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Abstract: For any prime power q and any u = (x1, . . . , xn), v = (y1, . . . , yn) ∈ Fn
q2 set ⟨u, v⟩ :=

∑n
i=1 x

q
i yi . For any

k ∈ Fq and any n×n matrix M over Fq2 , the k -numerical range Numk(M) of M is the set of all ⟨u,Mu⟩ for u ∈ Fn
q2

with ⟨u, u⟩ = k [5]. Here, we study the case q = 2 , which is quite different from the case q ̸= 2 .
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1. Introduction and main results
Let q be a prime power. Let Fq denote the only field, up to field isomorphisms, with |Fq| = q ([8, Theorem
2.5]). Let e1, . . . , en be the standard basis of Fn

q2 . For all v, w ∈ Fn
q2 , say v = a1e1 + · · · + anen and

w = b1e1 + · · ·+ bnen , set ⟨v, w⟩ =
∑n

i=1 a
q
i bi . ⟨ , ⟩ is the standard Hermitian form of Fn

q2 . For any n ≥ 1 and
any a ∈ Fq set

Cn(a) := {(x1, . . . , xn) ∈ Fn
q2 | xq+1

1 + · · ·+ xq+1
n = a}.

The set Cn(1) is an affine chart of the Hermitian variety of Pn(Fq2) ([6, Chapter 5], [7, Chapter 23]).
Take M ∈ Mn,n(Fq2) , i.e. let M be an n × n matrix with coefficients in Fq2 . For any k ∈ Fq set
Numk(M) := {⟨u,Mu⟩ | u ∈ Cn(k)} ⊆ Fq2 . Set Num(M) := Num1(M) . The set Num(M) is called the
numerical range of M . These concepts were introduced in [5] when q is a prime p ≡ 3 (mod 4) and in [1] in
the general case. We always have 0 ∈ Num0(M) . When n ≥ 2 , we defined in [4] the set Num′

0(M) as the set of
all ⟨u,Mu⟩ for some u ∈ Fq2 \ {0} such that ⟨u, u⟩ = 0 . We have Num0(M) \ {0} ⊆ Num′

0(M) ⊆ Num0(M) .
For any M = (mij) ∈ Mn,n(Fq2) , set (M†)ij = mq

ji . For any M ∈ Mn,n(Fq2) and any u ∈ Fn
q2 , set

νM (u) := ⟨u,Mu⟩ .
If q = 2 then in the definition of Cn(a) we just take a ∈ F2 = {0, 1} . In particular for q = 2 (and for all

even q by Remark 2.6), we only have to compute Num1(M) and Num0(M) . The cases “q = 2” and “q ̸= 2”
(independently of the parity of q ) are quite different, because if x ∈ F4 \ {0} , then x3 = 1 and therefore when
q = 2 , the set Cn(a) is just the set of all (x1, . . . , xn) ∈ Fn

4 such that the number of nonzero entries entries xi

is ≡ a (mod 2) (Remark 2.8).
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Obviously all diagonal entries mii of a matrix M belong to Num(M) . If q = 2 and n = 2 and
M = (mij) , then Num(M) = {m11,m22} (Remark 2.10).

We summarize our main results in the following way (here we take q = 2 and M = (mij) ∈ Mn,n(F4) ).

Proposition 1.1 Assume n ≥ 3 . We have Num0(M) = {0} if and only if M = cIn×n for some c ∈ F4 .

Theorem 1.2 Assume n ≥ 2 . We have Num0(M) = {0, b} with b ̸= 0 if and only if ( 1b (M −m11In×n))
† =

1
b (M − m11In×n) and M ̸= m11In×n and this is the case if and only if M ̸= dIn×n for any d and there is
c ∈ F4 such that ( 1b (M − cIn×n))

† = 1
b (M − cIn×n) .

Theorem 1.3 Take N ∈ Mn,n(F4) , n ≥ 3 . We have Num1(N) = {a, b} with a ̸= b if and only if
( 1
b−a (N − aIn,n))† = 1

b−a (N − aIn,n) and N ̸= cIn,n for some c .

Corollary 1.4 Assume n ≥ 3 . We have Num(M) ⊆ F2 if and only if M† = M .

Proposition 1.5 We have |Num(M)| ≤ 1 if and only if Num(M) = {m11} .
(a) If n = 2 we have |Num(M)| = 1 if and only if m11 = m22 .
(b) If n ≥ 3 , then Num(M) = {m11} if and only if M = m11In×n .

We also prove that Num(M) = F4 if n ≥ 3 , M ̸= 0In×n and M is strictly triangular (Remark 3.5).

2. Preliminaries
For any matrix M = (mij) ∈ Mn,n(Fq2) , let M† = (aij) be the matrix with aij = mq

ji for all i, j . M is

said to be Hermitian if M† = M . Note that the diagonal elements of a Hermitian matrix are contained in Fq .
Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the standard basis of Fn

q2 . Let In×n denote the identity n × n

matrix. For any a ∈ Fq and any n > 0 we have Cn(a) ̸= ∅ by [1, Remark 3] and hence, Numa(M) ̸= ∅ for any
a , any n , and any matrix M .

Notation 2.1 Write M = (mij) , i, j = 1, . . . , n .

Remark 2.2 Take M = (mij) ∈ Mn,n(Fq) . The vector ei gives mii ∈ Num(M) . Hence, Num(M) contains
all diagonal elements of M .

Remark 2.3 For any a, b ∈ F∗
q2 , any k ∈ Fq , and any M ∈ Mn,n(Fq2) , we have Numk(aM) = aNumk(M)

and Numk(M + bIn,n) = Numk(M) + kbq+1 ([5, Proposition 3.1], [1, Remark 7], [4, Remark 2.4]).

Remark 2.4 Take M = (mij) ∈ Mn,n(Fq) such that M† = M . For any u ∈ Fn
q , we have ⟨u,Mu⟩ =

⟨M†u, u⟩ = ⟨Mu, u⟩ . Hence, ⟨u,Mu⟩ ∈ Fq . Thus, Numk(M) ⊆ Fq for every k ∈ Fq .

We recall from [5] the following definitions. For any O,P ∈ Fq2 the strict affine Fq -hull ((O,P )) of O

and P is the set {tO + (1 − t)P}t∈Fq\{0,1} . If O = P , then ((O,P )) = {O} . If O ̸= P , then ((O,P )) is the
complement of {O,P} in the affine Fq -line of Fq2

∼= F2
q spanned by O and P and hence it has cardinality
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q − 2 . For any two nonempty subsets S, S′ ⊆ Fq2 set ((S, S′)) := ∪O∈S,P∈S′((O,P )) . With this notation we
have the following lemma ([1, Lemma 1]).

Lemma 2.5 Let M be unitarily equivalent to the direct sums of matrices A and B . Then Num(M) =

((Num(A),Num(B))) ∪ {Num0(A) + Num(B)} ∪ {Num(A) + Num0(B)} .

Remark 2.6 Each element of F∗
q , q even, is a square. Hence to compute all Numk(M) when q is even it is

sufficient to compute Num0(M) and Num1(M) .

Unless otherwise stated, from now on mij ∈ F4 and q = 2 .

Notation 2.7 Fix e ∈ F4 \ F2 . We have e3 = 1 , e2 + e = 1 and F4 = {0, 1, e, e2} . If a ∈ F∗
4 , then a3 = 1 . If

a , b , c are 3 different elements of F4 , then {a, b, c, a+ b+ c} = F4 . Hence for any a ∈ F4 the set a+ F∗
4 of

all a+ b , b ∈ F∗
4 is the set F4 \ {a} . We fix some e ∈ F4 \ F2 and write F4 = {0, 1, e, e2} .

Remark 2.8 For each x ∈ F∗
4 we have x3 = 1 . We obviously have 03 = 0 . Take u = (x1, . . . , xn) ∈ Fn

4 . We
have x3

1 + · · · + x3
n = 1 (resp. x3

1 + · · · + x3
n = 0) if and only if xi ̸= 0 for an odd (resp. an even) number of

indices i .

Remark 2.9 Take u ∈ Fn
4 and t ∈ F∗

4 . We have ⟨tu,M(tu)⟩ = tq+1⟨u,Mu⟩ = ⟨u,Mu⟩ , because t3 = 1 .

Remark 2.10 Assume n = 2 . By Remark 2.8, we have Num(M) = {m11,m22} .

3. Strictly triangular matrices

We first list some cases with n = 3 in which we prove that Num(M) = F4 . All these matrices are triangular
matrices with equal entries, m11 , on the diagonal. By [5, Lemma 2.7] to compute Num(M) , it is sufficient to
compute Num(N) , where N is the strictly triangular matrix M −m11I3×3 .

Proposition 3.1 Fix a, b, c ∈ F4 with ab ̸= 0 . Take

M =

c b 0
0 c a
0 0 c


Then Num(M) = F4 .

Proof Taking 1
a (M − cI3×3) instead of M and applying [5, Lemma 2.7], we reduce to the case c = 0 and

a = 1 . Note that even after this reduction step, we have b ∈ F4 \ {0} . Take u = (x1, x2, x3) ∈ C3(1) , i.e.
assume x3

1 + x3
2 + x3

3 = 1 . We have ⟨u,Mu⟩ = x2(bx
2
1 + x2x3) . Taking x1 = x3 = 1 and x2 = 0 , we get

0 ∈ Num(M) . From now on we always take x2 = 1 and in particular x3
2 = 1 . Thus, we may use any x1, x2

with x3
1 + x3

3 = 0 , i.e. any (x1, x3) ∈ F2
4 with either x1 = x3 = 0 or x1x3 ̸= 0 . Fix c ∈ F4 \ {b} . If

u = (1, 1, c − b) , then ⟨u,Mu⟩ = 1(b + c − b) = c . Note that 1 + e ̸= 0 and hence, b(1 + e) ̸= 0 . We take
u = (e, 1, b(1 + e)) = be+ b+ be = b . 2
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Proposition 3.2 Fix a, b, c, d ∈ F4 with abd ̸= 0 . Take

M =

c b d
0 c a
0 0 c


Then Num(M) = F4 .

Proof As in the proof of Proposition 3.1, we reduce to the case c = 0 and d = 1 . Take u = (x1, x2, x3) ∈ C3(1) ,
i.e. assume x3

1 + x3
2 + x3

3 = 1 . We have Mu = (bx2 + x3, ax3, 0) and hence, ⟨u,Mu⟩ = bx2x
2
1 + x3x

2
1 + ax3x

2
2 .

Taking u = (1, 0, 0) , we get 0 ∈ Num(M) . From now on we always take x2 = 1 and in particular x3
2 = 1 .

Thus, we may use any x1, x2 with x3
1+x3

3 = 0 , i.e. any (x1, x3) ∈ F2
4 with either x1 = x3 = 0 or x1x3 ̸= 0 . Fix

c ∈ F4 \ {0} . It is sufficient to find x1, x3 ∈ F4 \ {0} with x2
1(b+x3) = c+ ax3 . Since a ̸= 0 and |F4 \ {0}| = 3 ,

there is w ∈ F4 \ {0} such that b + w ̸= 0 and c + aw ̸= 0 . Since the Frobenius map t 7→ t2 induces a
permutation F4 \ {0} → F4 \ {0} , there is z ∈ F4 \ {0} such that z2 = (c+ aw)/(b+w) . Take u = (z, 1, w) . 2

Proposition 3.3 Fix a, b, c ∈ F4 with (a, b) ̸= (0, 0) . Take

M =

c a b
0 c 0
0 0 c


Then Num(M) = F4 .

Proof It is sufficient to do the case c = 0 . Take u = (x1, x2, x3) ∈ C3(1) , i.e. assume that 2 or none
among x1, x2, x3 are zeroes. We have Mu = (ax2 + bx3, 0, 0) and hence, ⟨u,Mu⟩ = x2

1(ax2 + bx3) . Taking
u = (1, 0, 0) , we get 0 ∈ Num(M) . Fix w ∈ F4 \ {0} . Since (a, b) ̸= (0, 0) , there is (a2, a3) ∈ (F4 \ {0})2 such
that aa2 + ba3 ̸= 0 . Since the Frobenius map t 7→ t2 induces a permutation F4 \ {0} → F4 \ {0} , there is
z ∈ F4 \ {0} such that z2 = w/(aa2 + ba3) . Take u = (z, a2, a3) . 2

Proposition 3.4 Take M = (mij) ∈ Mn,n(F4) , n ≥ 3 , such that mij = 0 for all i ≥ j . We have
Num(M) = F4 if and only if M ̸= 0 .

Proof Since Num(0In×n) = {0} , we only need to prove the “ if ” part. Assume mij ̸= 0 for some i < j . Take
any principal minor of M associated to i, j and some h ∈ {1, . . . , n} \ {i, j} and apply one of the Propositions
above. 2

Remark 3.5 Take M as in one of the Propositions 3.1, 3.2, 3.3, 3.4. A similar proof works for M t . Thus,
we computed Num(M) for all strictly triangular matrices and proved that Num(M) = F4 , unless either n = 2

or M = m11I3×3 .

4. The proofs

Lemma 4.1 Take n = 2 . We have Num0(M) = {0,m11+m22+m12+m21,m11+m22+m12e+m21e
2,m11+

m22 +m12e
2 +m21e} .
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1. Num0(M) = {0} if and only if m11 = m22 and m12 = m21 = 0 .

2. If m11 = m22 and m12 = m21 ̸= 0 , then Num0(M) = {0,m12} .

3. Assume m11 = m22 . If either m12 = 0 and m21 ̸= 0 or m21 = 0 and m12 ̸= 0 , then Num0(M) = F4 .

4. If m11 = m22 , m12 ̸= m21 and m12m21 ̸= 0 , then Num0(M) = {0,m12,m21} .

5. If m11 ̸= m22 and m21 = m12 = 0 , then Num0(M) = {0,m11 +m22} .

6. If m11 ̸= m22 and m21 = m12 ̸= 0 , then Num0(M) = {0,m11 +m22,m11 +m22 +m12} ; this set has two
elements if and only if m22 = m11 +m21 .

7. Assume m11 ̸= m22 and either m12 = 0 and m21 ̸= 0 or m12 ̸= 0 and m21 = 0 , then |Num0(M)| = 3

and Num0(M) = F4 \ {m11 +m22} .

8. If m11 ̸= m22 , m21m12 ̸= 0 and m12 ̸= m21 , then Num0(M) = {0,m11 + m22 + em12 + e2m21,m11 +

m22 + e2m12 + em21} ; we have |Num0(M)| = 2 if and only if either m11 +m22 + em12 + e2m21 = 0 or
m11 +m22 + e2m12 + em21 = 0 .

Proof Take u = (x1, x2) ∈ F2
4 with x3

1 + x3
2 = 0 . The case u = (0, 0) gives 0 ∈ Num0(M) . By Remark 2.8 to

compute the other elements of Num0(M) , we may assume x1 ̸= 0 and x2 ̸= 0 . Using Remark 2.9 with t = x−1
1

we reduce to the case x1 = 1 . Taking x2 = 1 (resp. x2 = e , resp. x2 = e2 ), we get m11 +m12 +m21 +m22 ∈
Num0(M) (resp. m11 +m12e+m21e

2 +m22 ∈ Num0(M) , m11 +m22 +m12e
2 +m21e ∈ Num0(M) . We have

m12e + m21e
2 = m12e

2 + m21e if and only if m12(e + e2) = m21(e + e2) , i.e. if and only m12 = m21 . We
have m12 +m21 = m12e+m21e

2 if and only if m12(1 + e) = m21(1 + e2) , i.e. if and only if m12e = m21 . We
have m12 +m21 = m12e

2 +m21e if and only if (m12(1 + e2) = m21(1 + e) , i.e. if and only if m12 = em21 , i.e.
m12e

2 = m21 .
(a) Assume m11 = m22 . If m12 = m21 = 0 , then Num0(M) = {0} . Now assume m12 = m21 ̸= 0 .

Since e2+e = 1 , we get that Num0(M) = {0,m12e,m12} . If m12 = 0 ̸= m21 (resp. m21 = 0 and m12 ̸= 0), then
Num0(M) contains 0 , m21 , em21 , e2m21 (resp. 0 , m12 , em12 , e2m12 ); in both cases we get Num0(M) = F4 .
Now assume m12 ̸= m21 and m12m21 ̸= 0 . Set t := m12/m21 . Either t = e or t = e2 . Assume t = e (the
case t = e2 being similar). Num0(M) is the union of 0 , m21(1 + e) = m21e

2 = m12 , m21(e + e2) = m21 and
m21(e

2 + e2) = 0 . Hence, Num0(M) = {0,m12,m21} .
(b) Assume m11 ̸= m22 . If m21 = m12 = 0 , then Num0(M) = {0,m11+m22} . If m21 = m12 ̸= 0 , then

Num0(M) is the union of {0} , m11+m22 and m11+m22+m12 (recall that 2m12 = 0 and e+e2 = 1). Assume
m12 = 0 and m21 ̸= 0 . We get Num0(M) = {0,m11 + m22 + m21,m11 + m22 + m21e,m11 + m22 + m21e

2} .
Since {m21,m21e,m21e

2} = F∗
4 , we get |Num0(M)| = 3 and Num0(M) = F4 \ {m11 +m22} . The same answer

comes if m12 ̸= 0 and m21 = 0 . Now assume m12 ̸= 0 , m21 ̸= 0 , and m12 ̸= m21 . We first check that
A := {m12 + m21, em12 + e2m21, e

2m12 + em21} has cardinality 2 . Since e ̸= e2 and m12 ̸= m21 , we have
em12 + e2m21 ̸= e2m12 + em21 . We have m12 +m21 = em12 + e2m21 if and only if (1 + e)m12 = (1 + e2)m21 ,
i.e. if and only if e2m12 = em21 , i.e. if and only if em12 = m21 . In the same way, we see that m12 +m21 =

e2m12 + em21 if and only if e2m12 = m21 . Since m21/m12 /∈ {0, 1} , we have m21/m12 ∈ {e, e2} . Hence
A = {em12 + e2m21, e

2m12 + em21} . We get part (8). 2
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Lemma 4.2 Take q = 2 , n = 3 and m11 = m22 = m33 .

1. If mij = 0 for all i ̸= j , then Num0(M) = {0} .

2. If mij = 0 and mji ̸= 0 for some i, j , then Num0(M) = F4 .

3. If mij ̸= mji , then Num0(M) ⊇ {0,mij ,mji} .

4. If mij = mji ̸= 0 , then Num0(M) ⊇ {0,mij} .

All nonzero mij are in Num0(M) \ {0} and they are the only elements of Num0(M) \ {0} unless there is i, j

with mij = 0 and mji ̸= 0 .

Proof Take u = (x1, x2, x3) ∈ F4 with x3
1+x3

2+x3
3 = 0 . By Remark 2.8 either u = 0 or there is i, j ∈ {1, 2, 3}

with i ̸= j and xh ̸= 0 if and only if h ∈ {i, j} . Apply Lemma 4.1 to the restriction of M to F4ei + F4ej . 2

Remark 2.8, Lemma 4.1, and the proof of Lemma 4.2 give the following result.

Lemma 4.3 Take n = 3 and m11 = m22 ̸= m33 . Let A = (aij) and B = (bij) be the 2 × 2 matrices with
aij = mhk , h = i + 1 , k = i + 1 , and bij = mvw , v = i if i = 1 , v = 3 if i = 2 , w = j if j = 1 , w = 3 if
j = 2 . A and B are as in one of the last 4 cases of Lemma 4.1.

1. If m12m21 = 0 and m12 ̸= m21 , then Num0(M) = F4

2. If m12 = m21 = 0 , then Num0(M) = Num0(A) ∪ Num0(B) .

3. If m12m21 ̸= 0 and m12 ̸= m21 , then Num0(M) = Num0(A) ∪ Num0(B) ∪ {m12,m21} ; we have
|Num0(M)| ≥ 3 ; we have Num0(M) ̸= F4 if and only if Num0(A) ∪ Num0(B) ⊇ {0,m12,m21} .

Take the set-up of (3), i.e. assume m12m21 ̸= 0 and m12 ̸= m21 . Num0(A) ⊇ {0,m12,m21} if and only if
either m13 = m31 = 0 and m11 +m33 ∈ {m12,m21 or m31 = m13 ̸= 0 and m11 +m33,m11 +m33 +m13} ⊆
{0,m12,m21 or m13m31 = 0 , m13 ̸= m31 and F4 \ {m11 + m33} or m31m13 ̸= 0 , m13 ̸= m31 and
{m11+m33+em13+e2m31,m11+m33+e2m13+em31} ⊆ {0,m12,m21} . The same list works for B exchanging
the indices 1 and 2 .

Lemma 4.4 Take n = 3 and |{m11,m22,m33}| = 3 . Let Ah = (ahij) , i, j = 1, 2 , h = 1, 2, 3 , be the matrix
obtained from M deleting the h-th row and the h-th column; each Ah is as in one of the last 4 cases of Lemma
4.1. We have Num0(M) = Num0(A1)∪Num0(A2)∪Num0(A3) . Hence, Num0(M) = F4 if one of the following
conditions is satisfied:

1. mij = 0 for all i ̸= j .

2. There is i ∈ {1, 2, 3} such that, writing {1, 2, 3} = {i, j, h} , we have mjhmjh = 0 and mjh ̸= mhj .

3. There is i ∈ {1, 2, 3} such that, writing {1, 2, 3} = {i, j, h} , we have mij ̸= 0 , mji ̸= 0 , mhi ̸= 0 ,
mih ̸= 0 , and {mij ,mji,mih,mhi} = F∗

4 .
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Proof Remark 2.8, Lemma 4.1, and the proof of Lemma 4.2 give Num0(M) = Num0(A1) ∪ Num0(A2) ∪
Num0(A3) .

(a) Assume mij = 0 for all i ̸= j . Since m11 +m22 , m11 +m33 , and m22 +m33 are distinct elements
of F∗

4 , we have {0,m11 +m22,m11 +m33,m22 +m33} = F4 .
(b) Assume m12m21 = m13m31 = 0 and m12 + m21 ̸= 0 , m13 + m31 ̸= 0 . We have Num0(A3) =

F4 \{m11+m22} and Num0(A2) = F4 \{m11+m33} and thus, Num0(M) = F4 . The same proof works if either
m23m32 = m13m31 = 0 and m23 +m32 ̸= 0 , m13 +m31 ̸= 0 or m12m21 = m23m32 = 0 and m12 +m21 ̸= 0 ,
m23 +m32 ̸= 0 .

(c) Assume m12 ̸= 0 , m21 ̸= 0 , m13 ̸= 0 , and m31 ̸= 0 and {m12,m21,m31,m13} = F∗
4 . The last 2

cases in Lemma 4.1 give Num0(A3) ∪ Num0(A2) = F4 . The same proof works for Num0(A1) ∪ Num0(A2) and
Num0(A3) ∪ Num0(A1) . 2

Lemma 4.5 Assume n = 3 . Num(M) is the union of {m11,m22,m33} ,
∑3

i,j=1 mij , m11 + m22 + m33 +

e(m12 +m23 +m31) + e2(m13 +m21 +m32) , m11 +m22 +m33 + e2(m12 +m23 +m31) + e(m13 +m21 +m32)

and Bh , h = 1, 2, 3 , where (writing {i, j, h} = {1, 2, 3}) Bh = {mii +mij +mji +mjj +mhh + e(mih +mjh)+

e2(mhi +mhj),mii +mij +mji +mjj +mhh + e2(mih +mjh) + e(mhi +mhj)} .

Proof Take u = (x1, x2, x3) ∈ F3
4 with x3

1 + x3
2 + x3

3 = 1 . By Remark 2.8, there is an odd number of
indices i with xi ̸= 0 . Taking u with exactly one nonzero coordinate, we get {m11,m22,m33} ⊆ Num(M) .
Thus, it is sufficient to test all u with xi ̸= 0 for every i . Taking u = (t, t, t) for some t ̸= 0 , we get∑3

i,j=1 mij ∈ Num(M) . Now assume that u has exactly two different entries, say xi = xj with i ̸= j and

xh ̸= xi , {i, j, h} = {1, 2, 3} . By Remark 2.9, we may assume that xi = 1 and hence, either xh = e or xh = e2 .
In the first case, ⟨u,Mu⟩ = mii+mij+mji+mjj+mhh+e(mih+mjh)+e2(mhi+mhj) . In the second case, we
have ⟨u,Mu⟩ = mii+mij +mji+mjj +mhh+e2(mih+mjh)+e(mhi+mhj) . Now assume that all entries of u

are different. By Remark 2.9, we may assume that x1 = 1 . Hence, either (x2, x3) = (e, e2) or (x2, x3) = (e2, e) .
In the first case, we have ⟨u,Mu⟩ = m11 +m22 +m33 + e(m12 +m23 +m31) + e2(m13 +m21 +m32) . In the
second case, we have ⟨u,Mu⟩ = m11 +m22 +m33 + e2(m12 +m23 +m31) + e(m13 +m21 +m32) . 2

Corollary 4.6 Assume n = 3 and |{m11,m22,m33}| = 3 . We have Num(M) = F4 if one of the following
conditions is satisfied

1. m12 +m23 +m31 = t(m13 +m21 +m32) with t ∈ {e, e2} ;

2. mij = m12 for all i ̸= j .

Proof Since |{m11,m22,m33}| = 3 , we have F4 = {m11,m22,m33,m11 +m22 +m33} (Remark 2.7). Hence,
it is sufficient to check if m11 +m22 +m33 ∈ Num(M) . To get (1), use the third and fourth sum in Lemma 4.5
and that e3 + e3 = 0 . To get (2), use B1 in Lemma 4.5. 2

Corollary 4.7 Assume n = 3 and |{m11,m22,m33}| = 3 . Fix 5 of the elements mij with i ̸= j , say all except
mhk . There is a choice of mhk with Num(M) = F4 .
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Proof Since |{m11,m22,m33}| = 3 , we have F4 = {m11,m22,m33,m11+m22+m33} (Remark 2.7). Hence, it
is sufficient to check that m11 +m22 +m33 ∈ Num(M) for some choice of mhk . We do the case h = 1 , k = 2 ,
because the other cases are similar. We take m12 := e(m13 +m21 +m32) +m23 +m31 and apply part (1) of
Corollary 4.6. The proof shows that if m13 +m21 +m32 ̸= 0 , we have at least 2 choices for m12 . 2

Lemma 4.8 Take n = 3 . We have |Num(M)| = 1 if and only if M = m11I3×3 .

Proof Since the “if ” part is trivial, we assume |Num(M)| = 1 . Since we have {m11,m22,m33} ⊆ Num(M)

(Remark 2.2), we have m11 = m22 = m33 . Since e3 = 1 , Lemma 4.5 gives m12+m23+m31 = e(m13+m21+m32)

and m12 + m23 + m31 = e2(m13 + m21 + m32) . Hence, m12 + m23 + m31 = m13 + m21 + m32 = 0 , i.e.
m31 = m12+m23 and m32 = m13+m21 . Lemma 4.5 implies that mij+mji+e(mih+mjh)+e2(mhi+mhj) = 0

and mij +mji + e2(mih +mjh) + e(mhi +mhj) = 0 for all {i, j, h} = {1, 2, 3} . Since e2 − e = 1 , subtracting
these equalities, we get mih+mjh = mhi+mhj for all i, h, j . In particular, we have m13+m23 = m31+m32 =

m12 +m23 +m13 +m21 , i.e. m12 = m21 . In the same way, we get mij = mji for all i ̸= j . Then the set Bh

in the statement of Lemma 4.6 gives e(mih +mjh) + e2(mih +mji) = 0 . Since e ̸= e2 , we get mih +mjh = 0 ,
i.e. mih = mjh , for all {i, j, h} = {1, 2, 3} . Since M is symmetric, we get mij = m12 for all i ̸= j . Since
m12 = 3m12 = m12 +m23 +m31 = 0 , we get mij = 0 for all i ̸= j . 2

Proof [Proof of Proposition 1.1:] The “ if ” part is obvious, while the “ only if ” part follows from part (1) of
Lemma 4.1. 2

Proof [Proof of Proposition 1.5:] We always have {m11, . . . ,mnn} ⊆ Num(M) (Remark 2.2) and this inclusion
is an equality if n = 2 (Remark 2.10), proving the case n = 2 . The case n = 3 is true by Lemma 4.8. Now
assume n ≥ 4 and |Num(M)| = 1 . Hence mii = m11 for all i . By Lemma 4.8 applied to all F4ei+F4ej +F4eh

we have mij = 0 for all i ̸= j . 2

Proof [Proof of Theorem 1.2:] Taking 1
bM instead of M , we reduce to the case b = 1 (Remark 2.3). Note

that Num0(M) = Num0(M −cIn×n) for any c ∈ F4 (Remark 2.3). Hence, Remark 2.4 and Proposition 4.4 give
the “if ” part. Note that M −m11In×n is Hermitian if and only if m2

ij = mji for all i ̸= j and mii −m11 ∈ F2

for all i . Hence, M −m11In×n is Hermitian if and only if M −miiIn×n is Hermitian for some i ∈ {1, . . . , n}
and hence, that M −m11In×n is Hermitian if and only if there is c ∈ F4 with M − cIn×n Hermitian.

Now, assume that Num0(M) ⊆ {0, 1} . Taking A := M|F4ei+F4ej with i ̸= j we reduce to the case n = 2 ;
we write A = (ahk) , h, k = 1, 2 . Then taking M−a11I2×2 , we reduce to the case a11 = 0 . After this reduction,
we need to prove that M† = M . If n = 2 we assume Num0(M) = {0, 1} , but if n ≥ 3 we only assume that
Num0(A) ⊆ {0, 1} .

First, assume that a22 = 0 . Set α := a12 + a21 , β := ea12 + e2a21 and γ := e2a12 + a21 . Since 2a = 0

for all a ∈ F4 , e2 + 1 = e , e+ 1 = e2 and e2 + 1 = α , we have α+ β = γ , β + γ = α and α+ γ = β . Lemma
4.1 gives α, β, γ ∈ F2 . First, assume that α = 0 , i.e. a12 = a21 . We get β = (e2 + e)a12 and so a12 ∈ F2 .
Thus, A is Hermitian in this case.

Now, assume that a22 ̸= 0 = a11 . If a12 = a21 = 0 , then part (5) of Lemma 4.1 implies that
a22 ∈ F2 and hence, A is Hermitian. Case (7) of Lemma 4.1 excludes the case where a12a21 = 0 and
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(a12, a21) ̸= (0, 0) . If a12 = a21 ̸= 0 , then case (6) of Lemma 4.1 gives a22 = a11 + a21 , i.e. a22 = a12 = a21 ;
since a11+a22+a12+a21 ∈ Num0(M) ⊆ {0, 1} and a11 = 0 , we get aij ∈ F2 for all i, j = 1, 2 . Since a21 = a12 ,
this 2 × 2 matrix is Hermitian. Now, assume that a12 ̸= a21 and a12a21 ̸= 0 . Part (8) of Lemma 4.1 gives
that either δ := a22 + ea12 + e2a21 = 0 or η := a22 + e2a12 + ea21 = 0 and that (since a12 ̸= a21 ) either δ = 0

and η = 1 or δ = 1 and η = 0 . Since e2 + e = 1 , we have 1 = δ + η = (e2 + e)a12 + (e2 + e)a21 = a21 + a12 .
Since a12 ̸= 0 and a21 ̸= 0 , we get (a12, a21) ∈ {(e, e2), (e2, e)} and hence, a21 = a212 . Since e3 = 1 , if
(a12, a21) = (e2, e) (resp. (a12,ma21) = (e, e2)), then δ ∈ F2 (resp. η ∈ F2 ) gives a22 ∈ F2 . Hence, this 2× 2

matrix is Hermitian. 2

Proof [Proofs of Theorem 1.3 and Corollary 1.4]: Take N ∈ Mn,n(F4) such that Num(N) = {a, b} with a ̸= b

and set M := 1
b−a (N − aIn,n) . By Remark 2.3, we have Num(M) = {0, 1} . By Theorem 1.2, the matrices N

and M are not a multiple of In,n . Hence, to prove Theorem 1.3, it is sufficient to prove Corollary 1.4. Also
note that in the last assertion of Theorem 1.3, it is sufficient to assume that N ̸= cIn×n with c ∈ {a, b} .

If M† = M , then for any u ∈ Fn
4 , we have ⟨u,Mu⟩ = ⟨Mu, u⟩ = (⟨u,Mu⟩)2 and hence, Num(M) ⊆ F2 ,

proving the “ if ” part.
Now, assume that Num(M) ⊆ F2 . Since ⟨ei,Mei⟩ = mii , we have mii ∈ F2 for all i . Taking the

restriction to F4ei + F4ej + F4eh for all i, j, h with 1 ≤ i < j < h ≤ n , we reduce to the case n = 3 .
(a) First, assume that mii = m11 for all i . By Remark 2.3, taking I2×2+M instead of M if m11 = 1 ,

we reduce to the case m11 = m22 = m33 = 0 . Set α := m12 + m23 + m31 and β := m13 + m21 + m32 . By
Lemma 4.5 α + β ∈ F2 , eα + e2β ∈ F2 and e2α + eβ ∈ F2 . Since e2 + e = 1 we get α + β ∈ F2 . For any
{i, j, h} = {1, 2, 3} set δi := mjh +mhj . By Lemma 4.5, each element of Bh , h = 1, 2, 3 , is contained in F2 .
Since e2 + e = 1 , the sum of the two elements of Bh gives δj + δi ∈ F2 .

Since
∑

ij mij ∈ Num(M) (Lemma 4.5), we have δ1 + δ2 + δ3 ∈ F2 . Hence, δi ∈ F2 for all i .

Let B = (bij) , i, j = 1, 2, 3 , be the 3× 3 -matrix with bii = 0 for all i , bij = mij if j < i and bji = b2ij

if i < j . Thus, B is a Hermitian matrix and therefore, Num(D) ⊆ F2 if D := M + B . Note that D = (dij)

dij = 0 if either i ≥ j or i < j and mji = m2
ij and that dij = 1 if i < j and mji ̸= m2

ji , because x2 + x = 1

if x ∈ F4 \ F2 and x2 + x = 0 if x ∈ F2 .
(a1) Assume that D has exactly one nonzero entry. First, assume that d12 = 1 ; take u = (1, e, 1) ;

we have Du = (e, 0, 0) and ⟨u,Du⟩ = e /∈ F2 , a contradiction. If d13 = 1 take u = (1, 1, e) . If d23 = 1 , take
u = (1, 1, e) .

(a2) Now, assume that D has 2 nonzero entries. First, assume that d12 = d13 = 1 and d23 = 0 ;
take u = (1, e, 1) ; we have Du = (e + 1, 0, 0) and ⟨u,Du⟩ = e + 1 /∈ F2 , a contradiction. Now, assume that
d12 = 0 and d13 = d23 = 1 ; take u = (1, e, e) ; we have Du = (e, e, 0) and ⟨u,Du⟩ = e + e3 = e + 1 /∈ F2 , a
contradiction. Now, assume that d12 = d23 = 1 and d13 = 0 ; take u = (1, e, e) ; we have Du = (e, e, 0) and
⟨u,Du⟩ = e+ e3 = e+ 1 /∈ F2 , a contradiction.

(a3) Now, assume that d12 = d13 = d23 = 1 ; take u = (1, e, 1) ; since e+1 = e2 , we have Du = (e2, e, 0)

and ⟨u,Du⟩ = e2 + e3 /∈ F2 , a contradiction.
(b) Now, assume that mii ̸= mjj for some i ̸= j . Let E = (eij) ∈ M3,3(F2) be the diagonal matrix with

eii = mii for all i . Since mii ∈ F2 for all i , we have E† = E and hence, G := M +E is Hermitian if and only
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if G is Hermitian. Since E is Hermitian, ⟨u,Eu⟩ ∈ F2 for all u ∈ F3
4 . Hence, ⟨u,Gu⟩ = ⟨u,Mu⟩+ ⟨u,Eu⟩ ∈ F2

for all u ∈ C3(1) . Since all diagonal elements of G are zero, step (a) gives G† = G and so M† = M . 2
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