
fication from rat hippocampi with blue native/SDS-PAGE and
MS/MS analysis to describe 185 membrane proteins (about
36%) within a database of 514 (41). Additionally, Olsen and
colleagues identified 197 membrane proteins (about 35% of
555 total hits) in plasma membrane preparations obtained
from different mouse brain areas investigated by means of
cation-exchange chromatography coupled with LC-MS/MS
(42). In contrast to the approaches described so far in which
brain tissue was used as a protein source, we applied cell
surface biotinylation on primary neuronal cultures. Primary
cultures constitute a robust model to recapitulate neuron
physiology and ensure easy access for pharmacological and
genetic manipulations that might be difficult, if not impossible,
to perform in the intact brain. Furthermore, neurons can be

cultured for up to 3 weeks, thus allowing the investigation of
dynamic molecular modifications in a time-dependent man-
ner. Our assay fostered the identification of up to 166 mem-
brane proteins. Nevertheless, we found a certain amount of
cytosolic/nonmembrane proteins in our dataset. The pres-
ence of cytosolic contaminants might have been due to un-
specific binding to the agarose matrix of such molecules,
characterized by a higher absolute cellular abundance and
better solubility in aqueous buffer than membrane-passing
molecules. In spite of this technical issue, the performance of
our protocol far exceeds the results of similar investigations
on primary cultures, to the best of our knowledge. In partic-
ular, Stella and colleagues identified about 30 membrane
proteins from a preparation of membrane obtained from pri-

FIG. 6. Negr1 silencing does not af-
fect neuronal morphology at imma-
ture stages. Cortical neurons were in-
fected at DIV1 with miRNA control and
miRNA Negr1. At DIV6, cells were fixed
and imaged by means of confocal laser
microscopy. A, B, confocal images high-
lighting the morphology of neurons in-
fected with miRNA control and miRNA
Negr1. Their relative tracings are re-
ported on the right. C, D, quantification
of the neurite total length and number for
each neuron. E, Sholl analysis shows
that Negr1 silencing did not induce sig-
nificant modification of neurite immature
neuronal arborization. F, the graph re-
ports the number of neurites in each
branching order. Scale bar � 20 �m.
Data are expressed as mean � S.E.; n �
4; 10 neurons were measured for each
experimental case.
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mary cultures of cerebellar granule neurons (43). The protocol
we proposed here implies incubation with nonpermeable bi-
otin with the aim of tagging the proteins truly exposed to the
extracellular side at a given functional/developmental stage.
Chen and colleagues developed a similar approach and re-
vealed 27 proteins predicted to have at least one transmem-
brane domain in primary hippocampal cultures (44). Their

method lacked the biochemical fractionation utilized here.
This difference may account for the much higher recovery of
membrane proteins we reported here in comparison to the
results of Chen and colleagues. Furthermore, the P2 fraction
used in our assay enriches plasma membranes and synapto-
some (see supplemental Fig. S1 and Ref. 9), an artificial
organelle comprising pre- and postsynaptic elements (45).

FIG. 7. Negr1 silencing affects neuronal morphology at mature stages. Cortical neurons were infected at DIV1 with miRNA control and
miRNA Negr1. At DIV16, cells were fixed and imaged by means of confocal laser microscopy. A, B, morphology of neurons infected with miRNA
control and miRNA Negr1 and relative tracing. C, D, quantification of neurite total length and number for each neuron. E, Sholl analysis showed
that the neurite arborization was severely affected by miRNA Negr1 infection. F, miRNA Negr1 infection altered the distribution of neurites in
each branching order. Scale bar � 20 �m. Data are expressed as mean � S.E.; Student’s t test, * p 	 0.01, n � 4; 10 neurons were measured
for each experimental case.
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Accordingly, about 55% of the membrane protein identified
by our assay is synaptic or associated with synaptic function
according to the GO annotation.

When we compared immature versus mature neuronal cul-
tures, we identified a panel of 439 differentially expressed
proteins. Among them, we found 109 proteins localized at the
plasma membrane, and in particular we found 20 IgSF CAMs.
Neuronal IgSF CAMs associate at the cell surface to form
homo- and heterophilic complexes and regulate neurite out-
growth and synaptic-contact formation (3). The expression
levels of Thy-1 (46), cell adhesion molecule 3 (47), cell adhe-
sion molecule L1 (48), NrCAM (49, 50), neuroplastins (51), and
basigin (52) are necessary for the proper establishment of
functional neuronal circuitry. Thus, our data are perfectly in
line with the fact that the above-mentioned CAMs have a
precise expression profile tightly correlated to neuronal mat-
uration. Given their pivotal role during neuronal development,
several CAMs have been not surprisingly implicated in neu-
rological disorders (53–55). Recent genetic linkages have as-
sociated NrCAM and Negr1 with autism spectrum disorder
(56–58).

Negr1 is a synaptic adhesion protein member of the IgLON
CAM family (59). In dissociated neurons in culture, Negr1 is
mainly observed at axons and presynaptic terminals at early
culture stages, but it becomes also postsynaptic at late cul-
ture stages (33). Finally, Negr1 overexpression affects the
number of synapses with different outcomes depending on
the culture stage. If it occurs in early stages, the overexpres-
sion of Negr1 decreases the number of synapses, whereas at
later stages it is positively associated with synapse number
(37). The silencing approach described here sheds light on the

physiological function of endogenous Negr1. In particular, we
demonstrated that Negr1 hypoexpression induced a signifi-
cant decrease in the number and length of neuronal pro-
cesses in mature neurons, thus causing a severe reduction of
the overall complexity of neurite arborization in vitro and in
vivo. Given that we reported a similar phenotype in cells
overexpressing Negr1, overall our data demonstrate that the
Negr1 expression level is tightly associated with neuronal
maturation and that it controls the proper development of
neurite arborization and dendritic spines.

The pattern of dendrite arborization exhibited by a neuron is
tightly correlated to its function. Any alteration in dendrite
morphology has dramatic consequences for the proper for-
mation and functionality of the connectivity network within
surrounding cells (60, 61). Recent findings point to altered
brain connectivity as a key feature in autism spectrum disor-
der (62). Interestingly, evidence links the pathogenesis of
autism spectrum disorder specifically to neuronal-network
anomalies and dendritic spine dysmorphology (63–65). We
hypothesize that Negr1 regulates the development, formation,
and stabilization of a functional neurite network, and conse-
quently Negr1 mutation might contribute to the anatomical
aberrations reported in autism spectrum disorder. Independ-
ent approaches are needed to confirm the precise localization
of the hits identified. Nevertheless, we are confident that our
assay can increase the recovery of membrane proteins and
facilitate the isolation of molecules functionally and/or topo-
logically related to the synapse.

Finally, our study allowed the preliminary identification of a
panel of membrane proteins whose expression was corre-
lated with neuronal development. Although further studies

FIG. 8. Negr1 silencing affects den-
dritic spine density. Cortical neurons
were infected at DIV1 with miRNA con-
trol and miRNA Negr1. At DIV16, cells
were fixed, stained, and imaged by
means of confocal laser microscopy. A,
we imaged neuron processes (green) to
highlight dendritic spines. Mature spines
were decorated by F-actin (red) and
PSD-95 (blue). B, quantification of
morphological parameters describing
spines. The panel reports spine density
(spine number/10 �m), length, width,
and percentage of protrusions charac-
terized by a mushroom, stubby, or thin
morphology (type). Scale bar � 10 �m.
Data are expressed as mean � S.E.; St-
udent’s t test, * p 	 0.05, n � 3; seven
neurons were measured for each exper-
imental case.
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will be required to clarify in detail the mechanisms orches-
trated by these molecules, our assay proved to be a reliable
starting point to study the extracellular proteome and mon-
itor its implication in physiological and pathological neuro-
nal mechanisms.
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