomes were searched with Barrnap 0.9 (default parameters). The 16S rRNA

taxonomy (Table S4) was inferred with RDP rRNA classifier version 2.11 (Cole et al., 2014; Wang et al., 2007) (default parameters),

only on predicted rRNA sequences longer than 500 nucleotides. We set RDP’s minimum confidence threshold to call for each

taxonomic level at 75%. Although we confirmed that the 16S rRNA gene is challenging to be recovered by metagenomic assembly

(it was recovered in only 7.43% of the reconstructed genomes), the search for the most 400 conserved coding genes from

PhyloPhlAn (Segata et al., 2013) in the reconstructed genomes and isolate sequencing available for the 9 largest SGBs and the

10 Bacteroides SGBs of Figure 4, confirmed that cross-species conservation of genes is not an issue for metagenomic assembly.

Metagenomically reconstructed genomes recovered more PhyloPhlAn markers in 10 cases and less markers in 9 cases, and all

comparisons were within 5% average differences.

Validation of the pipeline for genome reconstruction from metagenomics using isolate sequencing and manually
curated genomes
Genomes reconstructed from metagenomes were compared with the ones of isolates obtained from the same sample, or from

samples obtained from the same individual at earlier or later time points (Figures 7A–7C; Table S2). We compared 18 isolates

with 36 genomes reconstructed from metagenomes from 8 different bacterial species. Compared samples included sputum from

cystic fibrosis patients (Manara et al., 2018), stool and breast milk samples from mother-infant pairs (Ferretti et al., 2018), and feces

of adults consuming fermented milk product containing a probiotic strain (Nielsen et al., 2014).

Comparison between the genome reconstructed from the automatic pipeline and the one from isolate was done by computing the

average nucleotide identity (ANI) and the corresponding alignment coverage using the pyani tool (Pritchard et al., 2016) (version 0.2.6;

option ‘-m ANIb’). Results showed that in all cases the genomes reconstructed frommetagenomes with our automatic pipeline were

almost identical to the genome of the expected isolated strains. For the only case in which this was not true (S. aureus isolate MF093

and pairedmetagenomeCM_cf__CF_FIFC009SS_t3M17__bin.3), we verified withMLST typing (both from assembled and unassem-

bled reads) and with StrainPhlAn (Truong et al., 2017) that a clinical event of strain-replacement from ST45 to ST273 occurred.

A similar analysis was conducted to compare the genomes reconstructed using our fully automated pipeline with the ones obtained

through manual curation using anvi’o (Eren et al., 2015) (Figure 7D; Table S2). Manually curated genomes were generated starting

from the same set of unbinned contigs. A total of 50 metagenomes from the database considered in this study were randomly

selected and assigned to six groups of students that were previously trained for the task of manual curation of contig binning by

guided execution and discussion of the available anvi’o tutorials followed by curation of several example metagenomes common

to all groups. Each group was asked to bin contigs for the strain with the highest reconstruction quality in the sample. This resulted

in 46 manually-curated reconstructed genomes. Our automatic procedure recovered a genome closely matching (>99.5% whole

genome genetic identity) the manually-curated one in all 46 cases. The comparison between genomes was done by computing

the ANI score through the pyani tool and the results are reported in Figure 7D and Table S2.

Evaluation of single-sample assemblies against co-assembly and co-binning methods
In order to provide a comparison to the single sample strategy employed here, we co-assembled and co-binned a subset of the data

where multiple samples from the same individual were available. Samples were taken from two studies: the already described inves-

tigation of the microbiome of newborns and of their mothers (Ferretti et al., 2018), and a study considering fecal microbiome time

series for adults (Costea et al., 2017). From the first, we selected 22 infants for which at least 3 fecal samples taken during the first

four months post-partum were available (maximum 5, median 4). We also co-assembled 21 fecal samples from the mothers from the

same study to provide a comparison against cross-sectional co-assembly. Somewhat longer fecal time series were available from

the second study, from which we selected four individuals with a number of time points between eight and ten (Costea et al., 2017).

This gave us a total of 26 longitudinal time series from the same individual and one cross-sectional study (21 individuals) each of

which we co-assembled using MEGAHIT (Li et al., 2015) with default parameters except for the kmer-list set to (21,31,..,99). The

assembled contigs were then cut into 10kbp fragments and the reads from each sample within the time series (or mother in the

cross-sectional study) were thenmapped back onto the contig fragments using BWA and a per sample depth of coverage was calcu-

lated (Li and Durbin, 2009). The contig fragments were then clustered using the CONCOCT algorithm (default parameters) which

combines both tetramer composition and coverage in a Gaussian mixture model after a PCA based dimensionality reduction (Alne-

berg et al., 2014). Following clustering, a consensus cluster assignment across fragments was given to each contig to assign clusters

based on the original co-assembly.

We called ORFs on the co-assembled contigs and assigned COGs (Tatusov et al., 2003) using RPSBlast. The same procedure was

applied to the genomes reconstructed by single sample assembly from the same set of samples used in each co-assembly. We then

selected only those reconstructed genomes fromboth studies that possessedmore than 75%of a panel of 36 single copy core genes

in single copy (Alneberg et al., 2014). To remove redundancy across reconstructed genomes from the single sample clustering
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(i.e., same genome reconstructed at multiple time points from the same individual), and to determine the intersection of genomes

between the two approaches, we then performed a hierarchical average linkage clustering of all the genomes from both methods

and clustered at 1% nucleotide identity on the core gene panel. The results of such procedure are given in Table S2. We then

also evaluated the genomes obtained by the co-assembly by computing CheckM completeness, CheckM contamination, and

CMSeq heterogeneity as described for the single-assembly reconstructed genomes. Co-assembled genomes were then assigned

to theHQ orMQcategory with the same thresholds used for the single-assembly reconstructed genomes. The number of HQ andMQ

genomes obtained with the two approaches was then compared, and additional genome quality metrics such as genome length,

N50, completeness estimate, and contamination estimates were considered. For the genomes obtained by single-sample assembly,

the grouping into SGBs was used to compare the number of distinct species obtained compared to the co-assembly approach. This

second set of evaluations is also reported in Table S2.

For the short infant time series, the increase in number of genomes obtained by co-assembling and co-clustering was typically

modest after collapsing closely related strains from single-genome assembly (median increase of 3% for the 36-core gene based

evaluation - Table S2, 6.87% for the CheckM-based evaluation with thresholds for HQ genomes - Table S2). Without removal of

closely related strains, single-genome assembly recovered more genomes (12% HQ genomes, 50% MQ genomes) because the

same strains (or closely related ones) were recovered at multiple time points (Figures 7E and S7B).

The improvement for the co-assembly approach wasmore clear from the second study where at least eight time points were avail-

able (median increase 31% - Table S2). Across all the considered individuals there was a weak correlation between increase in the

number of reconstructed genomes obtained from co-clustering and sample number (p = 0.08). We conclude that co-assembling and

co-binning of gut metagenomes requires amoderate number of samples (more than 5) to achieve substantial improvements. The co-

assembly of mothers yielded an increase of 3% in the number of HQ genomes (after merging single-sample assemblies into 99%

identity genome bins) when using the 36 single-copy genes for quality control (Table S2), and a decrease from 124 to 88 HQ

SGB-grouped genomes when using >90% CheckM completeness and < 5% CheckM contamination thresholds (Table S2). Other

genome quality statistics were very similar between the two approaches with however the co-assembly method showing slightly

more contamination (1.7% against 0.9% for HQ genomes, Table S2). Overall, this suggests that large scale co-assembly may at

best offer limited improvement in terms of overall recovered diversity.

It is of note that the co-assembly approach can reconstruct only one bin per species or subspecies (Figures 7E and S7B) and on a

large cross-sectional database such as the one considered in this study, this would effectively be a composite population-level

genome incorporating both variation in single-nucleotide variants on core genes and variation in accessory genes. It is possible to

resolve this variation on co-assemblies via single-nucleotide variant calling (Quince et al., 2017b; Truong et al., 2017) and when

this is followed by deconvolution of haplotypes across samples as employed in the DESMAN pipeline (Quince et al., 2017b) this

does allow the reconstruction of whole-genome haplotypes and assignment of accessory genes to specific strains. However,

when most species are present in a single dominant strain as it is the case in the human microbiome (Truong et al., 2017), directly

assembling strains from individual samples is a more straightforward strategy that both avoids the deconvolution step and uncer-

tainties associated with variant calling from mapped reads. It is therefore more suitable for the very large scale analyses considered

here where the aim is to generate a small number of HQ strains from each sample to provide themost comprehensive picture of over-

all diversity in the human gut.

The general conclusion of this comparison is thus that co-assembly and co-binning approaches would be useful for retrieving

substantially more genomes in relatively long (>5) subject-specific time series, whereas the potential advantage of retrieving more

low-abundance species in a cross-sectional co-assembly is overcome by the disadvantage of having to use more complex ap-

proaches such as DESMAN to resolve the strain variation. That is perhaps more appropriate where the aim is to extract as much

information as possible from a single study rather than to produce a single comprehensive high fidelity strain catalog. Because

time series comprising more than 5 samples from the same subject and body site are very rare in the available cohorts (only 70 in-

dividuals - i.e., 1.0% - in our database), co-assembly is not considered in the present work as it would not provide advantages.

Grouping of metagenomic assemblies into species-level genome bins
The 154,723 reconstructed genomes, in addition to the 80,990 reference genomes, were organized into species-level genome bins

(SGBs). We applied an all-versus-all genetic distance quantification (nucleotide identity) on the total of 235,713 genomes using Mash

(Ondov et al., 2016) (version 2.0; option ‘‘-s 1e4’’ for sketching) followed by hierarchical clustering with average linkage (using the

fastcluster Python library).

The cutoff on the resulting dendrogram to define species-level genome bins (SGBs) was selected based on the intra- and inter-

species diversity of the confidently taxonomically labeled subset of the 80,990 reference genomes. Microbial species labels for

the genomes were inferred from the taxonomic label provided by NCBI GenBank in association with the genomes, and excluding

all genomes containing ambiguous terms in the species name (i.e., ‘‘_sp,’’ ‘‘archaeon,’’ ‘‘bacterium,’’ or ‘‘candidatus’’). This resulted

in a total of 61,198 genomes spanning 5,494 named species.

With this labeling, the optimal dendrogram cutoff threshold to defined species-level genome bins (SGBs) was then chosen by

taking into account two competing criteria (Figure S2C): i) minimization of the over-clustering error (Figure S2C-i) to avoid that ge-

nomes from the same species fall into different SGBs; ii) minimization of the under-clustering error (Figure S2C-ii) to prevent that ge-

nomes from different species fall into the same SGB. The two criteria were computed across all available species and cutoff choice,
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normalized by the total number of available genomes, and summed up to get the value tominimize. Results showed aminimization of

the error for a threshold equal to 0.05 (Figure S2C-iii), which was thus adopted to cut the dendrogram and generate SGBs spanning

�5%genetic diversity. A similar 5%genetic diversity range to define species boundaries was independently proposed and validated

elsewhere (Jain et al., 2018), thus serving as a reasonable compromise despite the wide diversity of genomic similarities within ex-

isting defined species. This threshold was also confirmed by considering only prevalent species (>10 genomes) representing more

studied and validated species, and by subsampling to a maximum of 10 genomes per species in order to avoid biases due to the

different number of available genomes in existing species.

The resulting SGBs were further refined in order to prevent that same-species genomes were split into multiple SGBs due to inac-

curate estimation of Mash for incomplete draft genomes. First i) a representative genome was selected for each SGB (Table S4). This

was done by ranking genomes based on five metrics: completeness (in decreasing order), contamination (increasing), coverage

(decreasing), strain heterogeneity (increasing), N50 (decreasing). The representative genome was selected as the one minimizing

the sum of the five ranks. Then ii) the closest SGB was identified for each SGB based on the distances among representatives

and iii) amore accurate ANI scorewas computed between each pair of close SGBs using the pyani tool (Pritchard et al., 2016) (version

0.2.6; option ‘-m ANIb’). Finally, iv) pairs of SGBs having an ANI score >95% were merged into a single SGB and v) the process was

iterated until no more mergings were obtained. This merging operation reduced the number of SGBs of 3% resulting in a total of

16,332 distinct SGBs.

The obtained SGBs can be subdivided into 3 main groups (Figure 1B): i) the set of 1,134 known SGBs (kSGBs) that contain at least

one reconstructed and one reference genome (the ‘‘unknownness’’ score for an SGB represents the number of reconstructed

genomes with respect to the total number of genomes belonging to the SGB); ii) the set of 3,796 unknown SGBs (uSGBs) that contain

at least one reconstructed genome, but no reference genomes from isolate sequencing or publicly available metagenomic assem-

blies; (iii) the set of 11,402 non-human SGBs, which contain at least one reference genome, but no reconstructed genomes. Results

reported in the manuscript that involved computation of the ANI score for a number of genomes minor than 100 were done using

pyani (Pritchard et al., 2016), while in the other cases we relied on the Mash (Ondov et al., 2016) estimates.

The kSGBs were taxonomically labeled with the species label associated with the reference genome(s) present in the bin, consid-

ering the most common species label if multiple reference genomes with different assigned species are present (Table S4). For

uSGBs, no reference genomes were present in the species-level bins by definition, and we thus provided an assignment at higher

taxonomic level. The same procedure used to find the optimal genomic divergence cutoff to define SGBs described above and in

Figures S2A–S2C was adopted to define genus-level and family-level genomic divergence. Results showed a minimization of the

error for a threshold equal to 0.15 and 0.30 for genus-level and family-level bins, respectively (Figure S2D), which was thus adopted

to generate genus-level genome bins (GGBs) and family-level genome bins (FGBs). Although we are not proposing to modify the

underlying taxonomy based on GGBs and FGBs, this additional clustering allowed us to give confident genus-level assignments

to the 1,472 uSGBs falling in a GGB and a family label to 1,383 additional uSGBs falling in a FGB. Higher taxonomic levels are chal-

lenging to recapitulate by whole-genome clustering because of limitations in whole-genome nucleotide similarity quantification at

large phylogenetic divergences, and we thus decided to maintain the remaining 941 unlabeled uSGB taxonomically unassigned.

Nevertheless, for each SGB we report the full taxonomy of the closest matching genome and the whole-genetic distant from it to

provide a genomic context for all SGBs (Table S4). The information about the closest labeled genome for the 941 uSGBs not assigned

to a GGB or a FGB is used to assign them a phylum-level taxonomy in the text and in the figures. Finally, a taxonomic estimation

based on 16S rRNA sequences was provided for 135 of these 941 uSGBs following the procedure described above in the section

‘‘Quality control of metagenomic assemblies‘‘.

The set of 159,803 genomes available at the NCBI as of September 2018was also considered to verify that our set of reconstructed

genomes adds a substantial amount of unknown diversity. Indeed, we found that there were only 644 genomes that belong to uSGBs

(1.9% of the set of reconstructed genomes in our uSGBs) using the same 5% whole-genome nucleotide divergence threshold

described above. These 644 genomes, along with future updates, are added to the final resource available for download and we

will continue integrating our resource with additional metagenomic assemblies and reference genomes that become available.

Reconstruction of the human-microbiome phylogenetic structure
The phylogenetic analyses were performedwith PhyloPhlAn (Segata et al., 2013) using the ‘‘dev’’ branch of the repository as of end of

June 2018 (https://bitbucket.org/nsegata/phylophlan/overview).

The phylogeny in Figure 1A was built using the 400 universal PhyloPhlAn markers with the following options: ‘‘--diversity

high --accurate --min_num_markers 80.’’ For the internal steps the following tools with their set of parameters were used:

d diamond (version v0.9.9.110, (Buchfink et al., 2015)) with parameters: ‘‘blastx --quiet --threads 1 --outfmt 6 --more-

sensitive --id 50 --max-hsps 35 -k 0’’ and with parameters: ‘‘blastp --quiet --threads 1 --outfmt 6 --more-sensitive --id

50 --max-hsps 35 -k 0’’;

d mafft (version v7.310, (Katoh and Standley, 2013)) with the ‘‘--anysymbol’’ option;

d trimal (version 1.2rev59, (Capella-Gutiérrez et al., 2009)) with the ‘‘-gappyout’’ option;

d RAxML (version 8.1.15, (Stamatakis, 2014)) with parameters: ‘‘-m PROTCATLG -p 1989.’’
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The phylogeny in Figure S3A was built using the 400 PhyloPhlAn markers with the following parameters: ‘‘--diversity

high --fast --min_num_markers 80’’ and the set of external tools with the same options used for the phylogeny in Figure 1A described

above, except for the phylogeny reconstruction step. In this case the phylogeny has been inferred using IQ-TREE (version 1.6.6,

(Nguyen et al., 2015)) with the following parameters: ‘‘-nt AUTO -m LG.’’

The phylogenies in Figures 3C, S3B, S3C, S5, and S7Bwere built using their corresponding set of cores genes at 95% as identified

by Roary (Page et al., 2015) and with the following parameters in PhyloPhlAn: ‘‘--diversity low --fast --min_num_markers <50%of the

number of core genes identified>--min_num_entries <90% of the number of input genomes>.’’ The external tools used by

PhyloPhlAn and their corresponding parameters were:

d blastn (version 2.6.0+, (Altschul et al., 1990)) with parameters: ‘‘-outfmt 6 -max_target_seqs 1000000’’;

d mafft (version v7.310, (Katoh and Standley, 2013)) using the ‘‘L-INS-i’’ algorithm and with parameters: ‘‘--anysymbol --auto’’;

d trimal (version 1.2rev59, (Capella-Gutiérrez et al., 2009)) with the ‘‘-gappyout’’ option;

d FastTree (version 2.1.9, (Price et al., 2010)) with ‘‘-mlacc 2 -slownni -spr 4 -fastest -mlnni 4 -no2nd -gtr -nt’’ options;

d RAxML (version 8.1.15, (Stamatakis, 2014)) with parameters: ‘‘-p 1989 -m GTRCAT -t <phylogenetic tree computed by

FastTree>.’’

The non-metric multidimensional scaling plots in Figures 4C and S6A were computed on pairwise genetic distances between core

gene alignments produced by Roary using the nmds function in the ecodist R package (Goslee and Urban, 2007)

The phylogenetic trees in Figures 1A, 3C and S3A were generated using GraPhlAn (version 1.1.3, (Asnicar et al., 2015)) and the

phylogenies in Figures 3A, S3B, S3C, S5, and S7B were generated using FigTree (version 1.4.3, http://tree.bio.ed.ac.uk/software/

figtree/).

Quantification of the fraction of reads that can be mapped against SGBs
To assess the proportion of reads that could be mapped against the previously available set of genomes and the genomes we re-

constructed here frommetagenomes, we built four collections of sequences belonging to: a) the set of 12,563 genomes representing

the kSGBs from the 80,990 reference genomes, by selecting one representative genome (the longest) for each kSGB; b) the residual

set of 68,427 reference genomes for all the kSGBs; c) the set of 4,930 reconstructed genomes that are representatives for each SGB

(Table S4); d) the residual set of 149,793 reconstructed genomes in all the SGBs. Additionally, we retrieved and indexed nine refer-

ence genomes forBlastocystis spp. (Beghini et al., 2017); 39Malassezia spp. genomes from the NCBI-Assembly database (accessed

in March 2018) and 18 assemblies from (Tett et al., 2017); and 13,924 plasmids and 10,529 viruses from RefSeq (release 90 (O’Leary

et al., 2016)). To parallelize the downstream analysis and keep reasonably small the index files, 379 Bowtie2 (Langmead and Salz-

berg, 2012) databases were built. We then subsampled all the 9,428 samples used in this study to 1%, because of the very high

computational requirement of the mapping (�1,100 CPU hours for each sample would be required for the mapping of full metage-

nomes). The raw readswere filtered to remove short reads (length lower than 70 bp) and low-quality reads (mean sequencing quality <

20). We mapped each sample against the human genome using Bowtie2 (in end-to-end mode, hg19 index) to remove human DNA

contamination and samples harboringmore than 10%human readswere excluded.We excluded duplicated samples present inmul-

tiple studies, and samples that, after the quality-filtering, had no remaining reads. The reads from the remaining 8,908 samples were

then mapped against the 379 Bowtie2 indexes in end-to-endmode. We applied the same procedure to the 389 additional cross-vali-

dation samples (384 publicly available, see above, and 5 sequenced gut metagenomes from Ethiopia). The resulting maping files

were filtered to remove alignments with an alignment score (AS:i tag) lower than �20 to exclude spurious alignments that could in-

fluence themappability assessment. For each sample, we computed the fraction of reads confidently mapping to each set of indexes

and counted them according to the following criteria: i) reads aligning to at least one representative reference genome; ii) reads not

aligning to i) and aligning to at least one other reference genome; iii) reads not aligning to i) and ii) and aligning against one of the 4,930

SGBs representatives; and iv) reads aligning only against one of the residual 149,793 reconstructed genomes.We followed the same

incremental strategy to determine the fraction of residual reads mapping to micro-eukaryotes (Blastocystis spp., Malassezia spp.),

plasmids and viruses. We reported in Figures 2A–2B and in Figure S4 the percentage of reads in each of these four categories (repre-

sentative reference genomes, other reference genomes, representative SGBs and non-representative SGBs) with respect to the

number of HQ non-human reads in each sample.

Pangenome, phylogenetic, and functional analysis of kSGB and uSGBs
We used Prokka (version 1.12, (Seemann, 2014), with default parameters) for annotating the reference and the reconstructed ge-

nomes of the 10 Bacteroides kSGBs. The annotated genomes were then processed with Roary (version 3.8, (Page et al., 2015)

with ‘‘-e -z -g 1000000’’ params) for the pangenome analysis and to identify the set of core genes. The core genes (at 95%gene family

clustering identity threshold) identified by Roary were then used as a database in PhyloPhlAn for phylogenetic analyses. Functional

annotation was performed using EggNOG mapper (version 1.0.3, (Huerta-Cepas et al., 2017)) based on EggNOG orthology data

(Huerta-Cepas et al., 2016), and the sequence searches were performed using HMM. For the functional profiles shown in Figures

3E and 5E, we used the Brite Hierarchy from KEGG to screen metabolic related pathways and KOs among all the KOs annotated

by EggNOG. We employed the same EggNOG pipeline to functionally annotate all the 4,930 representative of the SGBs (Table
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S4). Figure S1A shows, based on the presence/absence of the EggNOG ortholog to which a KEGG KO is associated, an ordination

plot relating each of the 4,930 SGBs from the functional point of view. All the 154,723 reconstructed genomes were functionally

annotated by mapping them against Uniref90 and Uniref50 using diamond (version v0.9.9.110). The UniRef-based functional profiles

are shown in the ordination plot in the Figures S1B–S1D. All functional profiles (EggNOG-based and UniRef-based) are available for

download at the supporting website (see Data and software availability).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was verified through Fisher’s test, Mann-Whitney U-test, or Welch’s t-test as reported in the text. Multiple hy-

pothesis testing correction was done using the Bonferroni or the false discovery rate (FDR) method as also reported in the manu-

script. All other computational and statistical analyses were performed with the open source software tools referenced in the

STAR Methods along with the described procedures.

DATA AND SOFTWARE AVAILABILITY

All the recovered genomes, SGBs, and functional profiles (eggNOG- and UniProt-based) are available at http://segatalab.cibio.unitn.

it/data/Pasolli_et_al.html and at http://opendata.lifebit.ai/table/?project=SGB. The raw sequencing data for the sequenced datasets

are available in NCBI-SRA under the BioProject: PRJNA485056 (Madagascar cohort) and PRJNA504891 (Ethiopia cohort). The

proposed representative genome of ‘‘Candidatus Cibiobacter qucibialis’’ has been deposited at DDBJ/ENA/GenBank under the

accession SAUS00000000, assembled from NCBI-SRA accession ERS1343406. The metadata for all the samples considered are

available in curatedMetagenomicData (Pasolli et al., 2017) at http://waldronlab.io/curatedMetagenomicData/, and all the other

considered genomes and metagenomes are publicly available in NCBI. We also included in the resource the list of 644 genomes

that recently became available in NCBI and the link to their uSGBs. Assembled contigs are available at http://segatalab.cibio.

unitn.it/data/Pasolli_et_al.html, and software generated in this study is open source and available at https://bitbucket.org/

CibioCM/cmseq/src/default/.
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Supplemental Figures
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Figure S1. Overview of the Functional and Metabolic Annotations of the Representatives of the SGBs and of the Whole Set of 154,723

Reconstructed Genomes, Related to Figure 1

(A) Ordination plot of the KEGG gene families annotated using eggNOG (see STAR Methods) of the 4,930 SGBs’ representatives, colored by the 14 most

represented phyla. (B) Ordination plot of the UniRef50 gene families present in the 154,723 reconstructed genomes as annotated by mapping the genomes

against both Uniref90 and Uniref50 (see STAR Methods). Ordination plots of the UniRef90 gene families for all the reconstructed genomes assigned to the (C)

Fusobacteria and (D) Tenericutes phyla are also reported as examples of fine-grained functional differentiation.



(legend on next page)



Figure S2. Overview of the Reconstructed SGBs and Criteria for SGB Definition and Taxonomic Assignment, Related to Figure 6

(A) Distribution of the distances of each reconstructed genome to the closest available isolate genomes, grouped by the class assigned to the matching isolate

genomes. (B) The 4,930 identified species-level genome bins (SGBs) comprise a very variable fraction of already available genomes versus genomes we

reconstructed from metagenomes. (C) Minimization criterion adopted to find the optimal cutoff in the hierarchical clustering of genomes to define SGBs. Two

criteria are taken into account: minimization of the over-clustering error (C-i), and minimization of the under-clustering error (C-ii). Results showed a minimization

of the error for a threshold equal to 0.05 (C-iii), which was thus adopted to discretize subtrees in the dendrogram and generate SGBs spanning �5% genetic

diversity. (D) The same minimization criterion reported in (C-iii) for species-level bins is also adopted to identify the genomic diversity for genus-level and family-

level bins.
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Figure S3. Phylogenetic Trees for All SGBs and Reference Genomes and Subtrees of Saccharibacteria and Archaea, Related to Figure 1

(A) Phylogenetic tree that includes the representatives of the SGBs presented in Figure 1A together with all the non-human bins (represented in white in the

external rings), for a total of 16,332 genomes (15,299 after the internal quality control in PhyloPhlAn). (B) Phylogenetic tree of the 337 reconstructed genomes

taxonomically assigned to the candidate phylum Saccharibacteria present in the 108 SGBs, including available reference genomes (publicly available reference

genomes are labeled with the ‘‘GCA’’ prefix). (C) Phylogenetic tree of the 675 archaeal genomes reconstructed in this study. 487 genomes belong to the

Methanobrevibacter smithii kSGB (ID 714).
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Figure S4. Improvement of ReadMappability Statistics by Considering the Set ofMicrobial GenomesWeAssembled in ThisWork, Related to

Figure 2

(A) Fraction of reads that can be mapped against different sets of genomes from isolate sequencing and the metagenomically reconstructed genomes. A subset

of 132 full (i.e., not subsampled) metagenomes is shown (3 metagenomes randomly selected from each study). Samples are colored and grouped by body site.

The colored part of the bar refers to the reads that can be mapped against a previously available reference genome, while the gray bars extend to highlight the

total mappability we achieved using the 154,723microbial genomes reconstructed in this study. (B) Percentage of increase in themappability when using also the

154,723 reconstructed SGBs to mapmetagenomic reads. Boxplots represent values grouped by body site, lifestyle, age category (upper panel) and study (lower

panel). The percentage of improvement is calculated with respect to the fraction of reads that could map using only and all the reference genomes. All the 9,428

metagenomes used in this study were mapped after being subsampled at 1% (see STAR Methods). Averaged statistics are reported in Figures 2A–2B.



Figure S5. Phylogenetic Trees for SGBs Placed between Ruminococcus and Faecalibacterium, Succinatimonas kSGB (ID 3677), and Two

Elusimicrobia uSGBs, Related to Figure 3 and 5

(A) Phylogenetic tree of SGBs placed between reference genomes for Ruminococcus and Faecalibacterium species in Figure 1A (highlighted in red), as already

reported in Figure 3A but without collapsed branches and including the two reference genomes GCA_000238635 and GCA_000437915 (also highlighted),

originally labeled as Subdoligranulum sp. 4_3_54A2FAA and Subdoligranulum sp. CAG:314, respectively. (B) Phylogenetic tree of the Succinatimonas kSGB (ID

3677) including the only available reference genome. (C) Phylogenetic tree of the two Elusimicrobia uSGBs enriched in non-Westernized populations and of all the

available Elusimicrobia reference genomes.
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Figure S6. Genetic Diversity and Correlation between Genetic and Functional Similarity for Bacteroides Species, Related to Figure 4

(A) MDSs on intra-SGB genetic distances for Bacteroides species not reported in Figure 4C. (B) Scatterplots for the ten most prevalent Bacteroides kSGBs

showing the relation between pairs of genomes measured as branch length distance on the core-genome-based phylogenetic tree (x axis) and as branch length

on the hierarchical clustering built on the presence and absence of pan-genes (phylogenomic distance, y axis).



Figure S7. Comparison between MEGAHIt and metaSPAdes Assemblies and between Assembly and Co-assembly, Related to Figure 7

(A) Comparison between metaSPAdes and MEGAHIT assemblers across all the considered datasets confirms that metaSPAdes performs consistently better

especially in recovering long contigs. Stars indicate statistically significance (Welch’s t test, p < 0.05). (B) Phylogenetic tree built on the genomes of gut adult

metagenomes from 25 women from the FerrettiP_2018 dataset showing comparison between the set of single-sample assembled genomes (in green) and co-

assembled genomes (in red). Several genomes reconstructed with the two approaches have the same phylogenetic placement, with single-sample assembly

retrieving a total of 605 genomes spanning 257 SGBs, while co-assembly retrieved 172 genomes.


