A SMALL TRIVIA ABOUT MONIC POLYNOMIALS OF SECOND DEGREE WITH POSITIVE INTEGER COEFFICIENTS

LUCA GOLDONI

Abstract

In this paper we investigate the problem of simultaneous factorization of second degree polynomials with positive integer coefficients.

1. Introduction

If we consider a second degree polynomial with integer coefficients

$$
p(x)=x^{2}+q x+p
$$

which is reducible in $\mathbb{Z}[x]$ it is well possible that even the polynomial

$$
q(x)=x^{2}+p x+q
$$

is reducible in $\mathbb{Z}[x]$ as well. For instance, if $p>0$ then

$$
\begin{aligned}
& p(x)=x^{2}-(p+1) x+p \\
& q(x)=x^{2}+p x-(p+1)
\end{aligned}
$$

are both reducible in $\mathbb{Z}[x]$. But what about a polynomial

$$
p(x)=x^{2}+q x+p
$$

where both p and q are positive and $p<q$? We will prove that, with this condition, only the polynomial

$$
p(x)=x^{2}+6 x+5
$$

has the required property.

2. The result

Theorem 1. If p, q are positive integers then

$$
\begin{aligned}
& p(x)=x^{2}+q x+p \\
& q(x)=x^{2}+p x+q
\end{aligned}
$$

are both reducible in $\mathbb{Z}[x]$ if and only if $p=5, q=6$.

[^0]Proof. The "if" is, of course, trivial. For the "only if", let us consider the polynomial

$$
p(x)=x^{2}+q x+p
$$

If $p(x)$ is reducible, then for a suitable divisor d of p we must have that

$$
q=d+\frac{p}{d} .
$$

We can always assume that $1 \leq d \leq \sqrt{p}$. We split the proof in two cases
(1) For first we consider the case $d=1$. We have that

$$
\begin{aligned}
p(x) & =x^{2}+(p+1) x+p \\
q(x) & =x^{2}+p x+(p+1)
\end{aligned}
$$

thus, from $q(x)$ we have that

$$
p=d^{\prime}+\frac{p+1}{d^{\prime}}
$$

where d^{\prime} is a suitable divisor of $p+1$ and we can suppose, with generality, that

$$
2 \leqslant d^{\prime} \leqslant \sqrt{p+1}
$$

But, for each p and each d^{\prime} it is

$$
d^{\prime}+\frac{p+1}{d^{\prime}} \leqslant \sqrt{p+1}+\frac{p+1}{2}
$$

and

$$
\sqrt{p+1}+\frac{p+1}{2}<p
$$

is true as soon as $p \geq 7$. Hence, we have only to check the values $p=1,2,3,4,5,6$ and among them we find that the only acceptable value is $p=5$.
(2) Now we assume that $2 \leq d \leq \sqrt{p}$. In this case, from $p(x)$ we have that

$$
q=d+\frac{p}{d} \leqslant \sqrt{p}+\frac{p}{2}
$$

while, from $q(x)$, it must be

$$
p=d^{\prime}+\frac{q}{d^{\prime}}
$$

for a suitable divisor of q. Thus, it must be

$$
p=d^{\prime}+\frac{q}{d^{\prime}} \leqslant \sqrt{q}+q \leqslant \sqrt{\sqrt{p}+\frac{p}{2}}+\sqrt{p}+\frac{p}{2}
$$

which is false as soon as $p>15$. Hence, we have to check only the cases $p=1, \ldots, 14$ and, among them, we cannot find any further polynomial. This proves the result.

[^1]
[^0]: Date: May 13, 2018.
 2000 Mathematics Subject Classification. 11R09, 14A25.
 Key words and phrases. Polynomials, simultaneous factorization, Elementary proof.

 Dipartimento di Matematica. Università di Trento.

[^1]: Università di Trento, Dipartimento di Matematica, v. Sommarive 14, 56100 Trento, Italy

 E-mail address: goldoni@science.unitn.it

