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Abstract: The functional performances of conventional roundabouts (single-lane and  

multi-lane) and innovative roundabouts (spiral, flower, C and turbo) can be improved 

through right-turn bypass lanes controlled by stop, yield or free-flow signs. The article 

presents evaluations of the emissions of air pollutants (carbon dioxide, nitrogen oxides, 

particle pollution (PM10 and PM2.5)), fuel consumption and construction, management, 

energetic and environmental costs in roundabouts without or with bypass lanes (controlled 

by stop, yield or free-flow). The suggested methodology has a general character and can be 

applied as a multi-parametric criterion for choosing road intersections, although, in the 

present paper, it has been employed only for a case study. For the aims of this research, we 

employed recent closed-form formulations to determine roundabout performances; 

moreover, we used the COPERT IV® software to estimate air emissions in nine different 

types of vehicles. Numerous traffic simulations were carried out. The variation in the 

maximum hourly traffic Qmax and annual traffic QTOT provided the appropriate domains of 

the examined geometric layouts, both in functional and environmental terms and with regard 

to generalized costs, estimated for a 10-year period. It resulted that the introduction of  

right-turn bypasses in all arms of conventional roundabouts with a one ring lane and one lane 

at the entries (single-lane roundabouts) is the most cost-effective when the flows entering 

the roundabout are higher than Qmax = 2000 veh/h. Moreover, free-flow bypass lanes always 
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provide greater capacity and lower delays than stop- or yield-signaled bypasses. However, 

with extremely high Qmax values, stop-controlled bypasses guarantee lower fuel consumption, 

while those with a yield sign lower total costs. 

Keywords: roundabouts; bypass lane; capacity; pollutant emissions; fuel consumption;  

total costs 

 

1. Introduction 

Sustainability is an essential research area in transportation, because of the correlation between 

transportation, economic and environmental systems [1]. Sustainable mobility in an urban context 

requires a set of coordinated interventions aimed at improving the energy efficiency of the transport 

network [2]. Transport demand and supply are always affected, and reflected, by the extent of 

urbanization and the activity of development of cities [3]. 

In recent years, a very important topic for the sustainability of transportation has concerned how to 

increase the performances of at-grade road intersections, above all in the urban context. 

The capacity of intersections can be increased by implementing right-turn bypass lanes [4] (cf. Figure 1). 

These additional lanes can also be installed at conventional roundabouts and at more recently designed 

roundabouts, such as turbo-roundabouts [5–8], C-roundabouts [9], target-roundabouts [10] and  

flower-roundabouts (the layout of the latter is just characterized by bypass lanes at each arm [11]).  

 

Figure 1. Bypass lane at a conventional roundabout. 

Right-turn bypasses increase conflict points between vehicles and between vehicles and 

pedestrians/cyclists [12–15] and, to a modest extent, the number of accidents [16]. Thus, their use is 

appropriate whenever cycle/pedestrian flows appear to be much reduced [17]. Of particular interest for 

designing bypass lanes are the Polish guidelines [18] and the National Cooperative Highway Research 

Program (NCHRP) Report 672, “Roundabouts: An Informational Guide” [19]. In addition, a critical 

review of the Australasian, EU and U.S. roundabout standards and guidelines is performed by  



Sustainability 2015, 7 5840 

 

 

Montella et al. [20]. Estimations of right-turn bypass capacity were carried out through closed-form 

models by Tracz [21,22] and by Mauro and Guerrieri [15]. 

Other authors evaluated MOE (measures of effectiveness) in bypasses through traffic simulations by 

means of specific software, such as Kreisel, Vissim, Sidra and others [23].  

The implementation of bypass lanes can bring environmental and energetic benefits, in that they 

reduce vehicle delays and, hence, pollutant emissions to the air [24–26].  

In light of all of this, this research develops a new multi-parametric approach for the generalized cost 

analysis [27] of bypasses at roundabouts; such an approach can also serve as a criterion for choosing the 

appropriate type of bypass that may respond to the specific traffic demand. 

More specifically, the following parameters were examined: construction costs, costs due to vehicle 

delays, environmental costs imputable to pollutant emissions from vehicular traffic and energetic costs 

(i.e., vehicle fuel consumption). For the aims of this research, we paid attention to bypasses controlled 

by stop or yield signs or with an acceleration lane. The comparison was made between conventional 

single-lane roundabouts with or without bypasses in numerous traffic conditions.  

The estimation of roundabout entry capacity was conducted through the model described in the  

Highway Capacity Manual (HCM, 2010) [28]; bypass capacity was obtained with the formulations of 

Tracz [21,22] and Mauro [15]; the lane-by-lane approach was used [29]. Finally, emissions and 

consumption were measured with the aid of the COPERT IV® software [26,30]. 

The suggested methodology, here only referring to a case study regarding roundabouts with a one 

ring lane, with or without bypasses (four layouts examined in total), has a general character and can 

therefore be applied to innovative roundabouts, but also to conventional multilane roundabouts.  

The paper is organized as follows: Section 2 presents the capacity of roundabouts with right-turn 

bypass lanes; Section 3 presents the bypass capacity; Section 4 presents the determination of the 

consumption and emissions in a roundabout; Section 5 presents the analysis of the bypass’ overall costs; 

and Section 6 presents the conclusions. 

2. Capacity of Roundabouts with Right-Turn Bypass Lanes 

Right-turn bypass lanes suitable for roundabouts can be classified according to the type of traffic flow 

regulation as follows [23]: 

• stop-controlled bypass lanes; 

• yield-controlled bypass lanes; 

• free-flow bypass lanes (i.e., with an acceleration lane). 

It was shown that entry capacities at roundabouts equipped with right-turn bypasses can be 

determined through the following relations [15]: 
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where: QE,R = total right-turn flow (veh/h); QE,R
bypass = right-turn flow involving the bypass (veh/h); 

QE,R
no-bypass = right-turn flow non-involving the bypass (but the ring) (veh/h); CE,TLT = entry capacity at 

a roundabout (veh/h); CE,R = capacity of the right-turn bypass lane (veh/h); α and β = distribution 

coefficients of the right-turn flow. 

The bypass capacity CE,R firstly depends on the type of entry regulation (entry control type). Indeed, 

for the purpose of this research, the entry capacity to the ring carriageway was obtained with the relevant 

formulation described in the HCM 2010 Manual [28]. 

In any case, we observed that the total capacity CE of the arm (see Equation (1)) cannot be  

determined as a simple sum of the entry lane capacities to the ring carriageway (CE,TLT) and the bypass 

capacity (CE,R) [31]. In fact, Equation (1) shows that it depends on the combination of entry flows 

(through coefficients α and β) and the saturation degrees of both lanes (flow/capacity ratio:  

xE,R = QE,R/CE,R e xE,TLT = QE,TLT/CE,TLT).  

3. Bypass Capacity 

Right-turn bypasses can have three different types of regulation of traffic flows entering the 

roundabout exit arm (with stop, yield and free-flow signs). The capacity can be obtained with the 

following formulations. 

3.1. Bypass with a Stop Sign 

In the typical hypothesis of Poissonian vehicle arrivals at the bypass, with any service time s  

and vehicle headway τ (on the lane exiting from the roundabout) distributed like a Gamma random 

variable with parameter K (K = 1 if 100 ≤ Q ≤ 300 veh/h; K = 2 if 400 ≤ Q ≤ 800 veh/h; K = 3 if  

800 ≤ Q ≤ 1,500 veh/h K = 4 if 1500 < Q ≤ 1,800 veh/h), the bypass lane capacity estimated just at the 

stop line is equivalent to: 
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where: T = critical gap (s); Q = QuTot = exiting flow from the roundabout (veh/h). Furthermore, V is the 

vehicle speed on QuTot, and a the acceleration by which QE,R
bypass vehicles enter the flow QuTot. δ is the 

safety time interval between the vehicles of this flow, equal to the perception-reaction time δ = 1 s.  
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V can be calculated through the procedure shown in the NCHRP Report 672, “Roundabouts: An 

Informational Guide” [19], as a function of the deflection radius of the vehicle trajectories. 

For T = 5.5 s from Equations (3) and (4), we can obtain the stop-controlled bypass lane capacity CE,R 

as follows: 

0.0012
, 1231.4

TotQu
E RC e − ⋅= ⋅  (5)

In the previous hypothesis, it is also possible to obtain the average number of queuing vehicles E[q] 

(cf. Equation (6) ÷ Equation (9)) and, thus, to properly measure the length of the storage section Ls of 

the bypass (see Equation (10) and Figure 2):  
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(8)

E[q] = QE;R
bypass · E[w] (9)

Ls = c · E[q] (10)

in which: Q = QuTot; V[s] = service time variance; E[w] = average queuing time; c = average headway 

between two subsequent vehicles. 

 

Figure 2. Bypass layout (with a stop or yield sign). 

Figure 3 shows, for example, the expected number of queued vehicles when the capacity varies at the 

stop-controlled bypass lane and at the roundabout exit lane (Qu = QuTot) according to exit flow speed  

V1 = 30 km/h. It is worth pointing out that when the exit flow speed increases, the queue length increases 

more than proportionally. Since vehicles in the flow QuTot, exiting from the roundabout, tend to increase 

their speed to reach the desired speed, it is thus necessary to verify the entry (stop or yield line) just at 

the outer circumference of the ring. 
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Figure 3. Values of queue (V1 = 30 km/h). 

3.2. Right-Turn Bypass Lane with a Yield Sign 

Should a bypass be controlled by a yield sign, the capacity can be obtained by the following  

relation [19]: 

0.001
, 1130

TotQu
E RC e − ⋅= ⋅  (11)

3.3. Free-Flow Bypass Lane 

The following capacity relationship (Equation (12)) was obtained from Tracz [21,22] for free-flow 

bypass lanes (cf. Figure 4) at single-lane roundabouts: 

0.0007
, 1250

TotQu
E RC e − ⋅= ⋅  (12)

 

Figure 4. Layout of a free-flow bypass lane (Polish guidelines). 

Figure 5 shows the capacity laws for the three types of bypass lanes under analysis. 
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Figure 5. Bypass capacity laws (source: [15]). 

Finally, the entry capacity at a single-lane roundabout (one lane at entries and one at the ring 

carriageway) can be determined with numerous models [32]. This research used the following  

Equation (13) [28], in which Qc stands for the circulating flow in front of the entry in question: 

CE,TLT = 1130·e−0.0001·Qc (13)

Figure 6 shows the variation in the sum of the entry simple capacities (CE) of four-arm roundabouts 

with right-turn bypass lanes (with a total length of 60 m) at each intersection arm under varying total 

entry flow and distribution coefficient for the right-turn flow α.  

The sum of the entry simple capacities clearly tends to increase when the right-turn flow partly does 

not use the bypass lane (α ≠ 1). 

 

Figure 6. Sum of the entry simple capacities of a roundabout with bypass lanes (source: [15]). 

If the roundabout is located in an urban area and it is necessary to estimate the effect of pedestrian 

flows on entry lane capacities and right-turn bypasses, we can use the model described by Brilon [33] 

and by Mauro and Guerrieri [15].  
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The presence of heavy-duty vehicles can reduce capacity at entries. If such an effect needs to be 

assessed, the flow rate for each movement may be adjusted to account for vehicle stream characteristics 

using factors and equations given in HCM 2010 [28] and in NCHRP Report 672 [19]. 

As regards vehicle delays at a roundabout, for the aims of this research, we properly adjusted and  

used the relevant formulations in the HCM 2010 Manual for the cases under analysis. Therefore, with 

Equations (14) and (15), it is possible to estimate respectively the average control delay for the  

right-turn lanes and for the left-turn lanes. 
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(15)

where: DE,R = average control delay for the right-turn lane (s/vehicle); DE,TLT = average control delay 

for through and left-turn lanes (s/vehicle); T = reference time (h) (T = 1 for a 1-h analysis, T = 0.25 for 

a 15-min analysis). 

Generally speaking, since delays differ at the two-arm lanes, the level of service of the right-turn lane 

needs to be differentiated from the corresponding levels of service at the through and left-turn lanes. The 

total average delay at entries is expressed by the following equation: 
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By way of an example, Figure 7 shows the trend of the control delay DE of an entry into a roundabout 

with a stop-controlled bypass, obtained as a function of the saturation degrees xE,R = QE,R/CE,R and  

xE,TLT = QE,TLT/CE,TLT, (for CE,R = 400 veh/h and CE,TLT = 500 veh/h). 

Levels of service for every lane and entry can be deduced from the HCM 2010 method [28]. 

 

Figure 7. Example of delay at entry (roundabout with a stop controlled right-turn bypass lanes). 
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4. Determination of Consumption and Emissions in a Roundabout 

Road traffic emissions depend on numerous factors, among which are: flow conditions (average 

annual daily traffic (AADT), vehicle fleet composition, vehicle age and average speed) [34], acceleration 

and deceleration phases, infrastructures (geometry, intersection type and traffic regulation) and 

environmental conditions (temperature, humidity, etc.) [35–39]. 

Just at road intersections, vehicle movement can be divided into the following elementary steps: 

cruise, acceleration, deceleration, idling (stopped) time, acceleration and cruise. According to this 

subdivision, Akҫelick [40] developed the relations implemented in the SIDRA traffic simulation 

software, which allow one to estimate the fuel consumption rate ft: 
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where: ft = instantaneous consumption fuel rate (mL/s); PT = total practice power (kW); Pmax = maximum 

engine power (kW); Pc = cruise component of total power (kW); PI = inertia component of total power 

(kW); PG= grade component of total power (kW); G = road grade (percent); MV = vehicle mass (kg);  

v = instantaneous speed; a = instantaneous acceleration rate (m/s2); α = constant of idle fuel consumption 

rate (mL/s); fi = constant of idle consumption fuel rate (mL/s); b1 = drag fuel consumption parameter 

related to rolling resistance (kN); b2 = drag fuel consumption parameter related to aerodynamic drag 

(kN); β1 and β2 = efficiency parameters.  

Of particular interest to estimate road traffic pollutant emissions are the two models:  

MOVES—MOtor Vehicle Emissions Simulator (official tool recommended by the United States 

Environmental Protection Agency (U.S. EPA)) [41] and CORINAIR—CORe INventory AIR emissions, 

implemented in the COPERT IV© software [42,43].  

The CORINAIR model takes into account many traffic and vehicle parameters, such as vehicle types, 

categories and population, yearly mileage (km/year), mean fleet mileage (km). 

The methodology allows calculating the exhaust emissions of carbon monoxide (CO), nitrogen oxides 

(NOX), non-methane volatile organic compounds (NMVOC), methane (CH4), particulate matter (PM), 

carbon dioxide (CO2), and many others emissions.  

The emission factor (EF) for each exhaust emission and for each transport modality m is calculated 

by means of the following Equations (18) and (19):  
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where: λ is the fuel type; j is the vehicle age; k is the engine displacement (volume); m is the modality 

of transportation; a, b, d are three parameters related to single pollution emissions; f depends on the 

emission type. 

RF stands for a reduction factor, whose value is a function of vehicles emission classes  

(Euro I ÷ Euro VI) and type of pollutant. 

The total emissions Eγ for the pollutant i can thus be calculated as: 
_
pNEFE iii ⋅⋅=γ (g/year) (20)

where: 
_
pi  is the mean length of the annual trip (km); and Ni is the number of annual vehicles belonging 

to the same emission group. 

The method also allows one to consider the effect of hot and cold emissions, as well as some specific 

infrastructure characteristics (i.e., longitudinal slope) and road context (urban, rural, headway), etc. 

5. Analysis of Bypass Overall Costs 

The implementation of right-turn bypasses in roundabout intersections increases the capacity at 

entries (see Equation (1)). In order to identify the traffic conditions that may account for their 

implementation in conventional four-arm roundabouts, with one lane at the ring and another at entries 

(henceforth Roundabout (1 + 1)), plenty of traffic simulations were carried out by comparing the 

following geometric layouts: 

 Roundabout with one ring lane and one lane at entries: “Roundabout (1 + 1)”; 

 Roundabout (1 + 1) with bypass lanes controlled by a stop signal at all arms; 

 Roundabout (1 + 1) with bypass lanes controlled by a yield signal at all arms; 

 Roundabout (1 + 1) with bypass lanes provided with an acceleration lane at all arms. 

We examined a typical demand curve in suburban areas (see Figure 8) and a test matrix of traffic 

distribution ρ (for each entry, 20% of the entering flow performs the maneuvers to cross the intersection, 

20% to turn right and 60% to turn left).  

 

Figure 8. Traffic demand curve (suburban context). 
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correspond to the following annual flows: QTOT = 3,464,695 veh/year; QTOT = 4,797,270 veh/year;  

QTOT = 6,129,845 veh/year; QTOT = 7,462,420 veh/year; QTOT = 8,794,995 veh/year.  

We determined entry and bypass capacities by means of Equations (1), (5), (11) and (12), and vehicle 

delays through Equations (14)–(16). Pollutant emissions and fuel consumption were estimated on a 

neighborhood, 0.5 km away from the intersection, by assuming a free-flow speed (FFS) of 50 km/h.  

Entry speeds on the ring and intersection exits were determined as a function of the path radius R and 

superelevation e by applying the criteria reported in the American Association of State Highway and 

Transportation Officials (AASHTO) “Green Book” [44]. Vehicle fleet has a direct effect on road traffic 

emissions [45–47].  

In this research, the park was subdivided into nine distinct vehicle categories, depending on Qmax and 

QTOT values, as reported in Table 1. 

Table 1. Vehicle types considered in the study. 

Passenger Cars (veh/year) Heavy Duty Trucks (veh/year) 
QTOT 

(veh/year) 

Qmax 

(veh/h) 
Petrol Diesel Diesel 

EURO 2 EURO 3 EURO 4 EURO 2 EURO 3 EURO 4 EURO 2 EURO 3 EURO 4 

582,865 349,509 752,385 196,691 430,048 806,727 86,617 86,617 173,235 3,464,695 1300 

807,044 483,935 1,041,764 272,342 595,451 1,117,007 119,932 119,932 239,864 4,797,270 1800 

1,031,223 618,362 1,331,143 347,992 760,854 1,427,287 153,246 153,246 306,492 6,129,845 2300 

1,255,402 752,788 1,620,522 423,643 926,256 1,737,567 186,561 186,561 373,121 7,462,420 2800 

1,479,581 887,214 1,909,901 499,293 1,091,659 2,047,847 219,875 219,875 439,750 8,794,995 3300 

Pollutant emissions (CO2, NOx, PM2.5, PM10) and fuel consumption (petrol and diesel) were 

assessed by means of the COPERT IV® software (see Equations (18)–(20)), by taking speed variations 

near the intersection and on the ring carriageway into consideration (see Table 2) [48].  

The analyzed minimum and maximum monthly temperatures and average relative humidity refer to 

the Italian territory, i.e., Central Italy (source: Military Aviation, Weather Forecast Service).  

Total delays accumulated by users in the year “n” (Dn) were obtained through the expression [27]: 

]Q)Q(T)Q(d[D ii
i

in ⋅⋅=
 (21)

where: Qi (veh/h) is every traffic flow reference value; d(Qi) (s) is the average delay associated with 

total flow Qi; T(Qi) (s) is the yearly amount of hours with the observed flow equal to Qi. 

The traffic demand curve in Figure 8 was taken into consideration to apply Equation (21). On the 

basis of the annual peak flow, 20 Qi intervals (0.025 Qmax ≤ Qi ≤ 0.975 Qmax) were examined; for each 

Qi value, the hour number per year was determined every time it occurred T(Qi), and the average delay 

was estimated at intersections. 

As illustrated in Figure 9, up to hourly flows of about 1500 veh/h entering a roundabout, the examined 

layouts give rise to nearly the same delays. As the flow increases, delays at the intersection without 

bypasses increase much more significantly than those at right-turn bypass roundabouts (for an entering 

flow of 2730 veh/h, such a difference is around 100 s/veh). 

Among those under consideration, the layout that gives rise to less vehicle delays is the roundabout 

with a bypass with an acceleration lane; however, as explained later, it is not the most cost-effective in 

terms of total costs. 
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Table 2. CO2, NOx, PM2.5, PM10 emissions and fuel consumption at roundabout intersections. 

CO2 EMISSION (ton/year) 

Annual 

traffic 

Qmax 

(veh/h) 

Roundabout with 

bypass (stop) 

Roundabout with 

bypass (yield) 

Round. with bypass 

(free-flow) 

Roundabout 

(1 + 1) 

3,464,695 1300 735 735 734 736 

4,797,270 1800 947 947 947 950 

6,129,845 2300 1215 1215 1214 1224 

7,462,420 2800 1474 1474 1472 1503 

8,794,995 3300 1780 1779 1777 1862 

NOX EMISSION (ton/year) 

Annual 

Traffic 

Qmax 

(veh/h) 

Roundabout with 

bypass (stop) 

Roundabout with 

bypass (yield) 

Round. with bypass 

(free-flow) 

Roundabout 

(1 + 1) 

3,464,695 1300 2004 2004 2003 2006 

4,797,270 1800 2681 2680 2680 2688 

6,129,845 2300 3437 3437 3435 3457 

7,462,420 2800 4122 4122 4118 4187 

8,794,995 3300 5016 5013 5007 5207 

PM2.5 EMISSION (ton/year) 

Annual 

traffic 

Qmax 

(veh/h) 

Roundabout with 

bypass (stop) 

Roundabout with 

bypass (yield) 

Round. with bypass 

(free-flow) 

Roundabout 

(1 + 1) 

3,464,695 1300 0.138 0.138 0.138 0.139 

4,797,270 1800 0.187 0.187 0.187 0.188 

6,129,845 2300 0.241 0.241 0.240 0.243 

7,462,420 2800 0.292 0.292 0.291 0.298 

8,794,995 3300 0.354 0.354 0.353 0.365 

PM10 EMISSION (ton/year) 

Annual 

traffic 

Qmax 

(veh/h) 

Roundabout with 

bypass (stop) 

Roundabout with 

bypass (yield) 

Round. with bypass 

(free-flow) 

Roundabout 

(1 + 1) 

3,464,695 1300 0.183 0.183 0.183 0.183 

4,797,270 1800 0.246 0.246 0.246 0.247 

6,129,845 2300 0.316 0.316 0.316 0.319 

7,462,420 2800 0.383 0.383 0.383 0.393 

8,794,995 3300 0.466 0.465 0.465 0.478 

FUEL CONSUMPTION (ton/year) 

Annual 

traffic 

Qmax 

(veh/h) 

Roundabout with 

bypass (stop) 

Roundabout with 

bypass (yield) 

Round. with bypass 

(free-flow) 

Roundabout 

(1 + 1) 

3,464,695 1300 217,934 217,966 217,870 218,338 

4,797,270 1800 302,655 302,769 302,586 303,764 

6,129,845 2300 388,443 388,474 388,173 391,301 

7,462,420 2800 476,350 476,500 475,785 485,620 

8,794,995 3300 566,000 567,000 568,136 595,330 
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Figure 9. Average delay at roundabout intersection (with and without bypass lanes). 

After vehicle delays and emissions were obtained, we evaluated the total costs attributable to the 

layouts in question.  

To this end, we considered the following construction costs (BCk) [10,27]: 

 Roundabout (1 + 1) = €950,000; 

 Roundabout (1 + 1) with bypass lanes controlled by a stop signal at all arms = €1,200,000; 

 Roundabout (1 + 1) with bypass lanes controlled by a yield signal at all arms = €1,200,000; 

 Roundabout (1 + 1) with bypass lanes with an acceleration lane at all arms = €1,600,000. 

We assumed annual management costs as equal to €10,000 per year. For vehicle delays, we 

considered a unit cost Cd = 20.00 €/h [49]. As regards unit costs due to pollutant emissions, we attributed 

the following values (CEγ): CO2 = 0.04 €/g; NOx = 0.0044 €/g; PM2.5 = 0.087 €/g; and PM10 = 0.087 €/g; 

in accordance with the EU Directive 2009/33/EC [50]. Finally, we estimated the unit cost of the fuel CFu 

by considering its average cost in Europe updated in May, 2014, (1.461 €/L for petrol and 1.386 €/L  

for diesel). 

Should the increase in annual road traffic be negligible and the unit costs of vehicle delays, fuel and 

pollutant emissions appear constant, the actualized total cost referring to N = 10 operational years for 

each examined intersection “j” was obtained with the following relation: 

T
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By considering a discount rate r = 2% in Relation (22), we obtained the values illustrated in Figure 11. 

Figure 12 shows the differentials of actualized total costs between bypass layouts and  

Roundabout (1 + 1) as a function of the annual total traffic QTOT: )f(Q C TOT
TOT
j =Δ . 

By examining Figures 10–12, we can observe that for very reduced roundabout entry flows and up to 

2100 veh/h, the construction of bypasses in roundabouts is not justified from the functional point of view 

and also generates higher total costs than Roundabout (1 + 1) (without bypass).  

Over 2100 veh/h, the utility is reversed, in that economic benefits are more and more significant as 

the flow increases. In fact, in spite of higher construction costs, roundabouts with bypass lanes generate 

lower total costs than those without them.  
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Figure 10. Percentage reduction in fuel consumption at bypass roundabouts compared to 

Roundabouts (1 + 1). 

In view of the fact that the three bypass types in question give rise to total costs that are very similar 

to one another, the type of regulation (stop, yield, free-flow) should be chosen by paying much more 

attention to their functionality (capacity, delays) and safety conditions provided (speed, potential conflict 

points, etc.). 

 

Figure 11. Roundabout total costs. 
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Figure 12. Increase/reduction in total costs correlated to bypass implementation in roundabouts. 

6. Conclusions 

Right-turn bypass lanes allow improvement of the performances (in terms of capacity, delays and 

levels of service) of traditional and innovative roundabouts. 

Considering that bypass capacity is correlated to the type of flow regulation, the choice is usually 

made as a function of the traffic demand/volume (maximum hourly capacity Qmax) and the flow 

distribution matrix ρ. 

Moreover, bypasses provide energetic and environmental benefits consequent to the potential 

reduction in fuel consumption and pollutant emissions from vehicles. 

In light of this, the article suggests a multi-parameter selection and comparison criterion, in order to 

estimate the generalized costs (construction, management, energetic and environmental) of roundabout 

layouts with or without bypass lanes.  

To this end, for a case study, numerous traffic simulations were made for four different geometric 

roundabout layouts: (1) single-lane roundabouts without bypasses; (2) single-lane roundabouts with 

bypass lanes controlled by a stop signal at all arms; (3) single-lane roundabouts with bypass lanes 

controlled by a yield signal at all arms; and (4) single-lane roundabouts with bypass with acceleration 

lanes at all arms. 

The capacity and delay estimations were made with closed-form relations, while pollutant emissions 

and fuel consumption were obtained with the aid of the COPERT IV® software, starting from a pre-set 

distribution of vehicle types (light-duty, heavy-duty, petrol- or diesel-fuelled, with emission classes  

Euro II, III and IV). 

Vehicle flows were obtained starting from a typical traffic demand curve in suburban areas, by 

varying the maximum hourly flow in the interval Qmax = 1300–3300 veh/h. As a precaution, an 

origin/destination (O/D) matrix ρ was considered with modest right-turn flows (20% out of the total). 

The results of the analyses show that: 
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(1) for total hourly flows entering a roundabout up to Qmax = 1500 veh/h, the layouts in question give 

rise to nearly the same delays; 

(2) when a flow increases, delays at a single-lane roundabout without bypasses increase much more 

significantly than roundabouts with right-turn bypass lanes (for an entry flow of 2730 veh/h, such 

a difference is around 100 s/veh); 

(3) the bypass providing higher capacity and less delays is that with an acceleration lane;  

(4) for heavy annual traffic (QTOT = 8,794,995 veh/year), the presence of bypasses determines 

considerable energetic benefits. In fact, compared to roundabouts without bypasses, their 

presence determines a reduction of over 5% in fuel consumption. 

Then, we also estimated the costs related to fuel consumption and environmental costs (in accordance 

with a specific EC directive), as well as actualized total costs in a 10-year operational period.  

We observed that for roundabout entry flows up to 2100 veh/h, the construction of bypasses cannot 

be justified from the functional point of view, and moreover, it generates higher total costs than  

single-lane roundabouts (1 + 1) without bypass lanes. 

Above this flow value (Qmax = 2100 veh/h), bypasses become more and more cost efficient as the 

flow tends to increase.  By way of an example, for Qmax = 2800 veh/h (corresponding to an annual flow  

QTOT = 7,462,420 veh/year), the presence of bypass lanes determines a maximum economic benefit of 

€1,980,235, while for Qmax = 3300 veh/h (corresponding to an annual flow QTOT = 8,794,995 veh/year), 

the maximum economic benefit in 10 years totals €5,335,291. 

It is worth pointing out that when the demand curve and especially the flow distribution ρ vary, results 

can change considerably. As a matter of fact, as the percentage of users turning right increases, the limit 

flow differentiating bypass utility gets lower (Qmax < 2100 veh/h). 

In any case, the method suggested for functional, energetic, environmental and economic analyses 

has a general character, and thus, it can be applied to any traffic condition and type of  

roundabout intersection.  
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