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17DPNC, Université de Genève, CH-1211 Genève 4, Switzerland

18Laboratoire de Physique Subatomique et de Cosmologie (LPSC), CNRS/IN2P3 and Université Grenoble-Alpes,
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We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton
fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1 × 109

events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This
measurement is in solar cycle 24, which has the solar maximum in April 2014. We observed that, below
40 GV, the proton flux and the helium flux show nearly identical fine structures in both time and relative
amplitude. The amplitudes of the flux structures decrease with increasing rigidity and vanish above 40 GV.
The amplitudes of the structures are reduced during the time period, which started one year after solar
maximum, when the proton and helium fluxes steadily increase. Above ∼3 GV the p=He flux ratio is time
independent. We observed that below ∼3 GV the ratio has a long-term decrease coinciding with the period
during which the fluxes start to rise.

DOI: 10.1103/PhysRevLett.121.051101

Cosmic rays entering the heliosphere are subject to
diffusion, convection, adiabatic energy losses, and mag-
netic drift [1]. The temporal evolution of these processes

leads to cosmic ray intensity variation at Earth’s orbit
around the Sun. These variations correlate with solar
activity, which has several cycles [2]. The most significant
is the 11-year solar cycle during which the number of
sunspots changes from minimum to maximum and then
back to a minimum. Another is the 22-year cycle of the
Sun’s magnetic field polarity, which reverses every 11 years
during the maxima of the solar cycle [3]. Cosmic ray
spectra may also have temporary reductions due to the
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interactions of cosmic rays with strong disturbances in the
magnetic field, especially during solar maxima, that can
last from days to months [4–7]. Time correlations at low
rigidity among different particle spectra (p, He) due to solar
modulation are expected by models of cosmic ray transport
based on the Parker equation [1]. This is because the time-
dependent cosmic ray transport in the heliosphere is rigidity
dependent and related to changes in solar activity.
Numerous models of the propagation of charged particles
in the heliosphere exist that predict different flux variations
with time [8–13]. The large acceptance and high precision
of the Alpha Magnetic Spectrometer (AMS) allow us to
perform accurate measurements of the fluxes as functions
of time and energy. This provides unique information to
probe the dynamics of solar modulation, to allow the
improvement of constraints for dark matter search
[14–17], to investigate the processes of galactic cosmic
ray propagation [18,19], and to reduce the uncertainties
in radiation dose predictions for deep space human explo-
ration [20,21].
The precision, high-energy measurements of the proton

and helium fluxes by the AMS have been reported [22,23].
In this Letter, the time evolution of the proton flux from 1 to
60 GV based on 846 × 106 events and the helium flux from
1.9 to 60 GV based on 112 × 106 events are presented. The
proton flux and the helium flux are measured for the 79
Bartels rotations from May 2011 to May 2017. For the first
time, proton and helium fluxes are simultaneously mea-
sured with the same precision instrument for an extended
period of time.
Detector.—The layout and description of the AMS

detector are presented in Ref. [24]. The key elements used
in this measurement are the permanent magnet [25], the
silicon tracker [26], and the four planes of time of flight
scintillation counters [27]. The AMS also contains a
transition radiation detector, a ring imaging Čerenkov
detector, an electromagnetic calorimeter, and an array of
16 anticoincidence counters. Proton and helium nuclei
traversing the AMS were triggered as described in
Refs. [22,23,28] with measured efficiencies of > 94%
up to 60 GV. Monte Carlo simulated events were produced
using a dedicated program developed by the collaboration
based on the GEANT-4.10.1 package [29]. The program
simulates electromagnetic and hadronic interactions of
particles in the material of the AMS and generates detector
responses. The Monte Carlo event samples have sufficient
statistics such that they do not contribute to the errors.
Event selection.—The collection time used in this analy-

sis includes only those seconds during which the detector
was in normal operating conditions, the AMS was pointing
within 40° of the local zenith, and the International Space
Station (ISS) was outside of the South Atlantic Anomaly.
In addition, those seconds when the AMS detects solar
energetic particles accelerated by the Sun are excluded.
Because of the geomagnetic field, the collection time

increases with rigidity; it is 1.0–1.4 × 105 s at 2 GV,
4.2–4.7 × 105 s at 5 GV, 8.8–9.4 × 105 s at 10 GV,
1.4–1.6 × 106 s at 20 GV, and, above 30 GV, reaches
1.7–1.9 × 106 s per Bartels rotation. Proton and helium
events were selected as described in Refs. [22,23]. The
measured rigidity is required to be greater than a factor of
1.2 times the maximum geomagnetic cutoff within the
AMS field of view. The cutoff was calculated by back-
tracing particles from the top of the AMS out to 50 Earth’s
radii [30] using the most recent IGRF model [31]. After
selection the event samples contain 846 × 106 Z ¼ þ1 and
112 × 106 Z ¼ þ2 nuclei each with a purity > 99.8%. The
Z ¼ þ1 sample includes protons and deuterons with
rigidity larger than 1.00 GV and Z ¼ þ2 sample includes
3He and 4He isotopes with rigidity larger than 1.92 GV.
Data analysis.—The isotropic flux Φi during a Bartels

rotation in the ith rigidity bin (Ri; Ri þ ΔRi) is given by

Φi ¼
Ni

AiϵiTiΔRi
; ð1Þ

where, for that Bartels rotation, Ni is the number of events
corrected for bin-to-bin migration, Ai is the effective
acceptance, ϵi is the trigger efficiency, and Ti is the
collection time. In this Letter, the proton flux was measured
in 45 bins from 1 to 60 GV and the helium flux in 40 bins
from 1.9 to 60 GV. Above 1.9 GV, proton and helium have
40 common rigidity bins with identical bin widths. Bin-to-
bin migration of events was corrected using the unfolding
procedures described in Refs. [22,23] independently for
each Bartels rotation for the proton samples and for the
helium samples. Extensive studies were made of the
systematic errors for each Bartels rotation as described
in Refs. [22,23,28]. These errors include the uncertainties
in the acceptance, due to event reconstruction, selection,
and nuclear cross sections, the background contamination,
the geomagnetic cutoff factor, the event selection, the
unfolding, the rigidity resolution function, and the absolute
rigidity scale. These systematic errors are time indepen-
dent. As an example, to estimate the systematic errors due
to uncertainty on the cutoff determination, the nominal
geomagnetic cutoff factor of 1.2 was varied from 1.0 to 1.4
and the difference in the resulting fluxes was included in
the total systematic errors. The corresponding systematic
uncertainties were found to be 2% at 1 GV for protons and
negligible above 2 GV for both protons and helium.
As described in Ref. [22], we have also verified that the
IGRF model with external nonsymmetric magnetic fields
does not introduce observable changes in the flux values.
In addition, a time dependent systematic error due to the
variations of trigger and reconstruction efficiency for
different Bartels rotations was estimated to be 1.5% for
protons at 1 GVand < 1% at 2 GV, < 0.6% at 10 GV, and
< 1.2% at 60 GV for both protons and helium. The total
systematic error is obtained by adding in quadrature the
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individual contributions of the time independent systematic
errors and the time dependent systematic errors. At 1 GV it
is 4.8% for protons, and it is < 2.5% above 2 GV for both
protons and helium. Most importantly, several independent
analyses were performed on the same data sample. The
results of those analyses are consistent with those presented
in this Letter.
Results.—The measured proton fluxes, helium fluxes,

and the p=He flux ratios for Bartels rotations 2426 to
2506 including statistical errors, time dependent system-
atic errors, and total systematic errors are tabulated in the
Supplemental Material [32], as functions of the rigidity at
the top of the AMS detector. Because of the very high
statistics, the small time dependent systematic error from
trigger and reconstruction efficiency variations for pro-
tons and differently for helium are noticeable. As in
Ref. [28], contributions to the total systematic error are from
the acceptance, the background contamination, the geo-
magnetic cutoff factor, the event selection, the unfolding, the
rigidity resolution function, the absolute rigidity scale, and
the time dependent systematic errors. The statistical errors
for the ratio are the sum in quadrature of the relative
statistical errors of the fluxes multiplied by the ratio. The
time dependent systematic errors for the ratio are the sum in
quadrature of the relative time dependent systematic errors of
the fluxes multiplied by the ratio. The systematic errors from
the acceptance for the ratio are added in quadrature. The
correlations in the systematic errors from the unfolding and
the absolute rigidity scale between the fluxes have been
accounted for in calculating the corresponding systematic
errors of the ratio. The contributions of the individual
sources to the systematic error are added in quadrature to
arrive at the total systematic uncertainty on the ratio.
Figure 1 shows the detailed behavior of (a) the proton

flux and (b) the helium flux as functions of time and
of rigidity from 1 to 10 GV and from 1.9 to 10 GV,
respectively. Figure SM 1 in the Supplemental Material
[32] shows the data over the entire rigidity range up to
60 GV. As seen, both the proton and helium spectra exhibit
large variations with time at low rigidities which decrease
with increasing rigidity. During the period of observation,
both fluxes have a minimum in February 2014 and a
maximum in February 2017.
The time dependence of the proton and helium fluxes are

shown in Fig. 2 for 8 characteristic rigidity bins. As seen,
both the proton and helium fluxes have fine time structures
each with maxima and minima with boundaries marked by
the vertical dashed lines from I to X. The structures in the
proton flux and the helium flux are nearly identical in both
time and relative amplitude.
In general, the amplitudes of the structures (indicated

by the shading) decrease progressively with rigidity. The
precision of AMS enables us to observe these structures up
to 40 GV. The data presented in this Letter provide

information for detailed studies on time-dependent phe-
nomena like those described in Refs. [34,35].
It is important to note that five of the structures,

boundaries I (September 27, 2011), II (March 7, 2012),
III (July 20, 2012), IV (May 13, 2013), and VII (March 19,
2015), marked by the red vertical dashed lines in the figure,
have also been observed by AMS in the electron flux and
the positron flux [33]. As seen, after boundary VII, which is
one year after solar maximum (April 2014 for solar cycle
24), the amplitudes of the structures are considerably
reduced and the proton and helium fluxes steadily increase
at rigidities less than 40 GV. In addition, the change in long
term behavior visible at boundary VII was also observed by
AMS in the electron flux and the positron flux.
Figure 3(a) shows the comparison of the proton flux in

the kinetic energy per nucleon range 1.19 to 1.40 GeV
measured by AMS versus time together with the EPHIN/
SOHO measurement [36]. Figure 3(b) shows the AMS
helium flux in the kinetic energy per nucleon range 1.11 to
1.28 GeV=n. Figure 3(c) shows the relative variation of the
AMS proton flux integrated over R ≥ 6.47 GV as a
function of time together with the relative variation of
the rate reported by the Oulu, Finland neutron monitor [37].
Figure 3(d) shows the monthly averaged sunspot number
during solar cycle 24 with the period of solar magnetic field
polarity (A) reversal [38,39]. As seen, the data greatly

FIG. 1. The three-dimensional detailed behavior of the AMS
(a) proton and (b) helium fluxes as functions of rigidity from 1 to
10 GV and from 1.9 to 10 GV, respectively, and time. The color
code indicates the flux intensity in units of ½m2 · sr · s · GV�−1.
During the period of observation, both fluxes have a distinct
minimum in February 2014 (blue line) and a maximum in
February 2017 (red line).
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improve the accuracy and the sensitivity of the timedependent
proton and helium measurements and this provides informa-
tion for detailed studies of the correlation between sunspot
number and the fluxes of protons and helium.
For illustration, Fig. SM 2 in the Supplemental Material

[32] shows the relative variation of the AMS proton flux
integrated with different minimum rigidities as a function

of time together with the relative variation of the rate
reported by the Oulu, Finland neutron monitor. As seen, the
relative variation of this neutron monitor rate matches the
AMS proton flux only when the flux is integrated over
R ≥ 6.47 GV.
Figure 4 shows the AMS p=He flux ratio, see

Supplemental Material [32], as a function of time for 9
rigidity bins. As seen, depending on the rigidity range, the
p=He flux ratio shows two different behaviors in time.
Above ∼3 GV the ratio is time independent. Below ∼3 GV
the ratio has a long-term time dependence. To assess the
transition between these two behaviors, we performed a fit
of the p=He flux ratio ri for each rigidity bin i as a function
of time t, with

riðtÞ ¼
�
ai t < ti
ai þ biðt − tiÞ t ≥ ti;

ð2Þ

where ai is the average p=He flux ratio from May 2011 to
ti, ti is the time when the p=He flux ratio deviates from the
average ai, and bi is the slope of the time variation. Above
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negative correlation with the sunspot number. AMS data are
converted from rigidity R to kinetic energy per nucleon
EK ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2R2 þM2

p
−MÞ=A, where M is the proton or the

4He mass. The AMS error bars are the quadratic sum of the
statistical and total systematic errors.
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3.29 GV, the p=He flux ratio is consistent with a constant
value at the 95%confidence level. This shows the universality
of the solar modulation of cosmic ray nuclei at relativistic
rigidities. Below 3.29 GV, the observed p=He flux ratio is
steadily decreasing with time after ti. In the first five rigidity
bins, the best fit values of ti are in agreement within each
other. Their average value is equal to February 28, 2015� 42
days, consistent with boundary VII of Fig. 2, after which the
proton and helium fluxes start to increase. This last obser-
vation shows a new and important feature regarding the
propagation of lower energy cosmic rays in the heliosphere.
Before this Letter, several effects had been proposed that
lead to a time dependence of the p=He flux ratio at low
rigidities, such as velocity dependence of the diffusion tensor,
differences in the interstellar spectra ofp andHe, and the 3He
and 4He isotopic composition [8–13,28,40,41]. The precision
of theAMS data provides information for the development of
refined solar modulation models.
In conclusion, the precision proton flux and the helium

flux observed by AMS have fine time structures nearly
identical in both time and relative amplitude. The ampli-
tudes of the flux structures decrease with increasing rigidity
and vanish above 40 GV. The amplitudes of the structures
are reduced during the time period, which started one year
after solar maximum, when the proton and helium fluxes
steadily increase. In addition, above ∼3 GV the p=He flux
ratio is time independent. Below ∼3 GV the ratio has a
long-term decrease coinciding with the period during
which the fluxes start to rise.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific

laboratory and his decision for NASA to fly the AMS as a
DOE payload. We also acknowledge the continuous sup-
port of the NASA leadership including Charles Bolden and
William H. Gerstenmaier and of the JSC and MSFC flight
control teams which has allowed AMS to operate optimally
on the ISS for over six years. We are grateful for the support
of Jim Siegrist and his staff of the DOE including resources
from the National Energy Research Scientific Computing
Center under Contract No. DE-AC02-05CH11231 and the
Argonne Leadership Computing Facility under Contract
No. DE-AC02-06CH11357. We also acknowledge the
continuous support from MIT and its School of Science,
Michael Sipser, Marc Kastner, Ernest Moniz, Richard
Milner, and Boleslaw Wyslouch. We are grateful for the
support of Edward Semones and his staff of the NASA
Johnson Space Center including resources from Wyle
Laboratories Grant No. 2014/T72497. Research supported
by São Paulo Research Foundation (FAPESP) Grants
No. 2014/19149-7, No. 2015/50378-5, and No. 2016/
10222-9, Brazil; CAS, NSFC, MOST, the provincial
governments of Shandong, Jiangsu, Guangdong, and the
China Scholarship Council, China; Action H2020 MSCA-
IF-2015 under Grant No. 707543-MAtISSE, European
Union; the Finnish Funding Agency for Innovation
(Tekes) Grants No. 40361/01 and No. 40518/03 and the
Academy of Finland Grant No. 258963, Finland; CNRS/
IN2P3, CNES, Enigmass, and the ANR, France; Pascale
Ehrenfreund, DLR under Grant No. 50OO1403 and JARA-
HPC under Project No. JARA0052, Germany; INFN and
ASI under ASI-INFN Agreements No. 2013-002-R.0 and
No. 2014-037-R.0, Italy; CHEP and NRF under Grants
No. NRF-2009-0080142 and No. NRF-2012-010226 at
Kyungpook National University and No. NRF-2013-
004883 at Ewha Womans University, Korea; the Consejo
Nacional de Ciencia y Tecnología and UNAM, Mexico;
FCT under Grant No. PTDC/FIS/122567/2010, Portugal;
CIEMAT, IAC, CDTI, and SEIDI-MINECO under Grants
No. ESP2015-71662-C2-(1-P/2-P), No. SEV-2015-0548,
No. MDM-2015-0509, and No. RyC-2013-14660, Spain;
the Swiss National Science Foundation (SNSF), federal and
cantonal authorities, Switzerland; Academia Sinica and the
Ministry of Science and Technology (MOST) under Grants
No. 103-2112-M-006-018-MY3, No. 105-2112-M-001-003,
and No. CDA-105-M06, former Presidents of Academia
Sinica Yuan-Tseh Lee and Chi-Huey Wong and former
Ministers of MOST Maw-Kuen Wu and Luo-Chuan Lee,
Taiwan; the Turkish Atomic Energy Authority under Grant
No. 2017TEAK(CERN)A5.H6.F2-15, Turkey; and NSF
Grants No. 14255202 and No. 1551980, and NASA
NESSF Grant No. HELIO15F-0005, USA. We gratefully
acknowledge the strong support from CERN including Rolf-
Dieter Heuer and Fabiola Gianotti, from the CERN IT
department and Bernd Panzer-Steindel, and from the
European Space Agency including Johann-Dietrich
Wörner and Simonetta Di Pippo. We are grateful for

2011
May

2011
Nov

2012
May

2012
Nov

2013
May

2013
Nov

2014
May

2014
Nov

2015
May

2015
Nov

2016
May

2016
Nov

2017
May

p/
H

e

5

5.5

6

6.5

7

7.5

8

8.5

[1.92-2.15] GV

[2.15-2.40] GV

[2.40-2.67] GV

[2.67-2.97] GV

[2.97-3.29] GV
[3.29-3.64] GV

[5.37-5.90] GV

[10.10-11.00] GV

[21.10-22.80] GV

FIG. 4. The AMS p=He flux ratio as function of time for 9
characteristic rigidity bins. The errors are the quadratic sum of
the statistical and time dependent systematic errors. The solid
lines are the best fit of Eq. (2) for the first 5 rigidity bins from
[1.92–2.15] GV to [2.97–3.29] GV. The vertical band (February
28, 2015� 42 days) is the average of the best fit values of ti for
these rigidity bins.

PHYSICAL REVIEW LETTERS 121, 051101 (2018)

051101-6



important physics discussions with Fiorenza Donato,
Jonathan Ellis, Jonathan Feng, Igor Moskalenko, Marius
Potgieter, Michael Salamon, Subir Sarkar, Joachim Trümper,
Michael S. Turner, and Steven Weinberg.

aAlso at ASI, I–00133 Roma, Italy.
bAlso at ASI Space Science Data Center (SSDC), I-00133
Roma, Italy; Present address: University of Sassari,
I–07100 Sassari, Italy.

cAlso at Wuhan University, Wuhan, 430072, China.
dAlso at Sun Yat-Sen University (SYSU), Guangzhou,
510275, China.

eAlso at Huazhong University of Science and Technology
(HUST), Wuhan, 430074, China.
fAlso at ASI Space Science Data Center (SSDC), I-00133
Roma, Italy.
gAlso at ASI Space Science Data Center (SSDC), I-00133
Roma, Italy; Present address: INFN Sezione di Trieste,
I–34149, Trieste, Italy.

hAlso at Nankai University, Tianjin 300071, China.
iAlso at Institute of Theoretial Physics, Chinese Academy of
Sciences, Beijing, 100190, China.

[1] E. N. Parker, Planet. Space Sci. 13, 9 (1965).
[2] M. S. Potgieter, Living Rev. Solar Phys. 10, 3 (2013).
[3] D. H. Hathaway, Living Rev. Solar Phys. 12, 4 (2015).
[4] M. Zhang, Adv. Space Res. 32, 603 (2003).
[5] H. V. Cane, Space Sci. Rev. 93, 55 (2000).
[6] M. S. Potgieter, J. A. Le Roux, L. F. Burlaga, and F. B.

McDonald, Astrophys. J. 403, 760 (1993).
[7] G. Wibberenz, I. G. Richardson, and H. V. Cane, J. Geophys.

Res. 107, 1353 (2002).
[8] I. Cholis, D. Hooper, and T. Linden, Phys. Rev. D 93,

043016 (2016).
[9] C. Corti, V. Bindi, C. Consolandi, and K. Whitman,

Astrophys. J. 829, 8 (2016).
[10] M. J. Boschini, S. Della Torre, M. Gervasi, G. La Vacca,

and P. G. Rancoita, Adv. Space Res., DOI: 10.1016/
j.asr.2017.04.017 (2017).

[11] J. Gieseler, B. Heber, and K. Herbst, J. Geophys. Res. Space
Phys. 122, 10964 (2017).

[12] N. Tomassetti, M. Orcinha, F. Barão, and B. Bertucci,
Astrophys. J. Lett. 849, L32 (2017).

[13] E. E. Vos andM. S. Potgieter, Astrophys. J. 815, 119 (2015).
[14] N. Fornengo, L. Maccione, and A. Vittino, J. Cosmol.

Astropart. Phys. 9 (2013) 031.
[15] N. Fornengo, L. Maccione, and A. Vittino, J. Cosmol.

Astropart. Phys. 4 (2014) 003.
[16] M. Cirelli, D. Gaggero, G. Giesen, M. Taoso, and A.

Urbano, J. Cosmol. Astropart. Phys. 12 (2014) 045.
[17] Q. Yuan and X.-J. Bi, J. Cosmol. Astropart. Phys. 3 (2015)

033.
[18] M. J. Boschini et al., Astrophys. J. 840, 115 (2017).
[19] N. Tomassetti, Phys. Rev. D 96, 103005 (2017).
[20] P. M. O’Neill, IEEE Trans. Nucl. Sci. 57, 3148 (2010).
[21] L.W. Townsend, F. A. Cucinotta, J. W. Wilson, J. L. Shinn,

and G. Badhwar, Adv. Space Res. 14, 853 (1994).
[22] M. Aguilar et al., Phys. Rev. Lett. 114, 171103 (2015).
[23] M. Aguilar et al., Phys. Rev. Lett. 119, 251101 (2017).

[24] A. Kounine, Int. J. Mod. Phys. E 21, 1230005 (2012); S.
Rosier-Lees, Proceedings of Astroparticle Physics TEVPA/
IDM, Amsterdam, 2014 (unpublished); S. Ting, Nucl. Phys.
B, Proc. Suppl. 243–244, 12 (2013); S.-C. Lee, Proceedings
of the 20th International Conference on Supersymmetry and
Unification of Fundamental Interactions (SUSY Beijing,
2012) (unpublished); M. Aguilar, Proceedings of the XL
International Meeting on Fundamental Physics, Centro de
Ciencias de Benasque Pedro Pascual, 2012 (unpublished);
S. Schael, Proceedings of the 10th Symposium on Sources
and Detection of Dark Matter and Dark Energy in the
Universe, Los Angeles, 2012 (unpublished); B. Bertucci,
Proc. Sci., EPS-HEP (2011) 67; M. Incagli, AIP Conf. Proc.
1223, 43 (2010); R. Battiston, Nucl. Instrum. Methods Phys.
Res., Sect. A 588, 227 (2008).

[25] K. Lübelsmeyer et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 654, 639 (2011).

[26] B. Alpat et al., Nucl. Instrum. Methods Phys. Res., Sect. A
613, 207 (2010).

[27] V. Bindi et al., Nucl. Instrum. Methods Phys. Res., Sect. A
743, 22 (2014).

[28] M. Aguilar et al., Phys. Rev. Lett. 115, 211101 (2015).
[29] J. Allison et al., Nucl. Instrum. Methods Phys. Res., Sect. A

835, 186 (2016); IEEE Trans. Nucl. Sci. 53, 270 (2006); S.
Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[30] J. Alcaraz et al., Phys. Lett. B 484, 10 (2000).
[31] C. C. Finlay et al., Geophys. J. Int. 183, 1216 (2010); E.
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