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Abstract: We show that Cohen-Macaulay and (S2) properties are equivalent for the second power
of an edge ideal. We give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but is not Cohen-Macaulay.
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1. Introduction

Let K be a fixed field. Let S = K[x1, . . . , xn] be a polynomial ring with deg xi = 1 for all
i ∈ [n] = {1, 2, . . . , n}. Let I be a squarefree monomial ideal.

For a Stanley-Reisner ring S/I, the Cohen-Macaulay and (S2) properties are different in general.
For instance, consider the Stanley-Reisner ring of a non-Cohen-Macaulay manifold, e.g., a torus,
which satisfies the (S2) condition. However, for some special classes of such rings, they are known
to be equivalent. The quotient ring of the edge ideal of a very well-covered graph (see [1]) and a
Stanley-Reisner ring with “large” multiplicity (see [2] for the precise statement) are such examples.
What about the powers of squarefree monomial ideals?

As for the third and larger powers, the following is proven in [3]:

Theorem 1. Let I be a squarefree monomial ideal. Then, the following conditions are equivalent for a fixed
integer m ≥ 3:

1. S/I is a complete intersection.
2. S/Im is Cohen-Macaulay.
3. S/Im satisfies the Serre condition (S2).

Then, what about the second power of a squarefree monomial ideal? This is the theme of
this article. If the second power I2 is Cohen-Macaulay, I is not necessarily a complete intersection.
Gorenstein ideals with height three give such examples.

In Section 3, we prove that the Cohen-Macaulay and (S2) properties are equivalent for the second
power of a squarefree monomial ideal generated in degree two:

Theorem 2. Let I be a squarefree monomial ideal generated in degree two. Then, the following conditions
are equivalent:

1. S/I2 is Cohen-Macaulay.

Mathematics 2019, 7, 684; doi:10.3390/math7080684 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/8/684?type=check_update&version=1
http://dx.doi.org/10.3390/math7080684
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 684 2 of 8

2. S/I2 satisfies the Serre condition (S2).

In Section 4, we first give an upper bound of the number of variables in terms of the dimension of
S/I when I is a squarefree monomial ideal generated in degree two and S/I2 has the Cohen-Macaulay
(equivalently (S2)) property. Using a computer, we classify squarefree monomial ideals I generated
in degree two with dim S/I ≤ 4 such that S/I2 have the Cohen-Macaulay (equivalently (S2))
property. Since not many examples of squarefree monomial ideals I generated in degree two such
that S/I2 are Cohen-Macaulay are known, new examples might be useful. See [4,5] for the two- and
three-dimensional cases, respectively, and [6,7] for the higher dimensional case. See also [6,8] for the
fact that for a very well-covered graph G, the second power I(G)2 is not Cohen-Macaulay if the edge
ideal I(G) of G is not a complete intersection.

In Section ??, we give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but is not Cohen-Macaulay. Hence, the Cohen-Macaulay and (S2)
properties are different for the second power in general.

2. Preliminaries

2.1. Stanley-Reisner Ideals

We recall some notation on simplicial complexes and their Stanley-Reisner ideals. We refer the
reader to [9–11] for the detailed information.

Set V = [n] = {1, 2, . . . , n}. A nonempty subset ∆ of the power set 2V of V is called a simplicial
complex on V if the following two conditions are satisfied: (i) {v} ∈ ∆ for all v ∈ V, and (ii)F ∈ ∆,
H ⊆ F imply H ∈ ∆. An element F ∈ ∆ is called a face of ∆. The dimension of F, denoted by dim F, is
defined by dim F = |F| − 1. The dimension of ∆ is defined by dim ∆ = max{dim F : F ∈ ∆}. We call
a maximal face of ∆ a facet of ∆. Let F (∆) denote the set of all facets of ∆. We call ∆ pure if all its facets
have the same dimension. We call ∆ connected if for any pair (p, q), p 6= q, of vertices of ∆, there is a
chain p = p0, p1, p2, . . . , pk = q of vertices of ∆ such that {pi−1, pi} ∈ ∆ for i = 1, 2, . . . , k.

The Stanley-Reisner ideal I∆ of ∆ is defined by:

I∆ = (xi1 xi2 · · · xip : 1 ≤ i1 < · · · < ip ≤ n, {xi1 , . . . , xip} /∈ ∆).

The quotient ring K[∆] = K[x1, . . . , xn]/I∆ is called the Stanley-Reisner ring of ∆.
We say that ∆ is a Cohen-Macaulay (resp. Gorenstein) complex if K[∆] is a Cohen-Macaulay (resp.

Gorenstein) ring. A Gorenstein complex ∆ is called Gorenstein* if xi divides some minimal monomial
generator of I∆ for each i.

For a face F ∈ ∆, the link and star of F are defined by:

link∆ F = {H ∈ ∆ : H ∪ F ∈ ∆, H ∩ F = ∅},
star∆ F = {H ∈ ∆ : H ∪ F ∈ ∆}.

The Stanley-Reisner ideal I∆ of ∆ has the minimal prime decomposition:

I∆ =
⋂

F∈F (∆)
PF,

where PF = (x ∈ [n] \ F) for each F ∈ F (∆). We call I∆ unmixed if all PF have the same height for
F ∈ F (∆). Note that ∆ is pure if and only if I∆ is unmixed. We define the `th symbolic power of I∆ by:

I(`)∆ =
⋂

F∈F (∆)
P`

F.
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For a Noetherian ring A, the following condition (Si) for i = 1, 2, . . . is called Serre’s condition:

(Si)depth AP ≥ min{height P, i} for all P ∈ Spec(A).

See [12] for more information for Stanley–Reisner rings satisfying Serre’s condition (Si).
To introduce a characterization of the (S2) property for the second symbolic power of a

Stanley–Reisner ideal, we first define the diameter of a simplicial complex. Let ∆ be a connected
simplicial complex. For p, q being two vertices of ∆, the distance between p and q is the minimal length
k of chains p = p0, p1, p2, . . . , pk = q of vertices of ∆ such that {pi−1, pi} ∈ ∆ for i = 1, 2, . . . , k. The
diameter, denoted by diam ∆, is the maximal distance between two vertices in ∆. We set diam ∆ = ∞
if ∆ is disconnected. The (S2) property of the second symbolic power of a Stanley–Reisner ideal is
characterized as follows:

Theorem 3. ([7], Corollary 3.3) Let ∆ be a pure simplicial complex. Then, the following conditions
are equivalent:

1. S/I(2)∆ satisfies (S2).
2. diam(link∆ F) ≤ 2 for any face F ∈ ∆ with dim link∆ F ≥ 1.

2.2. Edge Ideals

Let G be a graph, which means a finite simple graph, which has no loops and multiple edges. We
denote by V(G) (resp. E(G)) the set of vertices (resp. edges) of G. We call F ⊆ V(G) an independent set
of G if any e ∈ E(G) is not contained in F. The independence complex ∆(G) of G is defined by:

∆(G) = {F ⊂ V(G) : e 6⊆ F for any e ∈ E(G)},

which is a simplicial complex on the vertex set V(G). We define α(G) by:

α(G) = dim ∆(G) + 1.

We define the neighbor set NG(a) of a vertex a of G by:

NG(a) = {b ∈ V : ab ∈ E(G)}.

Set NG[a] := {a} ∪ NG(a), which is called the closed neighbor set of a vertex a of G. For S ⊆ V(G),
we denote by G\S the induced subgraph on the vertex set V(G)\S. Set GS := G\NG[S], where
NG[S] := ∪x∈SNG[x]. If S ∈ ∆(G), then:

link∆(G)(S) = ∆(GS).

See ([11], Lemma 7.4.3). For ab ∈ E(G), set Gab := G\(NG(a) ∪ NG(b)).
Set V(G) = {1, . . . , n}. Then, the edge ideal of G, denoted by I(G), is a squarefree monomial ideal

of S = K[x1, . . . , xn] defined by:

I(G) = (xixj : {xi, xj} ∈ E(G)).

Note that I(G) = I∆(G). We call G well-covered (or unmixed) if I(G) is unmixed.

Theorem 4 ([13,14]). Let G be a graph. Then, the following conditions are equivalent:

1. G is triangle-free.

2. I(G)(2) = I(G)2.
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Theorem 5 ([15]). Let G be a graph. Then, the following conditions are equivalent:

1. G is triangle-free, and I(G) is Gorenstein.
2. S/I(G)2 is Cohen-Macaulay.

3. The Second Power of Edge Ideals

In this section, we show that the Cohen-Macaulay and (S2) properties are equivalent for the
second power of an edge ideal.

Lemma 1. Let G be a graph with α(G) ≥ 2. The following conditions are equivalent:

1. S/I(G)(2) satisfies the (S2) property,
2. G is a well-covered graph and satisfies diam ∆(GF) ≤ 2 for all the independent sets F of G such that

|F| ≤ α(G)− 2,
3. Gab is well-covered and satisfies α(Gab) = α(G)− 1 for all ab ∈ E(G).

Proof. (1)⇔ (2): By [12], Theorem 8.3, I(G) satisfies the (S2) property if so does S/I(G)(2). Using [12],
Corollary 5.4, we obtain that ∆(G) is pure. This means that G is well-covered, and thus:

dim link∆(G)(F) = dim ∆(G)− |F|

and link∆(G)(F) = ∆(GF). The result is implied by Theorem 3.
(2)⇒ (3): For all ab ∈ E(G), we have:

α(Gab) ≤ α(G)− 1.

Let F be an independent set of Gab. If |F| < α(G) − 1, then |F| ≤ α(G) − 2. Recall that
Gab = G\(NG(a) ∪ NG(b)) and F ⊆ V(Gab). This implies that a, b /∈ NG[F]. Hence, we obtain
that {a, b} is an edge of GF. In other words, {a, b} is not an independent set of GF. By the assumption,
diam ∆(GF) ≤ 2, there is a vertex c ∈ V(GF) such that {a, c}, {c, b} are independent sets of GF.
Thus, ac, bc /∈ E(GF). Hence, c ∈ V(Gab). Therefore, F ∪ {c} is an independent of Gab. Then, Gab is
well-covered, and moreover, α(Gab) = α(G)− 1.

(3)⇒ (2): By [15], Lemma 4.1 (2), G is a well-covered graph. We will prove that diam ∆(GF) ≤ 2
for all independent set F with |F| ≤ α(G)− 2 by induction on α(G).

If α(G) = 2, then we must prove diam ∆(G) ≤ 2. For all a, b ∈ V(G), we assume {a, b} /∈ ∆(G).
Then, ab ∈ E(G). By the assumption, α(Gab) = α(G)− 1 = 1 > 0. Therefore, we can take a vertex c in
Gab, and thus, ac, bc /∈ E(G). Hence, {a, c}, {b, c} ∈ ∆(G). Therefore, we conclude that diam ∆(G) ≤ 2.

Let α(G) > 2, and suppose that the assertion is true for all graphs G′ with the same structure as
G satisfying the condition “Gab is well-covered and satisfies α(Gab) = α(G)− 1 for all ab ∈ E(G)” with
α(G′) < α(G). For all independent set F of G such that |F| ≤ α(G)− 2, we divide the proof into the
following two cases:

Case 1: F = ∅. In this case, we need to prove that diam ∆(G) ≤ 2. In fact, using the same
argument as above, we obtain diam ∆(G) ≤ 2.

Case 2: F 6= ∅. Let x ∈ F. Recall that G is a well-covered graph, and thus, we have
α(Gx) = α(G)− 1. Hence, |F\{x}| = |F| − 1 ≤ α(G)− 3 = α(Gx)− 2. Note that for all ab ∈ E(Gx), we
have that (Gx)ab and (Gab)x are two induced subgraphs of G on vertex set V(G)\(NG[x] ∪ NG(a) ∪
NG(b)). Thus, (Gx)ab = (Gab)x. By the assumption and [15], Lemma 4.1 (1), (Gab)x is a well-covered
graph with α((Gab)x) = α(Gab)− 1. Therefore, (Gx)ab is also a well-covered graph. Moreover,

α((Gx)ab) = α((Gab)x) = α(Gab)− 1 = α(G)− 2 = α(Gx)− 1.
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Thus, Gx has the same structure as G satisfying the condition “Gab is well-covered and satisfies
α(Gab) = α(G)− 1 for all ab ∈ E(G)” with α(Gx) < α(G). By the induction hypothesis, we obtain
diam ∆((Gx)F\{x}) ≤ 2. Note that:

(Gx)F\{x} = Gx\NG[F\{x}] = G\(NG[x] ∪ NG[F\{x}]) = G\(NG[F]) = GF.

Therefore, ∆(GF) = ∆((Gx)F\{x}). Therefore, we conclude that diam ∆(GF) ≤ 2.

Then, we get the following theorem.

Theorem 6. Let G be a graph. The following conditions are equivalent:

1. S/I(G)2 satisfies the (S2) property,
2. S/I(G)2 is Cohen-Macaulay,
3. G is triangle-free, and Gab is a well-covered graph with α(Gab) = α(G)− 1 for all ab ∈ E(G).

Proof. By the statements of Conditions (1), (2) and (3), without loss of generality, we can assume that
G contains no isolated vertices.

(2)⇔ (3): By [15], Theorem 4.4, S/I(G)2 is Cohen-Macaulay if and only if G is triangle-free and in
W2, which is a well-covered graph such that the removal of any vertex of G leaves a well-covered graph
with the same independence number as G. By [15], Lemma 4.2, this is equivalent to the condition that
G is triangle-free and Gab is a well-covered graph with α(Gab) = α(G)− 1 for all ab ∈ E(G).

(2)⇒ (1): It is obvious.
(1)⇒ (3): If α(G) = 1, then G is a complete graph. By the assumption, G is one edge. Therefore,

the statement holds true. Now, we assume α(G) ≥ 2. We know that S/I(G)2 satisfies that (S2) property
if and only if S/I(G)(2) satisfies the (S2) property and I(G)2 has no embedded associated prime, which
means I(G)2 = I(G)(2). By Theorem 4 and Lemma 1, G is triangle-free, and Gab is well-covered with
α(Gab) = α(G)− 1 for all ab ∈ E(G).

Question. If S/I(G)(2) satisfies the (S2) property, then is it Cohen-Macaulay?

The question is affirmative if G is a triangle-free graph by Theorems 4 and 6.

4. Classification

The purpose of the section is to classify all graphs G such that S/I(G)2 is Cohen-Macaulay with
dimension less than five. First, we give an upper bound of the number of vertices of a graph G such
that S/I(G)2 is Cohen-Macaulay.

4.1. Upper Bound of the Number of Vertices

Theorem 7 (Upper bound). Let G be a graph with the vertex set [n]. Suppose G has no isolate vertex. If
S/I(G)2 is d-dimensional Cohen-Macaulay, where d ≥ 3, then we have n ≤ d2+3d−2

2 .

Proof. We prove this by induction on d. For d = 3, we have n ≤ 8 by [5] (see Proposition 3). Set
N(d) = d2+3d−2

2 . Let n be the number of vertices of G such that S/I(G)2 is d-dimensional and
Cohen-Macaulay. Let i ∈ [n]. Then, we have n = |V(star∆(G){i})| + |([n] \ V(star∆(G){i})|. Since
G is triangle-free by Theorem 5, an edge among {i, p}, {i, q} and {p, q} belongs to ∆(G) for any
p, q ∈ ([n] \V(star∆(G){i}), where p 6= q. By the definition of star∆(G){i}, we have {i, p}, {i, q} 6∈ ∆(G).
Then, we have {p, q} ∈ ∆(G). By the fact that I(G) is generated in degree two, all minimal non-faces
of ∆(G) have cardinality two. Now, we know that {p, q} ∈ ∆(G) for any p, q ∈ ([n] \V(star∆(G){i});
hence, we have [n] \ V(star∆(G){i}) ∈ ∆(G). By the assumption that S/I(G)2 is d-dimensional,
we have |[n] \ V(star∆(G){i})| ≤ d. Since ∆(G) is Gorenstein*, so is link∆(G){i} by [10], Theorem
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5.1. By Theorem 5, I2
link∆(G){i}

is Cohen-Macaulay. Hence, |V(star∆(G){i})| = |V(link∆(G){i})|+ 1 ≤

N(d− 1)+ 1 by the induction hypothesis. Therefore, n ≤ N(d− 1)+ d+ 1 = (d−1)2+3(d−1)−2
2 + d+ 1 =

d2+3d−2
2 = N(d).

4.2. Classification

In this subsection, we classify all graphs G such that S/I(G)2 is Cohen-Macaulay with dimension
less than five.

Proposition 1. (One-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no isolate
vertex. Then, S/I(G)2 is one-dimensional Cohen-Macaulay if and only if n = 2 and I(G) = (x1x2).

Proposition 2 ([4]). (Two-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no
isolate vertex. Then, S/I(G)2 is two-dimensional Cohen-Macaulay if and only if I(G) is one of the following up
to the permutation of variables:

1. If n = 4, then (x1x3, x2x4).
2. If n = 5, then (x1x3, x1x4, x2x3, x2x5, x4x5).

Proposition 3 ([5]). (Three-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no
isolate vertex. Then, S/I(G)2 is three-dimensional Cohen-Macaulay if and only if I(G) is one of the following
up to the permutation of variables:

1. If n = 6, then (x1x4, x2x5, x3x6).
2. If n = 7, then (x1x5, x1x6, x2x5, x2x7, x3x4, x6x7).
3. If n = 8, then (x1x2, x1x5, x1x8, x2x3, x3x4, x4x5, x4x8, x5x6, x6x7, x7x8).

Using a computer with Nauty [16] and CoCoA[17], we classify four-dimensional case: By Theorem
7, it is enough to search for them up to n = 13.

Theorem 8. (Four-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no isolate
vertex. Then, S/I(G)2 is four-dimensional Cohen-Macaulay if and only if I(G) is one of the following up to the
permutation of variables:

1. If n = 8, then (x1x5, x2x6, x3x7, x4x8).
2. If n = 9, then (x1x5, x2x6, x3x7, x1x8, x4x8, x4x9, x5x9).
3. If n = 10, then

(a) (x1x5, x2x6, x3x7, x1x8, x4x8, x2x9, x4x9, x5x9, x4x10, x5x10, x6x10).
(b) (x1x5, x2x6, x1x7, x3x7, x3x8, x5x8, x2x9, x4x9, x4x10, x6x10).

4. If n = 11, then

(a) (x1x5, x2x6, x3x7, x1x8, x4x8, x2x9, x4x9, x5x9, x3x10, x4x10, x5x10, x6x10, x4x11, x5x11, x6x11, x7x11).
(b) (x1x5, x2x6, x1x7, x3x7, x3x8, x5x8, x2x9, x4x9, x1x10, x4x10, x6x10, x4x11, x5x11, x6x11, x7x11).

5. If n = 12, then

(x1x5, x2x6, x1x7, x3x7, x2x8, x4x8, x2x9, x3x9, x5x9, x1x10, x4x10, x6x10, x4x11, x5x11, x6x11,

x7x11, x3x12, x5x12, x6x12, x8x12).

6. If n = 13, then

(x1x5, x2x6, x1x7, x3x7, x2x8, x4x8, x2x9, x3x9, x5x9, x1x10, x3x10, x4x10, x6x10, x3x11, x5x11, x6x11,

x8x11, x2x12, x4x12, x5x12, x7x12, x4x13, x6x13, x7x13, x9x13).
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See [18] for the concrete algorithm we used. By Theorem 6 in this case, the Cohen-Macaulay
property is equivalent to the (S2) property, which is independent of the base field K.

5. Example

In this section, we give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but it is not Cohen-Macaulay.

The Cohen-Macaulay property of I2
∆ implies the “Gorenstein” property of I∆. More precisely:

Theorem 9 ([7]). Let ∆ be a simplicial complex on [n]. Suppose that S/I2
∆ is Cohen-Macaulay over any field K.

Then, ∆ is Gorenstein for any field K.

In [7], the authors asked the following question:

Question. Let ∆ be a simplicial complex on [n]. Let S = K[x1, . . . , xn] be a polynomial ring for a fixed field K.
Suppose ∆ satisfies the following conditions:

1. ∆ is Gorenstein.
2. S/I2

∆ satisfies the Serre condition (S2).

Then, is it true that S/I2
∆ is Cohen-Macaulay?

Using a list in [19] and CoCoA, we have the following counter-example:

Example 1. Let K be a field of characteristic zero. Set:

I∆ = (x1x10, x3x9, x2x9, x7x8, x2x8, x4x7, x5x6, x3x6, x4x5, x6x8x10, x2x5x10, x1x4x9, x1x3x7).

Then, the following conditions hold:

1. ∆ is Gorenstein.
2. S/I2

∆ satisfies the Serre condition (S2).
3. S/I2

∆ is not Cohen-Macaulay.

We explain how to find the example. The manifold page of Lutz [19] gives a classification of all
triangulations ∆ of the three-sphere with 10 vertices, which shows that there are 247,882 types. Using
Theorem 3, we checked the Serre condition (S2) for them, and there were only nine types such that
S/I2

∆ satisfies the Serre condition (S2). Among the nine types, there was only one simplicial complex ∆
such that S/I2

∆ is not Cohen-Macaulay, which is the above example. Note that a triangulation ∆ of a
sphere is always Gorenstein. See [18] for more information.
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