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Abstract. In this paper the accuracies of the sine-wave amplitude estimators provided by three 
state-of-the-art Discrete Time Fourier Transform (DTFT)-based algorithms are compared each 
other when a small number of cycles is acquired and the input signal is affected by wide-band 
noise. These algorithms allow to reduce the detrimental contribution of the spectral image 
component by processing specific Discrete Fourier Transform (DFT) samples using frequency-
domain interpolation and the least-squares method. Two algorithms are based on two- and three-
point Interpolated DFT (IpDFT) procedure, respectively. The third algorithm applies the least-
squares approach to three DTFT samples in order to reduce also the contribution of wide-band 
noise. The robustness of the related amplitude estimators to sine-wave frequency uncertainty and 
wide-band noise is also investigated.    

1. Introduction 
Real-time and accurate knowledge of sine-wave parameters is required in many engineering 
applications, such as in control and monitoring systems. Frequency-domain procedures based on the 
Discrete Time Fourier Transform (DTFT) are often employed to this aim due to their very good 
performance. One widely used procedure is the so-called Interpolated Discrete Fourier Transform 
(IpDFT) algorithm [1-6]. That algorithm estimates the sine-wave inter-bin frequency location by 
interpolating the two highest DFT samples of the input signal weighted by a suitable window function 
in order to reduce spectral leakage. The sine-wave amplitude and phase are then estimated by using the 
highest DFT sample and the estimated inter-bin frequency location. Simple analytical expressions for 
the sine-wave parameter estimators have been derived when the Maximum Sidelobe Decay (MSD) 
cosine windows [7] are employed [1, 3, 4]. Moreover, these windows exhibit an optimum sidelobe decay 
rate, thus ensuring very good spectral leakage reduction [2, 3]. Unfortunately, when the number of 
acquired sine-wave cycles is small, as occurs when a fast algorithm response is required, the IpDFT 
estimators can be strongly affected by the contribution of the spectral image component [3, 4]. To 
overcome this problem different IpDFT frequency and amplitude estimators based on the MSD windows 
have been proposed [8-11]. A two point IpDFT procedure, called in the following 2pIpDFT-IC 
algorithm, provides accurate amplitude estimates by compensating the contribution of the image 
component on the considered DFT samples [9]. Another procedure, the 3pIpDFT-IR, considers finite 
                                                   
 



 
 
 
 
 
 

differences of the highest three DFT samples with the aim of reducing the effect of the spectral image 
component on the estimated sine-wave amplitude [10]. Another recently proposed method to reduce that 
detrimental contribution is the so called enhanced Frequency-domain Linear Least-Squares (e-FLLS) 
amplitude estimator [11]. That algorithm allows also to minimize the effect of wide-band noise on the 
obtained estimates, since it is based on rectangular windowing and the least-squares method. A 
comparison of the effectiveness of the amplitude estimators listed above in reducing the contribution of 
the spectral image component has not yet performed in the scientific literature. This is the aim of this 
paper, which analyses the achievable accuracy in the case when a fast response time is required, so that 
only a small number of sine-wave cycles can be observed. Also, the robustness of the obtained amplitude 
estimators to sine-wave frequency uncertainty and wide-band noise is investigated in this following.  

2. The considered DTFT-based amplitude estimators 
Let’s consider the discrete-time noisy sine-wave expressed by: 

(݉)ݔ        = +݂݉ߨ2)݊݅ݏܣ ) + ݁(݉) = ݊݅ݏܣ ቀ2ߨ ఔ
ெ
݉ + ቁ + ݁(݉),    ݉ = 0, 1, 2, … – ܯ,  1 (1) 

where A, f, and  are its amplitude, normalized frequency, and initial phase, e() is a discrete-time white 
Gaussian noise with zero mean and variance ߪଶ, and M is the acquisition length. The normalized 
frequency, defined as the ratio between the frequency fin of the original continuous-time sine-wave and 
the sampling rate fs, is equal to: ݂ = ܯ/ߥ = (݈ +  where  is the number of acquired sine-wave ,ܯ/(ߢ
cycles, l is its integer part, and  (-0.5   < 0.5) is the inter-bin frequency location. In practice  is often 
not null, that is non-coherent sampling occurs [12]. 
To reduce the spectral leakage due to the finite duration of the observation interval and non-coherent 
sampling, signal (1) is weighted by an H-term MSD window [7]. The DTFT of the achieved windowed 
signal xw(m) = x(m)w(m) is given by: 
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where W() and Ew() are the DTFTs of the window w() and the weighted wide-band noise ew(m) = 
x(m)w(m) respectively. 
The amplitude estimators provided by the 2pIpDFT-IC, the 3pIpDFT-IR, and the e-FLLS algorithms 
are given by (3), (4), and (5), respectively [9-11]: 
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where s = 0 if |Xw(l - 1)| > |Xw(l + 1)| and s = 1 if |Xw(l - 1)| < |Xw(l + 1)|; 
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where ோܹ(ߣ) = ∑ ݁ି௝ଶగ

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௠ୀ଴  is the DTFT of the rectangular window and ()* denotes the complex 
conjugate operator. In (3) – (5), ̂ߢ represents the available estimate of the inter-bin frequency location. 
 

3. Amplitude estimation accuracy comparison 
In this Section the accuracies of the amplitude estimators ܣመଶ௣,௖,ܣመଷ௣,௥, and ܣመଷ௣,௘ are compared each other 
by means of computer simulations. Both pure and noisy sine-waves are considered and 1.5 <   < 6 
cycles are observed. In the IpDFT algorithms the Hann window is used. Sine-waves are characterized 
by amplitude A = 1 and initial phase  that varies at random in the range [0, 2) rad. Monte Carlo 
simulations composed by 1000 runs of M = 512 samples each have been performed. 



 
 
 
 
 
 

3.1. Pure sine-waves 
Fig. 1 shows the magnitude of the amplitude errors returned by the considered estimators  as a function 
of  when the inter-bin frequency location  is known (Fig. 1(a)), estimated by the three-point IpDFT 
algorithm [8] (Fig. 1(b)) or estimated by the classical IpDFT algorithm [2, 4] (Fig. 1(c)). Notice that the 
frequency estimation accuracy decreases when moving from Fig. 1(a) to Fig. 1(c). 
 

 

Figure 1. Pure sine-waves: Magnitude of the estimation errors returned by the estimators ܣመଶ௣,௖ ,  መଷ௣,௥, andܣ
መଷ௣,௘ܣ  versus the number of observed cycles   when the inter-bin frequency location  is known (a), 
estimated by the three-parameter IpDFT algorithm [8] (b), or estimated by the IpDFT algorithm [2, 4] (c). 

 
When the sine-wave frequency is known, Figure 1(a) shows that the ܣመଷ௣,௘ estimator outperforms the 
others. Also, the accuracy of that estimator almost doesn’t depend on the number of observed cycles and 
it is very small. Conversely, Figures 1(b) and (c) show that the estimator ܣመଷ௣,௘   exhibits a higher sensitivity 
to sine-wave frequency uncertainty. Indeed, there exist values of  where the estimators 
መଶ௣,௖ܣ  and ܣመଷ௣,௥   provide more accurate results. 

3.2. Noisy sine-waves  
Fig. 2 shows the Mean Square Error (MSE) of the considered amplitude estimators as a function of   
when noisy sine-waves characterized by SNR = 40 dB are analysed; the same inter-bin frequency 
location estimators adopted in Figure 1 (b) and (c) are used in Figures 2(b) and (c). The Cramér-Rao 
Lower Bound (CRLB) for unbiased amplitude estimators, that is  (ߪ஺ଶ)஼ோ ≅  is also shown ,[3] ܯ/ଶߪ2
in Figure 2 for comparison.  
 

 

Figure 2. Noisy sine-waves: MSEs returned by the amplitude estimators ܣመଶ௣,௖ , መଷ௣,௥ܣ , and ܣመଷ௣,௘ versus the 
number of observed cycles   when the inter-bin frequency location  is known (a), estimated by the 

three-parameter IpDFT algorithm [8] (b), or estimated by the IpDFT algorithm [2, 4] (c). 
 
As it can be observed, when the sine-wave frequency is known, the ܣመଷ௣,௘  estimator outperforms the 
others and its MSE is almost independent of the number of observed cycles. When the accuracy of the 
estimated sine-wave frequency decreases, the behaviour of the curves in Figures 2(b) and (c) reproduce 
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(b) (c) 

(b) (c) 
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those shown in Figure 1(b) when   < 2.5 cycles or Figure 1(c) when   < 3 cycles, respectively. Indeed, 
in the analysed conditions, the contribution of the spectral image component on the considered spectral 
samples dominates the effect of noise. As a consequence, there exist values of  where the estimators 
መଶ௣,௖ܣ  and ܣመଷ௣,௥  outperform the estimator ܣመଷ௣,௘. For greater values of  , the contribution of wide-band 
noise dominates and the estimator ܣመଷ௣,௘ ensures the best accuracy.  In particular, the related MSE is 
close to 1.5 (ߪ஺ଶ)஼ோ [10]. It is worth noticing that simulations always returned behaviours similar to 
those reported in Figure 2 for any SNR value higher than 10 dB, even though the value of  up to which 
the contribution of the spectral image component overcomes the effect of noise increases as SNR 
increases.               

4. Conclusions 
Simulation results showed that the e-FLLS sine-wave amplitude estimator [11], which is based on the 
least-squares approach and rectangular windowing, exhibits a better accuracy than both the two- and 
three-point IpDFT algorithms 2pIpDFT-IC [9] and 3pIpDFT-IR [10] when the contribution of wide-
band noise prevails on the effect of the spectral image component. Conversely, when this later 
disturbance prevails and the sine-wave frequency is known with high accuracy, the 2pIpDFT-IC and the 
3pIpDFT-IR algorithms can outperform the e-FLLS estimator.          
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