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Abstract

We prove the existence of many smooth space curves of degree d and genus g with

prescribed index of regularity (we have g ≤ Kd3/2 with K = 0.02 for large d).

1. Introduction

Let X ⊂ P3 be any locally Cohen-Macaulay curve. The index of reg-

ularity or regularity index r(X) of X is the minimal integer t such that

h1(IX(x)) = 0 for all x ≥ t, with the convention r(X) = −∞ if X is arith-

metically Cohen-Macaulay. The integer r(X) is related to the Castelnuovo-

Mumford regularity of X, but it is often easier to compute. The computation

of integer r(X) was classically done for special classes of curves , e.g. curves

with a singular model with only a small number of singularities or smooth

curves on a smooth quadric surface, but the case of space curves seems to be

of a different order of difficulty. After [1] we came back to this topic, using

the statements and ideas in [1], but not its proof. We state our main result in

an axiomatic form (if somebody produce a very good curve C ⊂ P3, then in

the same irreducible component of the Hilbert space of smooth curves there

are curves X ⊂ Pr with certain prescribed r(X)). It is [1] which assures the

existence of such curves C for many pairs of degree and genera.
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For any curve C ⊂ P3 let NC denote the normal sheaf of C in P3 (it is a

vector bundle if C is smooth or nodal). In this note we prove the following

result.

Theorem 1.1. Fix positive integer d,m, e, ρ, δ such that m ≥ 13, e < m,

d < m2+4m+6
3 , ρ ≥ m+6, ρ+1 ≤ δ ≤ ρ+1+ ⌊(ρ− 3)/2⌋⌈m/6⌉ and assume

the existence of a smooth and connected curve C ⊂ P3 such that deg(C) = d,

h1(OC(e)) = 0, h1(NC(−1)) = 0 and h1(IC(t)) = 0 for each t ≥ m. Then

there is a smooth and connected curve X ⊂ P3 with deg(X) = d+δ, pa(X) =

pa(C), r(X) = ρ and h1(NX(−1)) = h1(OX (e)) = 0.

The condition “d < m2+4m+6
3 ” implies that the pair (d,m) is in the range

A in the sense of [4, 5] if we add the condition h0(IC(m − 1)) = 0, which

we do not impose in Theorem 1.1. We do not assume that m is the minimal

integer such that h1(IX(x)) = 0 for all x ≥ m. The proof works relaxing

the assumption d < m2+4m+6
3 at the expense of a stronger assumption on

δ. Conversely, stronger upper bounds on d in terms of m (as in [1]) allow

any interested reader to weaken the assumption on the upper bound of ρ in

terms of δ and m. To get a smooth curve C ⊂ P3 of degree d and genus

g with h1(NC(−1)) = 0 (or just with h1(NC) = 0) we have d3/2/g upper

bounded for g ≫ 0 ([3], [8, page 11]).

Take X as in Theorem 1.1. Since h1(NX(−1)) = 0, we have h1(NX) = 0

and hence the Hilbert scheme Hilb(P3) of P3 is smooth at [X] and of dimen-

sion 4 deg(X). We will also show how to construct the unique irreducible

component of Hilb(P3) containing X if we know the unique irreducible com-

ponent of Hilb(P3) containing C. If µ > m, then d < µ2+4µ+6
3 and hence we

may use Theorem 1.1 for C and µ. See Lemmas 3.7 and 3.8 for the use of

curves C ′ of degree d′ > d and with genus pa(C) to which we may apply the

statement of Theorem 1.1.

Remark 1.2. In Theorem 1.1 set g := pa(X). By [1, Theorem 1] we may

take as (d, g,m) in Theorem 1.1 any triple (d, g,m) with g ≥ 17052 and

g ≤ Cm3 with C =
√
20/600. We cover in this way the pairs (d, g) for

(degree,genus) with g ≤ 0.02d3/2 and all d ≫ 0 ([1, Corollary 1]).

We also find irreducible components of the Hilbert scheme of space

curves containing two or more curves with prescribed (and different) index

of regularity (Remark 3.9).
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We think that the approach used in this paper may be used to attach

other problems concerning the Hilbert functions of space curves, but there

is a big warning. Since it heavily uses vanishing for the normal bundle of

the curve, it may only be used in a range of (degree,genera) = (d, g) with

g/d3/2 upper bounded when d ≫ 0 ([3], [8, §6]). The general aim is the

stratification by degree, genus and Hilbert function of the set of all smooth

and connected space curves. In this generality it is an hopeless project for

several reasons, but in the Range A something may be done.

To get that a space curve X ⊂ P3 for which we know that h1(IX(x)) = 0

has r(X) = x, we use the following remark (in the set-up of Theorem 1.1 we

have e < m < ρ and we take x = ρ).

Remark 1.3. Let X ⊂ P3 be a closed subscheme with dimX ≤ 1. Fix

x ∈ N such that h1(IX(x)) = 0 and h1(OX(x − 1)) = 0. Since dimX ≤ 1,

we have h2(OX(x)) = 0 for all x ∈ Z. Thus h2(IX(x − 1)) = 0. The

Castelnuovo-Mumford’s lemma gives h1(IX(t)) = 0 for all t > x. Thus if

h1(IX(x − 1)) 6= 0 the integer x is the index of regularity of X. To get

h1(IX(x− 1)) we will construct X such that h2(IX(x− 2)) = 0 and there is

a line D ⊂ P3 with deg(D∩X) = x+1. Since every G ∈ |IX(x)| contains D
and D * X, the homogeneous ideal of X is not generated by forms of degree

at most x. Since h2(IX(x − 2)) = 0, the Castelnuovo-Mumford’s lemma

gives h1(IX(x− 1)) 6= 0.

By Remark 1.3 the general strategy is to construct a pair (X,D), where

X is a smooth curve of genus g and degree d with h1(IX(ρ)) = 0 and D is

a line with deg(X ∩D) = ρ+ 1. In the set-up of Theorem 1.1 we take as X

a very special smoothing (we need a line D with deg(X ∩D) = ρ + 1) of a

union of C and d− δ lines.

2. The Components of the Hilbert Schemes in which We Land

Lemma 2.1. Let C ⊂ P3 be a smooth curve with h1(NC(−1)) = 0. Let

D ⊂ P3 be a smooth rational curve intersecting C at a unique point, q, and

quasi-transversally. Then C ∪D is smoothable and h1(NC∪D(−1)) = 0. If e

is a positive integer with h1(OC(e)) = 0, then h1(OC∪D(e)) = 0.
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Proof. The curve C∪D is smoothable by [7, Theorem 4.1] or [9, Proposition

1.6].

Let N be the vector bundle on C obtained from NC making a positive

elementary transformation at q in the direction of the tangent line of D at

q. Let M be the vector bundle on D obtained from ND making a positive

elementary transformation at q in the direction of the tangent line of C at

q. We have N = NC∪D|C and M = NC∪D|D ([7, Corollary 3.2]). Thus we

have the Mayer-Vietoris exact sequence

0 → NC∪D(−1) → N(−1)⊕M(−1) → M(−1)|{q} → 0 (1)

Since h1(NC(−1)) = 0 and NC(−1) is a subsheaf of N(−1) such that

N(−1)/NC(−1) has zero-dimensional support, we have h1(M(−1)) = 0. If

M(−1) is spanned, then the restriction map H0(M(−1)) → H0(M(−1)|{q})

is surjective and therefore the map H0(N(−1)⊕M(−1)) → H0(M(−1)|{q})

induced by (1) is surjective. By (1) to prove that h1(NC∪D(−1)) = 0 it is

sufficient to prove that h1(M(−1)) = 0 and that M(−1) is spanned. Since

D is smooth, ND is a quotient of TP3
|D, sequence of TP3 gives a surjection

O⊕4
P3 → TP3. Restricting to D we get that ND(−1) is spanned. Thus by the

classification of vector bundles on P1 the vector bundle ND(−1) is a direct

sum of 2 line bundles of degree ≥ 0. Hence M(−1) is a direct sum of line

bundles of degree ≥ 0. Thus h1(M(−1)) = 0 and M(−1) is spanned.

Since OD(e) is spanned, the Mayer-Vietoris exact sequence

0 → OC∪D(e) → OC(e)⊕OD(e) → Oq(e) → 0

gives h1(NC∪D(e)) = 0. ���

Notation 2.2. Let Γ be an irreducible component of Hilb(P3) whose general

element is a smooth and connected curve C with h1(NC(−1)) = 0. For

each integer t > 0 let Γt be the only irreducible component of Hilb(P3)

containing C∪D, where D is a smooth rational curve of degree t intersecting

transversally C at a unique point (Lemma 2.1). We have h1(NX(−1)) = 0

for a general X ∈ Γt by Lemma 2.1.

Lemma 2.3. If t ≥ 2, then Γt = (Γ1)t−1.
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Proof. Take C ∈ Γ with h1(NC(−1)) = 0 and a smooth degree t rational

curve D with ♯(D ∩ C) = 1, say C ∩ D = {q}, and intersecting quasi-

transversally C at q. We may degenerate D in a family of curves containing

q to a curve R ∪ A with R a line, q ∈ R, R is not the tangent line of C

at q, R ∩ C = {q}, A is a degree t − 1 smooth rational curve with A ∩
C = ∅, A intersects R at a single point, a, and quasi-transversally. Since

h1(NC∪R∪A) = 0 (easier that the case done in the proof of Lemma 2.1), there

is a unique irreducible component Ψ of Hilb(P3) containing C ∪ R ∪ A. By

the definition of Γt and the fact that C ∪R ∪A is a degeneration of C ∪D,

this component is just Γt. We have C ∪ R ∈ Γ1. Since h1(NC∪R(−1)) = 0

(Lemma 2.1), we have h1(NB(−1)) = 0 for a general B ∈ Γ1. Let π : X → ∆

be a flat family with special fiber π−1(o) and B = π−1(b) as a general fiber.

Since a is a smooth point of C ∪R, up to a finite covering of ∆ we may find

a section u of π with u(o) = a. Up to a quasi-finite covering of ∆ with image

containing both o and b we may find a family of smooth degree t−1 rational

curves η : D → ∆ and a section v of η with η−1(o) = A, η−1(b) ∩ B = v(b),

η−1(b) and B are quasi-transversal and v(o) = a. The curve B ∪ η−1(b) is in

(Γ1)t−1. ���

Remark 2.4. Take a smooth and connected curve C ⊂ P3, an integer

t ≥ 2, and lines Li ⊂ P3, 1 ≤ i ≤ t, such that L1 intersects C quasi-

transversally and at a unique point, while for all i = 2, . . . , t the line Li

meets C ∪ L1 ∪ · · · ∪ Li−1 quasi-transversally and at a unique point. As in

the proof of Lemma 2.3 we see that C ∪ L1 ∪ · · · ∪ Lt ∈ Γt.

3. The index of regularity

For any closed subscheme Z ⊂ P3 and any plane H ⊂ P3 the residual

scheme of Z with respect to H is the closed subscheme of P3 with IZ : IH
as its ideal sheaf. We have an exact sequence

0 → IResH(Z)(t− 1) → IZ(t) → IZ∩H,H(t) → 0

For any o ∈ P3 let 2o denote the first infinitesimal neighborhood of o in

P3, i.e. the closed subscheme of P3 with (Io)2 as its ideal sheaf (it is a

zero-dimensional scheme with degree 3 and 2ored = {o}). If H ⊂ P3 is a

plane with o ∈ H, then ResH(2o) = {o} and 2o ∩H is the first infinitesimal
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neighborhood of o in H. Hence for any scheme T ⊂ H, then ResH(T ∪2o) =

{o}. If T is a curve, which is singular at {o}, then (T ∪ 2o) ∩H = T .

Lemma 3.1. Let C ⊂ P3 be a smooth and connected curve with h1(NC(−1))

= 0. Let H ⊂ P3 be a plane intersecting transversally C. Fix S ( C ∩H,

o ∈ H ∩ C \ S and a general q ∈ H. Let D ⊂ H be the line spanned by

o and q. Then C ∪ D is smoothable, h1(NC∪D(−1)) = 0 and there are a

flat family {Xt}t∈∆ of space curves and a ∈ ∆ with ∆ an irreducible curve,

Xa = C ∪D, Xt smooth if t 6= a and S ∪ {q} ⊂ Xt for all t ∈ ∆.

Proof. Concerning the point q we only need q 6= o (to define D) and that

the line D meets C only at o. Set w := ♯(S). By Lemma 2.1 Y := C ∪D is

smoothable and h1(NY (−1)) = 0. We need to prove that Y is smoothable in

a family of space curves all of them containing S ∪ {q}. Since S ∪ {o} ⊂ H,

we have h1(NC(S−{o}) ≤ h1(NC(−1)) = 0. Since ND
∼= OD(1)

⊕2, we have

h1(ND(−o− q)) = 0 and ND(−q) ∼= O⊕2
D . Since Y ∪D is nodal the Mayer-

Vietoris exact sequence of Y = C ∪ D gives h1(NY (−(S ∪ {q})) = 0. Let

π : W → P3 be the blowing up of P3 along S∪{q}. For any curve E ⊂ W let

NE,W denote the normal sheaf of E in W . Let Y ′, C ′ and D′ be the strict

transforms of Y , C and D in W . Since Y is smooth at all points of S ∪ {q},
π induces an isomorphism between Y ′, C ′, D′ and Y , C, D, respectively and

this isomorphism maps NY (−(S ∪ {q})), NC(−S), ND(−q) isomorphically

onto NY ′,W , NC′,W and ND′,W . Hence H0(NY (−S − {q})) is the tangent

space at C ∪D of the deformation functor of the curves containing S ∪ {q},
while H1(NY (−S − {q})) is an obstruction space for the same functor (see

[8] for several uses of this set-up). At this point we have basically won, but

we show how to adapt the proof in [7, Theorem 4.1] to conclude the proof.

Claim 1: Y ′ is smoothable inside W .

Proof of Claim 1. Y ′ has a unique singular point, the only point o′ ∈ W

with π(o′) = o, and the curves C ′ and D′ meets transversally at o′. Since

D ∩ (S ∪ {q}) = q and ND
∼= O⊕2

D (1), ND′,W
∼= O⊕2

D′ . Hence h1(D′,W) =

0 for any sheaf W obtained from ND′,W making one negative elementary

transformation at o′. Since h1(NC(−1)) = 0 and S ⊆ C ∩ H, we have

h1(NC(−S)) = 0, i.e. h1(NC′,W ) = 0. Apply [7, Theorem 4.1]. ���

Since h1(NY ′) = 0, the Hilbert scheme ofW is smooth at Y ′. CallX ′ any

smooth curve belonging to the irreducible component of the Hilbert scheme
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of W containing Y ′ (it exists by Claim 1). W has w+1 exceptional divisors,

i.e. smooth rational curves with self-intersection −1 mapped by π to different

points of S∪{q}. we have Pic(W ) ∼= Zw+2 with as free generators π∗(OP3(1))

and these w+1 exceptional divisors. Let J be one these exceptional divisors,

say J = π−1(a) with a ∈ S ∪ {q}. Since a is a smooth point of Y , we have

deg(Y ′ ∩ J) = 1 and hence Y ′ · J = 1 in the intersection ring of J . Hence

Y ′ ∩ J = 1. Thus a ∈ π(X ′). Thus π(X ′) ⊃ S ∪ {q}. Since Y ′ · J = 1, Y ′

intersects transversally J at a unique point. Since Y ′ is smooth, we get that

π(X ′) is smooth at a for all a ∈ S ∪{q}, concluding the proof of the lemma.

���

Remark 3.2. For any non-degenerate, reduced and connected C ⊂ P3 and

any plane H ⊂ P3 the scheme C ∩H spans H (use the the exact sequence

0 → IC → IC(1) → IC∩H,H(1) → 0

and that h1(IC) = 0, because h0(OC) = 1). Hence if H intersects transver-

sally C and S ⊆ C∩H is formed by collinear points, then we have S 6= C∩H
and hence we may find o ∈ C ∩H \H to which we apply the statement of

Lemma 2.1.

Lemma 3.3. Let C ⊂ P3 be a smooth and connected curve with h1(NC(−1))

= 0. Let H ⊂ P3 be a plane intersecting transversally C. Fix an integer

t > 0, t distinct points p1, . . . , pt ∈ H ∩ C and t distinct points o1, . . . , ot ∈
H \H ∩ C. Let Li be the line spanned by {oi, pi}. Assume that all lines Li

are distinct, no point of H is contained in 3 of them and that {p1, . . . , pt} =

C ∩ T , where T := ∪t
i=1Li. Set E := Sing(T ) and χ := ∪o∈E2o. Fix a set

S ⊆ C ∩H \ T ∩C. Then C ∪ T ∪ χ is smoothable in a family of curves all

containing {o1, . . . , ot} ∪ S.

Proof. The case t = 1 is true by Lemma 3.1. Now assume t > 1 and

that the lemma is true for the integer t − 1. Set T ′ := L1 ∪ · · · ∪ Lt−1 and

χ′ := Sing(T ′). By the inductive assumption C ∪ T ′ ∪ χ′ is smoothable in

a family of curves containing A ∪ {o1, . . . , ot} and whose general member Y

satisfies h1(NY (−1)) = 0. There are an integral affine curve, a family of lines

{Rb}b∈∆ of P3 and a ∈ ∆ such that Ra = Lt, Rb meets C at a unique point,

ub, and quasi-transversally and ub /∈ H for all b 6= a. Obviously C ∪ T ∪ χ

is a degeneration of the family {C ∪ T ′ ∪ Rb}b∈∆\{a}. Hence C ∪ T ∪ χ is

smoothable. But we also need to check that it is smoothable preserving
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A ∪ {o1, . . . , ot} and that a general smoothing Y has h1(NY (−1)) = 0. The

scheme C ∪ T ∪ χ is a flat limit of a family of nodal curves {Wa}a∈∆ with

Wb = C∪T ∪χ for some b ∈ ∆ and Wa = C∪D1(a)∪· · ·∪Dt(a) a connected

nodal curve, each Di(a) a line intersecting quasi-transversally C and at a

unique point pi(a) ∈ C\C∩H, each Di(a) containing oi and Di(a)∩Dj(a) =

∅ for all i 6= j and all a ∈ ∆\{a} (use that through two different points of P3

there is a unique line and that this line depends regularly on the points). Fix

a general a ∈ ∆ and set F := D1(a)∪ · · · ∪Dt(a), qi := pi(a) and W := Wa.

Note that W = C ∪ F and C ∩ F{q1, . . . , qt} = Sing(W ). Since W is nodal,

NW (−1) is locally free. Thus we have the Mayer-Vietoris exact sequence

0 → NW (−1) → NW (−1)|C ⊕NW (−1)|F → NW (−1){q1,...,qt} → 0 (1)

The restriction of NW (−1) to each connected component of F is the di-

rect sum of a line bundle of degree 1 and a line bundle of degree 0. Thus

the restriction map H0(NW (−1)|F ) → H0(NW (−1){q1,...,qt}) is surjective.

Therefore (1) gives h1(NW (−1)) = 0. By the semicontinuity theorem for

cohomology we get the lemma. ���

Lemma 3.4. Let T = L1 ∪ · · · ∪ Lb ⊂ P2, b ≥ 2, be a nodal union of b

distinct lines. Let E ⊂ P2 be the union of all points Li ∩ Lj with i ≥ j + 2.

Then h1(P2,IE(b− 3)) = 0.

Proof. If b = 2, then E = ∅ and hence the lemma is true in this case. Now

assume b > 2 and that lemma is true for a smaller number of lines. We have

♯(Lb ∩ E) = b − 2 and hence h1(Lb,IE∩Lb,Lb
(b − 3)) = 0. Use the residual

exact sequence of sheaves on P2:

0 → IE\E∩Lb
(b− 4) → IE(b− 3) → IE∩Lb,Lb

(b− 3) → 0

and the inductive assumption. ���

Lemma 3.5. Let C ⊂ P3 be a smooth curve with h1(NC(−1)) = 0. Let

L ⊂ P3 be a line with ♯(L ∩ C) = 1 and L intersecting quasi-transversally

C. Set {q} := L ∩ C. Fix a line D intersecting quasi-transversally C, with

q /∈ D and with D ∩ L 6= ∅. Then there is a smoothing of Y := C ∪ L in a

family of curves all containing the set S := (C ∪ L) ∩D.
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Proof. Set {o} := L ∩ D and S′ := S \ {o}. Let π : W → P3 be the

blowing up of S. Let C ′, L′ and Y ′ be the strict transform in W of C,

L and Y . Since C, L and Y are smooth at the points of S, π induces

an isomorphism between C ′ (resp. L′, resp. Y ′) and C (resp. L, resp. Y )

and this isomorphism induces an isomorphism between NC′ (resp. NL′ , resp.

NY ′) and NC(−S′) (resp. NL(−o), resp. NY (−S)). To prove the lemma it is

sufficient to smooth Y ′ in W , because in the smoothing family each element

would intersect each exceptional divisor of π. Since S′ ⊂ D, D is contained

in a plane and h1(NC(−1)) = 0, we have h1(NC(−S′)) = 0, i.e. h1(NC′) = 0.

We have NL(−o) ∼= O⊕2
L , i.e. NL′

∼= O⊕2
L′ . Hence the vector bundle M on L′

obtained from NL′ making a negative elementary transformation is a direct

sum of a line bundle of degree −1 and a line bundle of degree 0. Thus

h1(M) = 0. The smoothing of Y ′ is obtained as in the proof of [7, Theorem

4.1]. ���

Lemma 3.6. Fix an integer b > 0. Let C ⊂ P3 be a smooth curve with

h1(NC(−1)) = 0. Let D,L1 ⊂ P3 be lines with ♯(L1 ∩ C) = ♯(D ∩ C) =

♯(D∩L1) = 1, L1 and D intersecting quasi-transversally C and D∩C /∈ L1.

If b ≥ 2 define recursively the lines Li, 2 ≤ i ≤ b, in the following way. Let

Li, 2 ≤ i ≤ b, be a general line intersecting both Li−1 and D. The curve

Y := C ∪ L1 ∪ · · · ∪ Lb is nodal and connected and it may be smoothed in a

family of curves all containing the set D ∩ (C ∪ L1 ∪ · · · ∪ Lb).

Proof. The case b = 1 is true by Lemma 3.5. Now assume b > 1 and that

the lemma is true for a smaller number of lines. By Lemma 3.5 there is a

smoothing {Xa}a∈∆ of C ∪ L1 (say Xo = C ∪ L1 with o ∈ ∆) in a family

of curves containing D ∩ (C ∪ L1). By assumption the point b := L1 ∩ L2

is a smooth point of C ∪ L1 and hence, taking if necessary a finite covering

of ∆, there is a section u of {Xa}a∈∆ with u(o) = b. Taking a smaller ∆ if

necessary we may assume that for every a ∈ ∆ we have u(a) /∈ D ∪ C and

the line L2(a) spanned by u(a) and D ∩ L2 does not intersects C. We take

a general a ∈ ∆ and apply Lemma 3.5 to Xa ∪ L2(a) to get the case b = 2;

call {Tc}c∈Θ this smoothing and o′ ∈ Θ with To′ smooth. Now assume b > 2.

Since any 2 points of P3 span a line, we may find an equisingular deformation

{L3(a)∪· · ·∪Lb(a)}a∈∆ of L3∪· · ·∪Lb with L3(o)∪· · ·∪Lb(o) = L3∪· · ·∪Lb

and L3(a) meeting L2(a) at a unique point and then (for a fixed general

a ∈ ∆) an equisingular deformation {R3(c) ∪ · · · ∪ Rb(c)}c∈Θ, o′ ∈ Θ, with
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R3(o
′) ∪ · · · ∪ Rb(o

′) = L3(a) ∪ · · · ∪ L3(a) with R3(c) intersecting quasi-

transversally Tc and at a unique point for all c ∈ Θ. Thus we conclude by

the inductive assumption. ���

Lemma 3.7. Fix positive integers m, d and a smooth and connected curve

C ⊂ P3 such that h1(NC(−1)) = 0, h1(OC(e)) = 0, h1(IC(x)) = 0 for all

x ≥ m and d := deg(D) ≤ (m2+m+2)/2. Let F be either a line or a smooth

conic. Assume ♯(C ∩ F ) = 1 and that F intersects quasi-transversally C.

Set Y := C ∪ F . Then Y is smoothable, pa(Y ) = pa(C), h1(NY (−1)) = 0

and h1(IY (x)) = 0 for all x ≥ m+ 1.

Proof. By Lemma 2.1 it is sufficient to prove the last assertion. Let H

be a plane containing F . Since h1(NC(−1)) = 0, we may deform C in a

family of curves containing the point C ∩F so that (after this deformation),

C ∩ (H \F ) is a general union of d− 1 points of H. From the residual exact

sequence of IY with respect to H we get the exact sequence

0 → IC(t− 1) → IY (t) → IF∪(C∩(H\F ),H(t) → 0 (2)

Since d − 1 ≤ (m + 1)m/2 and C ∩ (H \ F ) is general in H, we have

h1(H,ID∪(C∩(H\D),H (t)) = 0 for all t > m. From (2) we get h1(IY (x)) = 0

for all x ≥ m+ 1. ���

Lemma 3.8. Fix positive integers m, e, b, d with b ≥ 1, d − 1 ≤
(

m+4−b
2

)

and b < m. Let C be a smooth and connected curve C ⊂ P3 such that

deg(C) = d, h1(NC(−1)) = 0, h1(OC(e)) = 0, h1(IC(x)) = 0 for all x ≥ m.

Let Y = C∪L1∪· · ·∪Lb be a general union of C, a general line L1 intersecting

C and, for i = 2, . . . , b, a general line Li intersecting Li−1. Then Y is

smoothable h1(NY (−1)) = 0 and h1(IY (x)) = 0 for all x ≥ m+ 2.

Proof. As in Lemma 3.6 we see that Y is smoothable and that h1(NY (−1))

= 0. We use a degeneration of Y and the semicontinuity theorem to prove

that h1(IY (x)) = 0 for all x ≥ m + 2. Set R1 := L1 and take a plane

H ⊃ R1. Since h1(NC(−1)) = 0, we may deform Y keeping fixed the point

{q} := R1 ∩C so that the other d− 1 points of C ∩H are general in H. Fix

general lines R2, . . . , Rb of H and let E be the union of the points Ri ∩ Rj

with i ≥ j + 2. We have ♯(E) = (b − 1)(b − 2)/2. Set χ := ∪o∈E2o,

T := R1∪· · ·∪Rb and M := C ∪T ∪χ. As in the proof of Lemma 3.3 we see

by induction on b (using [2] or [6, Example 2.1.1] at each point of E) that
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M is a flat limit of connected nodal curves with arithmetic genus pa(C) like

C ∪D1 ∪ · · · ∪Db with D1, . . . ,Db lines, C ∩D1 6= ∅ and Di ∩Dj 6= ∅ if and

only if |i− j| ≤ 1. We have the residual exact sequences of IC∪E and of IM
with respect to H:

0 → IC(x− 2) → IC∪E(x− 1) → IE∪(C∩E),H(x− 1) → 0,

0 → IC∪E(x− 1) → IM(x) → IT∪(C∩(H\{q},H (x) → 0.

For each x ≥ m+2 we have h1(H,IT∪(C∩(H\{q},H (x)) = h1(H,I(C∩H)\{q}(x+

2− b)) = 0 (by the assumption d− 1 ≤
(m+4−b

2

)

) and h1(H,IE∪(C∩E),H(x−
1)) = 0 (because h1(H,IE(b − 3)) = 0, b ≤ m, C ∩ H is general in H and

d+ (b− 1)(b − 2)/2 ≤
(m+3

2

)

. ���

For any positive integer x ≥ 1 a chain of x lines is a reduced, connected

and nodal curve F ⊂ P3 such that F = L1 ∪ · · · ∪ Lx with each Li a line,

Li 6= Lj for all i 6= j and Li ∩ Lj 6= ∅ if and only if |i − j| ≤ 1. Since

each irreducible component of F is a line, if |i − j| = 1, then Li intersect

quasi-transversally Lj and at a unique point. We have pa(F ) = 0 and F is

smoothable to a smooth rational curve of degree x ([7]), but we need more

if x ≥ 2. Now assume x ≥ 2 and fix o ∈ L1 \ L1 ∩ L2. Since F is nodal,

NF is a rank 2 vector bundle. As in [7] we see that NF |Li
is the direct sum

of two line bundles of degree ≥ 1. As in the proof of Claim 1 in the proof

of Lemma 3.1 we see that F may be smoothed in a family of space curves

containing o.

Proof of Theorem 1.1. Call Γ the irreducible component of the Hilbert

scheme of P3 containing C. We will get X ∈ Γδ.

(a) In this step we assume ρ−m even and δ := ρ+ 1. Set c := (ρ−m)/2.

Fix a line D ⊂ P3 such that C ∩D = ∅ and distinct planes Hi, i ≥ 1,

containing D. Note that D = Hi ∩Hj for all i 6= j. Let a1 be the maximal

integer x such that d − 1 ≤
(m+3−x

2

)

. We have a1 ≥ 2, because d ≤ m2/2.

Set b1 := min{a1, δ}. Take an integer i ≥ 2 and assume defined the integers

aj and bj for all positive integers j < i. Let ai be the maximal integer x

such that
(m+2i+1−x

2

)

≥ d − 1 + b1 + · · · + bi−1. Set bi := min{ai,m + 2i +

1− b1 − · · · − bi−1}. We obviously have ai ≤ m+ 2i− 1 for all i. Note that

b1 + · · · + bx = ρ + 1 = δ for x ≫ 0. If there is an integral curve T ⊂ P3

with h1(OT (ρ − 1)) = 0 and deg(T ∩ D) ≥ ρ + 1, then h1(IT (ρ − 1)) > 0
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by the Castelnuovo-Mumford lemma, because the homogeneous ideal of T is

not generated by forms of degree ≤ ρ.

Claim 1: We have a1 ≥ ⌈m/6⌉.

Proof Claim 1. Since d− 1 < (m2 + 4m)/3, it is sufficient to use that

(5m/6 + 2)(5m/6 + 1)/2 = (5m+ 12)(5m + 6)/72 ≥ (m2 + 4m)/3. ���

Claim 2: For all integers i ≥ 2 we have ai ≥ ⌈m/6⌉ + i.

Proof Claim 2. Since b1+ · · ·+bi−1 ≤ m+2i−1 and d−1 < (m2+4m)/3,

it is sufficient to use that

(5m/6 + i+ 2)(5m/6 + i+ 1)/2 ≥ m+ 2i+ (m2 + 4m)/3. ���

By Claims 1 and 2 and the assumption m ≥ 13, we have ai ≥ 3 for all

i. Hence bi = 0 for i ≫ 0. Indeed we may take bi = 0 if i > (ρ−m)/2 = c

For each i = 1, . . . , c take oi ∈ C∩Hi. Since D∩C = ∅, we have oi /∈ Hj

if i 6= j. Fix a general line Li1 of Hi containing oi. If bi ≤ 1 set Lij = ∅,
Eij = ∅ for all j > 1 and Ti := Li1. Now assume bi ≥ 2. Let Lij, 2 ≤ j ≤ bi,

be general lines of Hi. Set Ti := Li1∪ · · ·∪Libi . Let Ei ⊂ Hi be the union of

all points Lih ∩Lij with j ≥ h+ 2. Since Lij is a general line of Hi if j ≥ 2,

we have Ei ∩Ht = ∅ if t 6= i and Ei ∩D = ∅.
Since h1(NC(−1)) = 0, as in [8, Théorème 1.5] (with H instead of a

quadric surface) we see that we may deform C in such a way that all sets

C ∩Hi are general in Hi and in particular they have the Hilbert function of

a general subset of Hi (if c > 1 we do not (and if c > 2 we cannot) assume

that the set C ∩ (H1 ∪ · · · ∪Hc) is a general subset of H1 ∪ · · · ∪Hc with the

only restriction that its restriction to each Hi has the same cardinality). We

may also assume that C ∩D = ∅. By Claim 1 and we have d ≥ ai for all i.

Note that Ei ∩ Ej = ∅ for all i 6= j. Set χi := ∪o∈Ei2oi and Ji := Ti ∪ χi,

Yi := C ∪ J1 ∪ · · · ∪ Ji, 1 ≤ i ≤ c, and Y := Yc. Note that Ti = Ji if bi ≤ 1,

ResH1
(Y ∪ E1) = Y , ResH1

(Y1) = Y ∪ E1, ResHi(Yi) = Yi−1 ∪ Ei for all

i = 2, . . . , c, and ResHi(Yi−1∪Ei) = Yi−1. By the proof of [6, Example 2.1.1]

each Ji may be deformed to a chain of deg(Ti) lines in which the first line (in

the ordering of the chain) is Li1 and all lines of the chain meets D. Hence
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we may find a deformed chain Ii meeting quasi-transversally C and at a

unique point, oi, and with deg(D ∩ Ii) = deg(Ti). Hence Y is deformable to

a smooth curve X of degree d and genus g with deg(D∩X) = d− δ = ρ+1.

Using Remark 2.4 and the semicontinuity theorem for cohomology we get

h1(OX(e)) = 0 and h1(NX(−1)) = 0. Since deg(D ∩ X) = ρ + 1, Remark

1.3 gives h1(IX(ρ − 1)) 6= 0. By Lemmas 2.1 and 2.3 we have X ∈ Γd−δ.

Thus to prove Theorem 1.1 for the case ρ = δ − d + 1, it is sufficient to

prove that h1(IX(ρ)) = 0. By semicontinuity it is sufficient to prove that

h1(IY (ρ)) = 0.

Claim 3: We have h1(Hc,IY ∩Hc,Hc(ρ)) = 0.

Proof Claim 3. Since Ei∩Hc = ∅ for all i < c, we have Y ∩Hc = Tc∪(T1∪
· · ·∪Tc−1∪Y )∩Hc. Since (T1∪· · ·∪Tc−1)∩Hc ⊂ D and deg((T1∪· · ·∪Tc−1)∩
Hc) ≤ ρ, it is sufficient to prove that h1(Hc,IC∩(Hc\Tc),Hc

(ρ − 1 − bc)) = 0.

This is true by the definition of ac and the assumption bc ≤ ac. ���

Claim 4: We have h1(Hc,IHc∩ResHc(Y ),Hc
(ρ− 1)) = 0.

Proof Claim 4. We may apply Lemma 3.4, because bc ≤ ρ− 1 and Hc ∩C

has the Hilbert function of a general subset of Hc with cardinality d. ���

Claim 5: We have h1(IY (ρ)) = 0.

Proof Claim 5. By Claims 3 and 4 it is sufficient to prove that h1(IYc−1
(ρ−

bc) = 0. We first check as in the proof of Claim 3 we proved first

h1(Hc−1,IYc−1∩Hc−1,Hc−1
(ρ − bc)) = 0. Then as in Claim 4 we proved that

h1(Hc−1,I(Yc−1∩Hc−1)∪Ec,Hc−1
(ρ − bc − 1)) = 0 and then we continue using

the planes Hc−2, . . . ,H1. ���

(b) In this step we assume δ = ρ+1 and ρ−m odd, say ρ = m+ 2c+ 1 for

some integer c. Take H1, . . . ,Hc, b1, . . . , bc as in step (a), but with respect to

the integer ρ− 1. We get a pair (Y,D) with Y a reducible curve Y ∈ Γδ−1),

h1(NY (−1)) = 0, h1(IY (x)) = 0 for all x ≥ ρ − 1, and D is a line with

deg(D ∩ Y ) = ρ. Take a general plane H ⊃ D and let D ⊂ H be a line

containing exactly one point of C ∩H. Apply Lemma 3.7.

(c) Now we assume δ ≥ ρ + 2. Set δ′ := δ − ρ − 1. Suppose we find an

integer µ > m and Y ∈ Γ(+δ′) with h1(IY (x)) = 0 for every x ≥ m′ and
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d+ δ′ ≤ µ2+4µ+6
3 . We use Y , d + δ′ and µ instead of C, d and m. We may

use several times Lemma 3.8; if the integer µ − m is odd we also use once

Lemma 3.7. Take for instance the first use of Lemma 3.8, from m and d to

m + 2 and d + b. Since (m+2)2+4(m+2)+6
3 − m+2+4m+6

3 = 8m/3 + 8/3 > b,

the only restriction is the upper bound for b assumed in Lemma 3.8. Since

d < m+2+4m+6
3 we may take any b ≤ ⌈m/6⌉ and hence (taking µ = ρ − 3)

we may take as δ′ any integer ≤ ∑⌊(ρ−3)/2⌋−1
i=0 ⌈(m+2i)/6⌉ and in particular

any integer ≤ ⌊(ρ− 3)/2⌋⌈m/6⌉. ���

Remark 3.9. When δ ≫ ρ + 1 the construction easily gives irreducible

components Ψ = Γδ with smooth curves A,B ∈ Ψ with h1(NA(−1)) =

h1(NB(−1)) = 0 and with r(A) 6= r(B), e.g. r(A) = ρ and r(B) = ρ− 1. In

many cases we may find curves A1, . . . , Ak ∈ Ψ with r(Ai) 6= r(Aj) for all

i 6= j, but we do not have a quantitative version of this observation.
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