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In this paper, we present a behavioral biometric-based smartphone user authentication mechanism, 

namely, AnswerAuth , which relies on the very common users’ behavior. Behavior, here, refers to the 

way a user slides the lock button on the screen, to unlock the phone, and brings the phone towards 

her ear. The authentication mechanism works with the biometric behavior based on the extracted fea- 

tures from the data recorded using the built-in smartphone sensors, i.e., accelerometer, gyroscope, gravity, 

magnetometer and touchscreen, while the user performed sliding and phone-lifting actions. We tested An- 

swerAuth on a dataset of 10,200 behavioral patterns collected from 85 users while they performed the 

unlocking actions, in sitting, standing , and walking postures, using six state-of-the-art conceptually dif- 

ferent machine learning classifiers in two settings, i.e., with and without simultaneous feature selection 

and classification. Among all the chosen classifiers, Random Forest (RF) classifier proved to be the most 

consistent and accurate classifier on both full and reduced features and provided a True Acceptance Rate 

(TAR) as high as 99.35%. We prototype proof-of-the-concept Android app, based on our findings, and eval- 

uate it in terms of security and usability. Security analysis of AnswerAuth confirms its robustness against 

the possible mimicry attacks. Similarly, the usability study based on Software Usability Scale (SUS) 1 ques- 

tionnaire verifies the user-friendliness of the proposed scheme (SUS Score of 75.11). Experimental results 

prove AnswerAuth as a secure and usable authentication mechanism. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Smartphones and tablets often fulfill user’s desire of anytime-

nywhere computing, which allows them to create their contents

ith ease and in an efficient manner. Furthermore, these devices

lso provide a portable means of accessing social networks, com-

leting banking transactions, taking pictures and making movies

long-with sharing these contents with user’s family and friends.

ince these devices store a growing quantity of user’s private infor-

ation, it becomes extremely important to keep user data secure

rom unauthorized access. To this end, researchers have recently

esigned new authentication methods specifically for smartphones

nd tablets. Existing user authentication techniques can be divided
∗ Corresponding author at: Department of Information Engineering & Computer 

cience (DISI), University of Trento, Italy. 

E-mail addresses: attaullah.buriro@unitn.it (A. Buriro), bruno.crispo@unitn.it (B. 

rispo), conti@math.unipd.it (M. Conti). 
1 https://www.usability.gov/how- to- and- tools/methods/system- usability- scale. 
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nto four categories, i.e., passwords/PINs [2] , graphical sketches [3] ,

hysical biometrics [4] , and behavioral biometrics [5] . 

Passwords/PINs and graphical patterns are examples of

lassical authentication methods based on “something user

nows/remembers ”. In such authentication scenarios, users must

ype the password or sketch they had set earlier in order to gain

ccess to the device. These authentication methods are neither

onsidered to be very secure [6–8] , nor very convenient for the

sers [9] . Previous studies [10,11] reported that 70% users do not

se any PIN/passwords to protect mobile phones because they

onsider entering their secrets more annoying compared to other

elephony related problems such as lack of coverage or low voice

uality [10] . 

Graphical passwords use secret drawings [12] , instead of secret

trings of characters. User chosen graphical passwords have less

ntropy than traditional ones since users tend to choose symmetric

gures [9] , thus reducing in practice the domain space and making

rute force attack feasible. 

https://doi.org/10.1016/j.jisa.2018.11.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.11.008&domain=pdf
mailto:attaullah.buriro@unitn.it
mailto:bruno.crispo@unitn.it
mailto:conti@math.unipd.it
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://doi.org/10.1016/j.jisa.2018.11.008
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Fig. 1. Different states of the our authentication mechanism. 
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2 http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/ 

AttributeSelectedClassifier.html . 
3 https://www.programcreek.com/java- api- examples/index.php?example _ code _ 
Most of the limitations related to the use of passwords can be

addressed through the use of other authentication mechanisms.

Biometrics [13] refers to the establishment of the identity based

on physical or behavioral modalities (sometimes called as traits )

of an individual. Physical modalities include face, fingerprint, iris,

hand geometry, etc., while behavioral biometric modalities include

voice, signature, keystroke, gait, etc. Biometric authentication has

multiple advantages over traditional authentication methods. They

are considered more secure, as biometrics traits are hard to copy,

and more reliable as they are hard to share/distribute and require

user’s presence at the time of authentication. However, currently

deployed biometric systems have to deal with many practical prob-

lems [4] , such as noise in sensed data (e.g., dirt on fingerprint

sensor, and scars on finger may affect performance of fingerprint

recognition), variation in luminous conditions (e.g., poor illumina-

tion of a userâs face in face recognition). Furthermore, accuracy of

these biometric systems is affected by large intra-class variations,

distinctiveness and non-universality (e.g., fingerprint biometric sys-

tem may not extract the required features from individuals fingers,

due to low quality of the ridges). Physical biometrics require ex-

pensive hardware to be reliable and robust against forgery attacks,

thus increasing the cost of the device. Lastly, many of these bio-

metric systems require active user cooperation which results in an-

noying the users. 

We do not advocate the supremacy of behavioral biometrics

over the physical biometrics, however, because of their inherent

requirements for user cooperation, physical biometrics possibly re-

sult in annoying the user, whereas, since the authentication is per-

formed unobtrusively using behavioral biometrics, they have be-

come the preferred choice for user authentication for smartphones.

To address these issues related with smartphone usability

and security, in this paper, we propose a bi-modal behavioral

biometric-based authentication method based on the way a user

slides the lock button and brings her phone towards her ear. Nearly

all modern smartphones implement this swiping mechanism, i.e.,

they require sliding of the lock button on the screen to unlock the

phone. 

Earlier work presented in [15] used only the phone pickup

movement to authenticate users. This paper enhances the initial

scheme in [15] introducing a feature extraction process and eval-

uating the methods with multiple classifiers. Furthermore, this

mechanism extends the earlier approach to a bi-modal biometric

system using an additional modality - the sliding modality. Further,

we re-run all the experiments from scratch with an higher num-

ber of users (85, compared to just 10) and higher number of sam-

ples (120) collected in the three postures, i.e., sitting, standing , and

walking . Furthermore, this paper also contains the security and us-

ability evaluation of our proposed scheme. 

Our method, AnswerAuth , uses data from multiple three-

dimensional physical sensors, namely, accelerometer, magnetome-

p

er, gravity and gyroscope sensors in conjunction with touchscreen

ata. Fig. 1 a illustrates the smartphone in the default state. In or-

er to be engaged in a call, usually a user takes her smartphone in

er hand, drags the lock button to unlock (see Fig. 1 b), and brings

t towards her ear (see Fig. 1 c). AnswerAuth leverages the combi-

ation of sliding behavior (action of dragging the lock button) and

he pickup behavior (action of lifting the phone to the ear) to pro-

le the users and use for authentication purposes. 

To model the pickup behavior, we exploited all the available

hysical sensors and extracted multiple statistical time domain fea-

ures, i.e., Mean, Variance, Skewness and Kurtosis (see Table 3 ). We

elected these features because they can be computed very cheaply

s compared to the frequency domain features, which require com-

utationally expensive Fourier transformations [17] . Similarly, for

he sliding behavior, we extracted various touch-based features re-

ated with the velocity, acceleration and pressure of finger cap-

ured during the slide-to-unlock action (see Table 4 ). In this article,

e consider the combination of lock-button-drag action and phone-

ickup action as a pattern . We observed that the combination of

hese features is sufficiently unique from person to person (see

ig. 2 ) and can further be used towards designing a usable authen-

ication method. Data from each individual sensor is preprocessed

nd listed features (see Tables 3 and 4 ) are extracted for fusion. In

his way, all these features from all the sensors are concatenated

o form a final feature vector for further analysis. 

Since authentication is a binary-class classification problem,

here data from one class is treated as a true class and other

ne as a potential attacker, we have used six state-of-the-art bi-

ary classifiers - we refer them as base classifiers for our experi-

ents, using stratified cross validation method because of the lim-

ted number of observations (40 per user per user posture) and

o provide maximum patterns for testing the classifiers. We pro-

ose four different solutions: The first leverages individual base

lassifiers, the second fuses these base classifiers using Vote clas-

ifier, the third leverages AttributeSelectedClassifier 2 (ASC) using

he same set of base classifiers with CFSEval evaluator and bi-

irectional best-first search method, and the fourth combines these

SC’s using Vote classifier. It is worth mentioning that we have

sed product of probability combination rule for this vote classifier

ecause average probability combination rule 3 yielded worse results.

Interestingly, without any feature selection approach, we

chieved acceptable results (the lowest accuracy from J48 classifier,

.e., 85.89% and highest accuracy from RF classifier 98.98%). In or-

er to further improve the TAR, we classified our dataset using ASC

sing the same set of base classifiers. ASC is a Weka “Meta-class
ath=weka-weka.classifiers.meta-Vote.java . 

http://weka.sourceforge.net/doc.dev/weka/classifiers/meta/AttributeSelectedClassifier.html
https://www.programcreek.com/java-api-examples/index.php?example_code_path=weka-weka.classifiers.meta-Vote.java
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Fig. 2. Comparison of features for two users for different sensors. 
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lassifier” capable of simultaneous feature evaluation and classifi-

ation. We used same set of base classifiers with ASC using CFSE-

al along-with a bi-directional BestFirst search method. By doing

o, we achieved a significantly improved TAR, i.e., from 85.89% to

6.94% for J48, and from 98.98% to 99.35% for RF classifier. Fusion

f base classifiers gave comparatively better results than all other

lassifiers, except RF classifier, however, the fusion of ASC’s classi-

ers did not yielded better accuracy, i.e., 88.4% to 92.64%. Extensive

xperimentation proved RF as the most accurate classifier in both

ettings, i.e., with full features (base) and with reduced features

ASC). Thus, our developed proof-of-the-concept prototype lever-

ges RF as the classifier. 

By embedding user authentication in the normal user action

nd gesture required to unlock the phone, we claim that the

ethod is user-friendly and has the potential to gain wide user

cceptability. Usability study confirms AnswerAuth as a user-

riendly authentication scheme ( AnswerAuth achieves a SUS score

f 75.11). Additionally, our method can be implemented on almost

ny off-the-shelf smartphone, thus, it does not require any addi-

ional hardware. 

The main contributions of the paper are listed below: 
• The proposal of AnswerAuth - a user-friendly behavioral

biometric-based user authentication mechanism, which is 

based on two very common human actions, i.e., how the user

slide-to-unlock her smartphone ( sliding ) and and how she moves

her smartphone towards her ear ( phone-pickup ). 

• The evaluation of AnswerAuth , on the collected dataset of 85

users. 

• Implementation of the AnswerAuth for Android phone. 

• The usability evaluation of AnswerAuth based on the collected

reviews from 85 users. 

• The collection and sharing of data from multiple sensors in

three postures, i.e., sitting, standing , and walking from 85 users. 

Paper organization . The rest of the paper is organized as the fol-

owing: In Section 2 , we present the main authentication meth-

ds (based on behavioral biometrics) that have been proposed over

he years, and we discuss why there is a need for an improve-

ent. Section 3 reports our intuition and its initial assessment.

ection 4 reports the detailed methodology of our conducted ex-

eriments and results are discussed in Section 5 . Section 6 explains

ur Proof-of-the-Concept application. We evaluate AnswerAuth in
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terms of Security (in Section 7 ) and Usability (in Section 8 ). Finally,

Section 9 concludes the paper with the summary of the work and

the possible future work. 

2. Related work 

Researchers have been working with different user behaviors

such as walking patterns (i.e., gait [16,18,28] ), way of input (i.e.,

keystroke dynamics [19,23,33] ), the way of holding [5,49] and

interacting with the device [46,47,55–57] with the device and

the way of bringing their phones towards their ear [15] . Inter-

ested readers are referred to this paper [20,44] for reading de-

tailed discussion on state-of-the-art schemes available for smart-

phone user authentication. Additionally, the works [16,21,22] can

be a good resource for understanding continuous authentication

schemes. However, this Section is limited mainly to behavioral

biometric-based one-shot authentication solutions proposed over

the years for user authentication on smartphones. 

2.1. Sensor based authentication 

Smartphone sensors such as accelerometer, gyroscope, mag-

netometer, etc., have become main data sources for smartphone

user authentication. Li et al. [29] tested specific combination

of three physical sensors, i.e., accelerometer, orientation sensor

and compass, in addition to the touch gestures to provide con-

tinuous user authentication. Similarly, accelerometer, touchscreen

data, voice and location data were used for user authentication

in [30] . Both these solutions achieved an accuracy of about 96%.

SenSec [32] continuously collects data from accelerometer, gyro-

scope and magnetometer and constructs a gesture model to pro-

file the way a user uses her phone. SenSec achieved 75% TAR and

71.3% TRR. The approach, presented in [18] , uses acceleration sig-

nals produced when the user walks. Authors claim that their work

is significantly different from classical gait recognition schemes be-

cause it does not involve any computer vision methods. By apply-

ing four matching algorithms, i.e., signal correlation method, Fast

Fourier Transform, histogram and higher order moments, authors

achieved an Equal Error Rate (EER) of 7%, 10%, 18% and 19%, respec-

tively. The study [49] exploits the user’s hand micro-movements

(while she unlocks her smartphone using any implemented au-

thentication scheme) to authenticate the user. More specifically,

the proposed system collects 3-dimensional data from motion sen-

sors, in the background, for a short period of time, and trains the

classifier on the collected movement patterns. The data collection

starts as soon as the user unlocks her smartphone. Authors re-

ported a TAR of 96% at an EER of 4%, using MLP as the classifier, on

their collected dataset of 31 qualified users. Primo et al. [51] pro-

posed a context-aware accelerometer-based two-stage framework

for user authentication. The investigated the impact of location

(phone position) variations on the classification accuracy. Techni-

cally, their proposed system first infers the location of the phone

(hand or pocket) and uses this information during the user au-

thentication process. Using Logistic Regression (LR) as the classi-

fier, they achieved as high as 82.30% accuracy while training and

testing in the in-hand position. 

2.2. Touch based authentication 

Touch behavior has been extensively tested and used for smart-

phone user authentication. Recent work [25,26,34] confirms touch

behavior as a potential modality for smartphone user authentica-

tion. A number of features related with time, velocity, touch-area

and touch-pressure can be used. De Luca et al. [24] implemented a

user password application which requires users to draw a sketch

as a password. This application uses pressure, coordinates, size,
peed and time to identify a valid user. The reported accuracy of

he system, using Dynamic Time Warping (DTW) approach, is 77%

ith FRR of 19% and FAR of 21%. Angulo and Wästlund [35] pro-

osed the use of a customized lock pattern and analyzed the touch

ata associated with that lock pattern. They achieved an EER of

0.39% using RF classifier. Sae-Bae et al. [36] studied specific five-

nger touch gestures and reported an authentication accuracy of

0% on Apple iPad. Shahzad et al. [37] studied customized slide-

ased gestures for smartphone user authentication. They reported

n EER of 0.5%. Authentication mechanism implemented by Sun

t al. [38] requires user’s arbitrary finger patterns on a specific

egion of the screen for unlocking the smartphone. Users were

uthenticated based on the geometric features extracted for the

urves, drawn by finger movements. In [27] , authors studied vul-

erability of these touch gestures in terms of zero-effort (where

ttacker does not needs to make effort to spoof a gesture). More

pecifically, they demonstrated how a robotic device can pose a

ajor threat to touch-based user authentication systems. Using,

upport vector machine and KNN as classifiers, they obtained an

ER of 0.035%, and 0.13%, respectively, before robotic attacks and

hese EERs increased dramatically (upto 900%) after attacks. Frank

t al. [57] proposed a touch-based continuous user authentication

cheme for smartphones. More specifically, authors propose a clas-

ification framework that learns the touch behavior (the way a user

nteracts with the smartphone touchscreen) of a user during the

nrolment phase and authenticates the users by monitoring the

imilarity of these interactions in testing phase. Applying KNN and

VM as classifiers, they achieve 0% to 4% median EER across all the

cenarios; In inter-session, computed EER was 2% − 3% , and below

 in inter-week session. SVM classifier performed well compare to

NN. Another touch-based user authentication scheme [47] also

xploits the touch gesture for user authentication. Their scheme

elects 21 features from touch-based logs to train the chosen neu-

al network classifier. Authors reported 7.8% and 3% error rate be-

ore and after optimizing the chosen classifier on their collected

ataset of 20 users. 

.3. Sensor-enhanced touch-typing based authentication 

Giuffrida et al. [31] proposed a sensor-assisted fix-text scheme

or user authentication on Android smartphones. Authors reported

.97% EER on passwords and 0.08% on sensory data over a dataset

f 20 users. Later, Buriro et al. [33] used sensory readings to pro-

le the users’ hold behavior and fused it with the free-text pass-

ord, the user enters on the touchscreen. They reported 1% EER on

 dataset of 12 users. Similar research [55] leverages the way the

ser writes or signs on the touchscreen combined with the hold

ehavior, for user authentication on smartphones. They achieved

95% TAR at 3.1% FAR on the dataset of 30 users. Similarly an-

ther study [62] leverages the way the user dials any combination

f 10-digit “free-text ” from the smartphone dialpad combined with

he sensory readings generated while dialing, for user authentica-

ion on smartphones. Authors reported 85.77% TAR on their col-

ected dataset of 97 users. Another recent study [50] combines

hree modalities, namely, 8-digit free-text touchstroke, phone-

ovements while a user enters her PIN and the face, for user au-

hentication on smartphones. They achieved as high as 99% TAR

nd an EER of 1% on the dataset of 95 users. Kumar et al. [45] pro-

osed a tri-modal user authentication scheme based on swiping,

yping and phone movement patterns. Authors evaluated the per-

ormance of each modality, individually, and also their fusion over

heir collected dataset of 28 users. Feature level fusion of the

wo modalities; swiping and the corresponding phone-movements

odalities achieved an authentication accuracy as high as 93.33%. 

AnswerAuth is different from the existing state-of-the-art in

he following ways: Firstly, all the touch-based solution either
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everage the timing-based features generated from keystroke /

ouchstroke or on the touch-points generated as a result of users’

riting/signing or dialing on the touchscreen. However, our so-

ution AnswerAuth leverages the slide-to-unlock action generated

eatures, i.e., initial and final XY position, the velocity and the ac-

eleration of the slide-to-unlock drag and the pressure and size of

he finger. Similarly, in most of the sensor-based solutions, the data

as collected continuously or in a context, for example, when the

ser walks [18] , or when the user tries to log in to the smart-

hone [50] . AnswerAuth uses sensors to profile the specific move-

ent - arm swing the user makes to lift her phone to her ear. Sec-

ndly, most of the proposed solutions utilized the collected data

n the lab and under supervised conditions in one-session. This

ata collection scheme is cumbersome on one-hand and some-

ow biased because human behavior tends to vary with respect

o time [58] , on the other. In contrast, AnswerAuth is evaluated

n a dataset of 85 users collected in the wild in three-days long

xperiment. 

. Our solution: ANSWERAUTH 

In this section, we illustrate the main approach adopted by our

olution. 

.1. Intuition assessment 

AnswerAuth is based on the intuition that every user has a

nique way of dragging the lock button and bringing the phone

owards her ear. This phone motion is sufficiently unique and dis-

riminating across different users. Physical sensors have the abil-

ty to measure these differences in movements. Therefore, we are

onsidering extracted features from all the sensors and the touch

elated features from the user slide-to-unlock action. 

Fig. 2 shows the scatter plots of some of the features, extracted

rom the accelerometer, gyroscope and the touchscreen for two

sers. It is evident that both the users have well separated fea-

ures. We observed significant difference in the features of all the

sers, but due to the space limitations, we illustrate the scatter

lots for two users, only. 

We conducted several experiments to confirm our intuition.

pecifically, we were looking for answers to two basic research

uestions, i.e., are the patterns (combination of slide-to-unlock and

hone-pickup-movement actions) of the same user similar to each

ther (intra-class variations)? And the patterns of different users

re different enough to be distinguished (inter-class variations)?

xperiments confirmed our initial intuition. We observed a strong

orrelation between the patterns of the same user, and sufficient

ifferences among the patterns of different users. 

.2. Our solution 

AnswerAuth leverages touch-based and phone-pickup move-

ent features generated as a result of slide-to-unlock and phone-

ickup actions to identify a legitimate user. We observed sufficient

ariations in these gestures across multiple users, hence, these ges-

ures could potentially be used for authentication purposes. We

olve the problem of user authentication with four different mod-

ls. In the first model, we select 6 significantly different classifiers

nd use them to authenticate a real user. It is worth mentioning

hat all of these classifiers were applied in their default settings.

ig. 3 a illustrates this scenario, i.e., data from each sensors is pre-

rocessed and the features are extracted. These features are fused

ogether to make a feature vector of 128 features and stored as

he template in the main database. Our selected features for this

xperiment are listed in Tables 3 and 4 . For user authentication,

he query pattern is matched with the pre-stored patterns and the
ser is authenticated based on the decision of these classifiers. In

he second model, illustrated in Fig. 3 b, the outcomes of all the

lassifiers are combined using vote classifier to authenticate/reject

he user. In the third model, illustrated in Fig. 3 c, the set of classi-

ers used in the first model was used after applying the feature se-

ection process using ASC Meta-Class classifier. In the final model,

llustrated in Fig. 3 d, the outcomes of all the ASC classifiers are

ombined using vote classifier. 

.3. Considered sensors 

Current smartphones are fully equipped with a wide range

f sensors, i.e., motion, position and environmental sensors. In

ur scheme, we used all the 3-dimensional physical sensors, i.e.,

ccelerometer, gravity, gyroscope, magnetometer along-with the 

ouchscreen. Additionally, we applied High Pass Filter (HPF) and

ow Pass Filter (LPF) to obtain HPF and LPF acceleration readings.

y applying HPF, we obtained exact acceleration applied on the de-

ice by the user, and by LPF, we obtained the apparent transient

orces acting on the device due to the users’ activity. Thus, we used

 variants of accelerometer sensors, i.e., Raw, LPF and HPF [5] . We

urther explain the working of our selected sensors as follow: 

.3.1. Accelerometer sensor 

This sensor measures the acceleration of phone in three dimen-

ions, namely, X , Y and Z directions. In this way, it provides the

ovement of the smartphone in a 3-dimensional space. Further-

ore, acceleration of this phone movement varies from person to

erson and it can be computed through accelerometer sensor. 

.3.2. Gravity sensor 

This sensor measures the applied force of gravity ( m / s 2 ) on the

martphone in three dimensions. In simple words, it provides mag-

itude and direction of the force of gravity applied on the phone.

he coordinate system and the unit of measurement of gravity sen-

or are the same as of the accelerometer sensor. 

.3.3. Gyroscope sensor 

This sensor measures the smartphone rate of rotation ( rad/s ) in

hree dimensions. The sensor’s coordinate system is the same as

he one used for the acceleration sensor. The counter-clock-wise

otation is positive, i.e., an observer if looking from some posi-

ive location on the three axes at a device positioned on the origin

orld, is considered positive. 

.3.4. Magnetometer sensor 

The magnetometer sensor measures the strength and/or direc-

ion of the magnetic field ( μT ) in three dimensions. It differs from

he compass as it does not provide point north. The magnetometer

easures the Earth’s magnetic field if the device is placed in an

nvironment absolutely free of magnetic interference. 

All the above sensors generate continuous streams in X , Y and Z
irections. We have added a fourth dimension to all of these sen-

ors and name it magnitude . Magnitude has been tested in the con-

ext of smartphone user authentication [33,48,54] , and has proved

o be very effective in classification accuracy. The magnitude is

athematically represented as: 

 a = 

√ 

(a 2 x + a 2 y + a 2 z ) , (1) 

here S M 

is the resultant dimension and a x , a y and a z are the ac-

elerations along the X, Y and Z directions. 
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Fig. 3. Models of our authentication mechanism. 
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Table 1 

Classifiers summary. 

Types of classifier Weka version Notation 

BayesNET BayesNET BN 

NaiveBayes NaiveBayes NB 

Support Vector Machine SMO SVM 

K Nearest Neighbor IB1 (KNN with K = 1) IB1 

Decision Tree J48 J48 

Decision Tree Random Forest RF 

3
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.3.5. Touchscreen 

Touchscreens are the input devices designed for providing users

n interface to interact with the device. Some touchscreens are

ingle touch and some of them are multi-touch. Finger acts as

n input tool to interact with them. We chose Android device

or this implementation because of its market supremacy [1] and

ts tremendous popularity in smartphone users. Android supports

 variety of touchscreens and touchpad. 4 We can determine the

tarting and ending point of a pointer, the direction of the finger

ovement (in x and y coordinates), and its velocity as it moves

cross the touchscreen, by using android MotionEvent [63] class.

n object of this class is used to report the performed event.

henever some action is performed on the screen, a touch-event

s reported with a specific action code along-with touched area

 xy coordinates), pressure and size and orientation of the touched

rea, etc. The action code represents the state of the touch action,

.g., Action_Down represents the start of a touch action while

ction_Up represents the end of a touch action. As the name

uggests, Android VelocityTracker class tracks down the mo-

ion of the pointer on the touchscreen. User usually drags or slides

he lock button for unlocking their smartphones. The sliding or

ragging of the lock button is done in horizontal direction. We use

etXVelocity() method to compute the magnitude of finger

ovement on touchscreen of the smartphone, and later this mea-

ured velocity magnitude is taken into account. By definition, we

an say that sliding velocity is the ratio of the total distance cov-

red by this dragging and the time taken to do so. 

.4. Considered classifiers 

.4.1. Base classifiers 

In order to check the quality of extracted features and to sug-

est the best classifying algorithm for user authentication in smart-

hones, we have tested our dataset with six conceptually differ-

nt classification techniques (see Table 1 ). Interested readers are

eferred to this book [65] for better understanding of their work-

ng. Some of these classifiers are reported to be among the top

0 machine learning algorithms [39–41] , as such they have been

sed extensively for smartphone user authentication. Random For-

st classifier also proved itself as the best classifier due to its sim-

licity, robustness to overfitting and quicker learning [41] , hence it

as been widely tested for smartphone user authentication in re-

ent studies [33,42,43,49] . All these classifiers have been applied

or testing our dataset, using an open source, portable, GUI-based

eka workbench. We have used all the classifiers in their default

ettings, because we are more interested to investigate the role of

eature space and efficacy of classifiers without even applying any

ptimization technique. It is reasonable to assume that our initial

esults can be further improved by fine tuning the classifiers’ pa-

ameters. 

.4.2. Combining base and ASC’s - vote classifier 

Multiple techniques of combining classifiers have been widely

ested and evaluated in pattern recognition over the years. Such
4 http://source.android.com/devices/tech/input/touch-devices.html . 
ombination methods may lead to a significant reduction in the

rror rates. Additional advantage of combining classifiers is the ro-

ustness of the system against the possible problems that each

ndividual classifiers may have observed on the dataset. We have

sed Weka Vote classifier to fuse the outcomes of our chosen clas-

ifiers, in two different settings, i.e., we have combined our base

lassifiers using average probability rule and ASC’s using product of

robability rule . 

.5. Success metric 

In this work, we use the following measures to compute our

rror rates. 

• True Acceptance Rate (TAR) : The fraction describing the ratio of

successful login attempts to all the attempts made by the legit-

imate user. 

• False Acceptance Rate (FAR) : The fraction describing the ratio of

successful login attempts to all the attempts by an adversary. 

• False Rejection Rate (FRR) : The fraction describing the ratio of

unsuccessful login attempts to all the attempts by the legiti-

mate user. 

• True Rejection Rate (TRR) : The fraction describing the ratio of

unsuccessful login attempts to all the attempts by an adversary.

• Accuracy : It is the ratio of correct decision to all the decisions.

Accuracy = 

T AR + T RR 

T AR + F AR + F RR + T RR 

. (2) 

• Receiver Operating Characteristics (ROC) : Recognition results can

be elaborated through ROC curve; plotting TAR against FAR.

Usually the values of FAR are plotted on the horizontal axis

with TAR on vertical axis. 

. Experimental analysis 

This section explains how we evaluated AnswerAuth . 

.1. Data collection 

We developed a customized Android application, namely, Auth-

ollector , which can be installed on any Android smartphone start-

ng from Android version 4.0.4. As SENSOR_DELAY_GAME (50 sam-

les/sec) was found more accurate for authentication in recent

tudies [33,55] , we decided to use this delay for data collection

urposes. 

We outsourced the experiment and shared the AuthCollector im-

lementation with a crowd-sourcing platform - Ubertersters 5 to

est the application. Ubertesters through their “Hire Testers” ser-

ice allows access to their crowd of professional testers globally to

est the application in real life conditions and on real devices. We

aid € 25 per hour, as compensation, for each participant. Ubert-

rsters recruited 100 users, in total, but some of them were dis-

ualified (15) because of (i) the non-availability of the required

ensor(s), (ii) their patterns have more Not A Number (NaNs) val-

es and (iii) the users had less than 30 observations in an ac-

ivity, etc. We setup a web page with the complete explanation

f the experiment and its potential outcome and details of Au-

hCollector application, i.e., the user consent, the questionnaire to

ollect demographics data, and the procedure to install/uninstall

he application. Participants were requested to answer to the de-

ographic questions and install the application, provide slide-to-

nlock and phone-pickup-movement samples in different activities

3 activities, i.e., sitting, standing,and walking ) and keep the appli-

ation running for at least 3 days. AuthCollector required 3 sessions
5 https://ubertesters.com/ . 

http://source.android.com/devices/tech/input/touch-devices.html
https://ubertesters.com/
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Table 2 

User demographics (M = Male, F = Female, U = Undisclosed, R = Right, 

L = Left, B = Both). 

Information Description 

No. of Users 85 

Sample Size 11,200 

Devices Android Smartphones with 4.4.x version 

No. of Sessions 3 

Unsupervised Conditions Yes 

Gender 55(m), 30(f) 

Handedness 70(R), 8(L) & - 7(B) 

Age Groups 80 ( 20 − 35 ), 5 ( 36 − 60 ) 

Table 3 

List of selected features from sensory readings. 

No. Lift Features 

1–4 MeanX MeanY MeanZ MeanM 

5–8 STDX STDY STDZ STDM 

9–12 SkewX SkewY SkewZ SkewM 

13–16 KurtX KurtY KurtZ KurtM 

Table 4 

List of selected features from sensory readings. 

No. Touch Features 

1–5 Event_Duration InitialX InitialY EndX EndY 

6–10 VX_min VX_max VY_min VY_max VX_avg 

11–15 VY_avg VX_std VY_std VX_var VY_var 

16–20 AX_min AX_max AX_avg AX_std AX_var 

21–25 AY_min AY_max AY_avg AY_std AY_var 

26–30 P_min P_max P_avg P_std P_var 
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6 https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm . 
7 https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm . 
in 3 days, from the users to complete the experiment. It required

30 min users’ interaction on the first day and 15 min on each of

the following two days. In this way, we collected 20 samples from

each user in each activity on the first day and 10 samples in each

activity on the two subsequent days. In this way, each participant

had to test the application for 1 hour. Since the experiment had

to be performed in the wild and within an hour, we had to fix

the number of behavioral samples to be obtained. Behavioral bio-

metric matchers require fair number of training samples to pro-

vide higher accuracy, however, asking for two many samples could

have annoyed the users and also they might not have completed

the experiment within due course of time. As such, we decided

to collect 40 behavioral patterns per activity per user. In total, we

collected 120 samples from each user (in total 10,200), in our 3-

days long experiment. We embedded the demographic question-

naire (see Appendix A ) with the application and in order to par-

ticipate in the experiment, the participants had to answer those

demographic related questions and install the application. Table 2

summaries the collected demographic information. 

4.2. Feature extraction 

The most critical part of designing any authentication mecha-

nism is the selection of appropriate features - that provide most

relevant information to model user’s behavior, but not at the com-

putational cost. Statistical time domain features have shown to be

very productive for modeling the users’ behaviors in previous stud-

ies [33,55] . Additionally, these chosen time domain features are

computationally cheaper as compared to their frequency domain

counterparts (due to the expensive Fourier transformation). 

We collected 4 data streams from every 3-dimensional sensor.

We extracted 4 statistical features, namely, Mean, Standard Devia-

tion (STD), Skewness, and Kurtosis, from each of the data stream.

We define below our extracted features: 

• Mean: Average value of the sensor dimension. 

• Standard Deviation: Standard Deviation of the sensor dimension.
• Skewness: Skewness is a measure of symmetry, or more pre-

cisely, the lack of symmetry. A distribution, or data set, is sym-

metric if it looks the same to the left and right of the center

point 6 . 

• Kurtosis: Kurtosis is a measure of whether the data are heavy-

tailed or light-tailed relative to a normal distribution. That is,

data sets with high kurtosis tend to have heavy tails, or outliers.

Data sets with low kurtosis tend to have light tails, or lack of

outliers. 7 

We extracted 16 features from each sensor to form a feature

ector (see Table 3 ). AnswerAuth leverages 6 sensory readings

nd 16 features per sensor makes 96 feature long vector. We also

dded time offset as a feature to this feature vector and formed

 final feature vector of 97 features, to model the phone-pickup-

ovement behavior. Similarly, we extracted 31 touch-based slide-

o-unlock features to form a final feature vector for this behavior

see Table 4 ). So, the final feature vector is the horizontal concate-

ation of the two behaviors and is 128 features long. 

.3. Feature concatenation 

The fusion of data as early as possible may increase the recog-

ition accuracy of the system [60] . However, the fusion of data at

ensor level may not yield better results (as compared to the fu-

ion at other levels) because of the presence of noise during data

cquisition. As such, the fusion at feature level is expected to pro-

ide better results, because the feature representation communi-

ates much more relevant information. The extracted feature set

rom the data through multiple sources can be combined together

o form a new feature set. We have fused the extracted features

rom our data sources (the accelerometer, the gyroscope sensor,

tc., and the touchscreen) at feature level in order to provide max-

mum relevant information to the authentication system. 

.4. Feature subset selection 

Feature subset selection is the method of selecting a subset of

elevant features to be used in the model construction. Basic appli-

ations of these techniques are in domains where there are many

eatures and comparatively less observations. These methods are

seful because they point out the important features that could

ossibly lead towards improvement in classification accuracy. 

A feature subset selection method also involves a search tech-

ique for proposing new feature subset, and the evaluation method

hich provides scores of different subsets. The subset with highest

core is likely to be picked and further used for classification. The

etails of feature selection techniques and their performance com-

arison is discussed in [59] . 

In order to further improve the performance of our base classi-

ers and ensemble Vote classifiers, we later evaluated our dataset

ith correlation-based feature selection ( CFS ) feature selection

cheme (see Fig. 3 ). We have used a meta customized Attribute Se-

ected Classifier (ASC) to perform in parallel both features selection

nd automatic classification. 

.5. Analysis 

We have used Weka experimenter workbench for the classifi-

ation of our dataset. Every class has to be compared with ev-

ry other class present in the dataset. Due to the limited num-

er of observations (40 per user), we have performed a 10-fold

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
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Fig. 4. Accuracy of all the base ( Fig. 4 a) and ASC ( Fig. 4 b) classifiers, in all the activities, averaged over 85 users. 

c  

fi  

t  

i  

c  

p  

r  

(  

u  

u  

u

5

 

i  

a  

b  

i  

fi  

a

5

 

T  

e  

t  

R  

T  

i  

f  

a  

a  

fi  

c  

f

5

 

s  

h  

t  

t  

T  

O

 

p  

T  

l  

9

5

b

 

f  

“  

a  

t  

i

 

d  

v  

t  

T  

a  

w  

t  

t  

a  

T  

c  

s  

t

 

e  

a  

o  

a  

h  

p  

c

ross-validation with 10 runs for training and testing the classi-

ers. Cross-validation looks justified as each available sample is

ested. Alternately, the train/test method could test only the test-

ng samples. Since we modeled this problem as the binary class

lassification problem, the training was performed on some sam-

les of an owner (+ve) and impostor (-ve) and tested with all the

emaining owner samples and impostor samples from all the users

one by one). More technically, one user was taken as the genuine

ser and her samples were compared with all the sample of all the

sers. Reported values are the average results obtained for all the

sers. 

. Results 

Our classifiers have solved the problem of verifying a user, that

s 1:1 matching between a query sample of an unknown person

nd the person’s pre-stored biometric template. The results for the

ase and ASC’s and vote in terms of accuracy and TAR can be seen

n Fig. 4 and Fig. 5 , respectively. The performance of all the classi-

ers clearly indicate that all the subjects are being recognized with

 high probability confirmed by their TAR. 

.1. Authentication using base classifiers 

We have tested our dataset with our chosen base classifiers (see

able 1 ), as per our proposed model (see Fig. 3 a). Surprisingly, ev-

ry base classifier performed well and provided acceptable authen-

ication results possibly because of the productive feature space.

F classifiers is the best with providing 98.87%, 98.98%, and 96.8%

AR in sitting, standing , and walking activities, respectively. These

nitial results confirm that the features we selected were meaning-

ul and there is a room for further improvement in accuracy. Initial

uthentication results of these base classifiers in terms of accuracy

nd TAR are illustrated in Figs. 4 and 5 , respectively. From both the

gures, it is evident that RF classifier outperformed all the other

hosen classifiers on both full (using base classifiers) and reduced

eatures (ASC settings). 

.2. Authentication: vote classifier combining base classifiers 

We have used the average probability combination rule for clas-

ifier fusion. Each of the base classifier used under vote classifier
ad to predict the average probability for each class label for every

est sample. This rule returns the mean of the probability distribu-

ion for each of the base classifiers learned within vote classifier.

he class with highest probability is chosen as the decided class.

ur model for classifier fusion can be seen in Fig. 3 b. 

The results of vote classifier (fusion of base classifier) are de-

icted in Figs. 4 and 5 . We achieved 98.47%, 98.61%, and 95.25%,

AR in sitting, standing , and walking activities, respectively. Simi-

arly the achieved accuracy (using Eq. 4 ) in these states is 98.51%,

8.56%, and 96.25%, respectively. 

.3. Authentication: AttributeSelectedClassifier with cfsEval and 

i-directional search method 

Feature selection algorithms are meant to automatically search

or the best subset of features in a provided dataset. The notion of

best” means the subset that may provide the highest classification

ccuracy. The main idea behind the feature selection is to identify

he best or good enough feature combination that may lead to the

mprovement in classification performance. 

Machine learning experts, Weka designers [64] in particular,

o not recommend to apply attribute selection (especially super-

ised attribute selection) on all datasets and then run an evalua-

ion (such as cross-validation) on the dimensionally reduced data.

his approach will yield overly optimistic error rates because the

ttribute selection process has seen data from the test folds as

ell. However, the same can be done through the ASC. The jus-

ified way of applying feature selection with a classifier is to wrap

he attribute selection process with the classifier itself. This is

chieved with Weka meta classifier, the AttributeSelectedClassifier.

his technique requires an attribute selection method and a base

lassifier for its operation. It is worth noting that both attribute

election method and the base classifiers have access only to the

raining data or folds during cross validation. 

Since we have used six base classifiers we have one ASC for

ach of these classifiers. For example our first ASC uses BayesNET

s its classifier and CFSEval as attribute selection method and so

n. Our attribute evaluation - CfsEval , is the same for all the ASC’s

long-with BestFirst (bi-directional) search method. The reason be-

ind the use of this configuration is to speed up the classification

rocess through ASC’s and its performance of this configuration is

omparable with other evaluation methods. 
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Fig. 5. Comparison of TAR for different Base and ASC classifiers averaged over 85 users in sitting ( Fig. 5 a), standing ( Fig. 5 b), and walking ( Fig. 5 c) activity. 
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Authentication is performed as shown in Fig. 3 c and the results

of these ASC’s in terms of overall accuracy and TAR are summa-

rized in Figs. 4 and 5 , respectively. We show these results in the

same figures with other classifiers in order to decrease the space

and increase the readability. It is evident that the performance of

each base classifier improved after their use as ASC classifier over

reduced features. RF ASC classifier also achieved slight improve-

ment, i.e., 99.03%, 99.35%, and 97.0% TAR as compared to Base RF

of 98.87%, 98.98%, and 96.8%, in sitting, standing , and walking activ-

ities, respectively. 

5.4. Authentication: vote classifier combining 

AttributeSelectedClassifier with cfsEval 

As already stated, the reason behind the fusion of outputs

of different classifiers was to increase the TAR as compared to

the best individual classifier (RF is best under attribute selection

method). We report a TAR of our vote classifier (with product of

probability combination rule ) of 88.4% as shown in Fig. 4 . 

Our classifiers have solved the problem of verifying a user i.e.,

1:1 matching between a query sample of an unknown person and

the person’s pre-stored biometric template. The results in terms of
heir accuracy, averaged TAR and individual user’s TAR are shown

n Figs. 4, 5 and B.8 , respectively. We have also fused the outputs

f the base classifiers using vote classifiers and their predicted au-

hentication results are also shown in Figs. 4, 5 and B.8 . 

In most of the biometric authentication systems, the perfor-

ance is measured through recognition rate. This recognition rate

an further be specified by two values namely FRR and FAR. There

s always a trade off between these two parameters and people

hose their acceptable values based on their applications. For an

xample 0.001% FAR is selected for fingerprint in military and bor-

er crossing applications (which often results in higher FRR). 

The classification results can be optimized by selecting certain

AR, which might be acceptable for the scenario, in which this

lassification is being performed. For an example, in any authen-

ication mechanism if there are more false rejections, the classi-

er performance can be optimized by fine tuning, by accepting a

igher FAR. The trade off between FAR and FRR for our experi-

ents is presented in Fig. 6 . It is evident that in both Base and

SC settings, RF classifier is found extremely accurate. 

We also show the results of the best performing classifier, i.e.,

F classifier in terms of ROC curves (see Fig. 6 ). We show an aver-

ge ROC of all the users obtained through Vertical Averaging(VA)
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Fig. 6. Comparison of ROC curves for RF classifier, i.e, in Base and ASC settings. 
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14] . In this scheme, the averages of the TAR rates are plotted

gainst the researcher-defined fixed FAR. RF classifier is found con-

istent in all the activities and in each setting, i.e., Base and ASC

ettings and outperformed all the classifiers because it can reduce

he variance and its ability to counter overfitting. Other classifiers

ere less accurate for several reasons, e.g., because the number

f training samples was less or they required Gaussian distributed

ata which might not be true for the dataset. 

All the classifiers performed well on our collected dataset, es-

ecially, RF classifier is the top ranked classifier on both base and

SC settings (see Figure. B.8 attached as Appendix B ). Since, this

lassifier worked well, we show the distribution of its decision for

very user. It is evident that its ASC version achieved higher ac-

uracy than its base counterparts. We observed that the RF classi-

er in either case may be the best choice, considering its accuracy,

he time required for decision making, and countering the effect of

verfitting. 8 . We will prototype our proof-of-the-concept app using

his classifier and with the selected ASC features. 

. Proof-of-the-concept application 

We developed the proof-of-the-concept final prototype of An-

werAuth based upon our findings. Final prototype of Answer-

uth leverages RF as the classifier. AnswerAuth can be installed

n any Android phone running Android 4.4.4 version or higher.

nswerAuth requires minimal configuration, i.e., the user may se-

ect both the modalities or any one of them. AnswerAuth also

llows the users to decide by themselves the number of training

amples, i.e., how many times users would perform swiping and

icking up gestures to train the RF classifier. In any case, the user

s assisted by AnswerAuth by displaying the suggestion. The same

rocess needs to be performed later for authentication purposes. 

. Security analysis 

We claim Answerauth as extremely secure because it depends

n multiple hidden features generated from person-specific swip-

ng and phone-pickup movements. The same claim is proved from

ur conducted experiments. We explain below the evaluation and

he obtained results: 

.1. Evaluation 

We recruited 6 more testers to assess the robustness of An-

werAuth and performed the additional experiments. We ex-

lained our testers the complete experiment, the modalities, and

he purpose of the experiment (to impersonate the user behav-

or). We installed our proof-of-the-concept prototype application
8 https://www.stat.berkeley.edu/ ∼breiman/RandomForests/cc _ home.htm . 

a  

s  

s

n HUWAEI GRA-L09 smartphone. For the random attacks, we re-

ied on our previously connected dataset, however, for the mimic

ttack, we took one tester as the legitimate user and trained the RF

lassifier on his 30 training samples, and the remaining testers act

s the would-be impostors for the time being. The training process

s performed in front of the would-be impostors with the intention

hat they would learn the swiping and phone-pickup gesture and ef-

ectively attempt to mimicking the trained behavior. The process is

epeated till the behavior of each tester is attempted to be mim-

cked. RF classifier checks for the similarity between the training

amples and each of the incoming adversarial attempt and shows,

s a toast, the binary outcome: authenticated or rejected and we

aved the outcome as FAR and TRR. 

.2. Random attacks 

AnswerAuth is not so easy to be successfully attacked by a

andom attacker, as it relies on very private person-specific be-

avior; velocity and acceleration related features from swiping and

otion-based features from phone-pickup actions. These move-

ents have shown be secure and extremely difficult [5] , if not

mpossible, hence it would be extremely difficult to spoof this be-

avior, especially by a random attacker. The same is actually evi-

ent from our conducted experiments. Our conducted experiments

nvolved a Zero-effort or random attack where we compared the

amples of each of the valid user with all the remaining random

ttackers. It is worth recalling that RF classifier performed well in

his scenario; as we obtained as high as ≥ 99% TAR, on reduced

eatures. 

.3. Mimic attacks 

In the mimic attack scenario, we picked a valid user for the

raining. Each valid user trained the smartphone by performing

wiping and phone-pickup actions 10 times in sitting, standing , and

alking positions each, respectively, in front of the attackers and

ater they had to spoof the legit user’s behavior. The would-be at-

ackers were later asked to spoof the legit user’s behavior and try

o break the login process in 30 attempts in any of their preferred

ctivity. In this way, each trained behavior was attempted to be

poofed in 150 attempts. It is worth mentioning that some of the

ould-be attackers also required more demonstration and practice

nd hence were given as much time for practice, as desired. In to-

al, we collected 180 valid user training samples and 900 spoof

ttempts in this scenario. Just one (1) out of 900 attempts went

uccessful and the behavior got spoofed. Obtained result prove An-

werAuth as a robust authentication mechanism. 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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Fig. 7. Break-up of the obtained SUS score. 
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8. Usability analysis 

We are of the opinion that AnswerAuth would be widely ac-

cepted because it leverages the two very common user behaviors

and every Android smartphone user is assumed to be familiar with

the swiping and pick up gestures. We applied the Software Usabil-

ity Scale 9 (SUS) scale to gather the participants’ reviews and assess

the usability of AnswerAuth . SUS is a 10-questions based ques-

tionnaire and is widely used to evaluate the usability of authenti-

cation scheme [52,53,55] . It is worth-mentioning that we replaced

the word “System” with “AnswerAuth ”. 

SUS requires the users to record their response on a given 5-

point scale ranging from “Strongly Disagree” to “Strongly Agree”.

The users’ impression is converted into a SUS score between 0

and 100. The obtained SUS score, x, is categorized as follows:

(i) Best Imaginable ( x ≥ 92), (ii) Excellent (92 < x ≥ 85), (iii) Good

(85 < x ≥ 72), (iv) OK (72 < x ≥ 52), (v) Poor (52 < x ≥ 38), and (vi)

Worst Imaginable (38 < x ≥ 25). 

We show the breakup of our obtained SUS score in Fig. 7 . More

than 64% testers considered AnswerAuth as either “Best Imagin-

able ( ≈ 17%)”, “Excellent ( ≈ 11%)” or “Good ( ≈ 37%)”. AnswerAuth

achieves an overall mean score of 75.11(standard average score is

68 [61] ). From the SUS grading key, the score ≥ 72 reveals high

probability of wide user acceptance. 

9. Conclusions & future work 

We have proposed a fully transparent bi-modal behavioral

biometric-based solution - AnswerAuth for smartphone user au-

thentication. Our approach can independently be used for user

authentication as well as in conjunction with existing authenti-

cation mechanisms, on smartphones. We implemented and tested

the system with a dataset comprising of 10,200 patterns (120 from

each sensor) from 85 users in three common user activities, i.e.,

sitting, standing and walking . We have classified these patterns of

different users by six conceptually different classifiers. Experiments
show that the classifiers we chose and the features we extracted 

9 https://www.usability.gov/how- to- and- tools/methods/system- usability- scale. 

html . 

t  

i  

S  

i

re good enough to accurately identify a valid user. We have ob-

ained an accuracy as high as 98.98% using RF as classifier (without

ny feature subset selection) and as high as 99.35% over reduced

eatures. 

In order to further improve the authentication results, we fused

he outputs of listed base and ASC’s through Vote classifier and

chieved an accuracy as high as 98.56% on full features in standing

ctivity using the average probability and 92.64%, using the product

f probability , combination rules, respectively. 

The authentication results for all the classifiers are acceptable,

hich indicates the effectiveness of our features set. However, we

tilized RF as the classifier in our final proof-of-the-concept Appli-

ation. 

We have developed a proof-of-the-concept Android app based

n our findings in this work. We evaluate our prototype in terms

f security (to explore the robustness against the potential attacks)

nd usability (to check its usefulness from the users’ perspective).

nitial obtained results indicate positive security and usability eval-

ation. 

As a future work, we are going to address the problem of fast

nd seamless detection of the users’ current activity [55] as some

apers show that the performance of the system varies in dif-

erent activities. In this way, we would be able to better deter-

ine the environmental context. Additionally, we are also going

o solve the AnswerAuth training problem by collecting transpar-

ntly these actions while the user swipes and brings the smart-

hone to her ear while getting engaged in a call. This way after

eaching the best number (e.g., 40) samples, AnswerAuth would

otify the user about the availability of the modality for onward

uthentication. Additionally, we will investigate the impact of com-

ining this mechanism with other biometric modalities like voice,

r gait, for example, on its security and usability. 
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ppendix A. demographic questionnaire 

• What is your gender? 

1. Male 

2. Female 

3. I don’t want to disclose 

• How old you are? 

1. ≤ than 20 years. 

2. > 20 years and ≤ 35 years. 
Fig. B.8. TAR comparison of base RF and asc RF classifier in sitting ( Fig. B.8 a),
3. > 35 years and ≤ 60 years. 

4. > than 60 years. 

5. I don’t want to disclose 

• Which hand(s) do you use for interacting with your smart-

phone? 

1. Right 

2. Left 

3. Both 

4. I don’t want to disclose 

ppendix B. TAR comparison for base and ASC RF classifier for 

ndividual users 
 standing ( Fig. B.8 b) and walking ( Fig. B.8 c) position for individual user. 
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Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jisa.2018.11.008 . 
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