
ARTICLE

Cleaning interfaces in layered materials
heterostructures
D.G. Purdie1, N.M. Pugno2,3,4, T. Taniguchi5, K. Watanabe 5, A.C. Ferrari1 & A. Lombardo 1

Heterostructures formed by stacking layered materials require atomically clean interfaces.

However, contaminants are usually trapped between the layers, aggregating into randomly

located blisters, incompatible with scalable fabrication processes. Here we report a process

to remove blisters from fully formed heterostructures. Our method is over an order of

magnitude faster than those previously reported and allows multiple interfaces to be cleaned

simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal

boron nitride with an area ~ 5000 μm2, achieving mobilities up to 180,000 cm2 V−1 s−1 at

room temperature, and 1.8 × 106 cm2 V−1 s−1 at 9 K. We also assemble heterostructures

using graphene intentionally exposed to polymers and solvents. After cleaning, these samples

reach similar mobilities. This demonstrates that exposure of graphene to process-related

contaminants is compatible with the realization of high mobility samples, paving the

way to the development of wafer-scale processes for the integration of layered materials in

(opto)electronic devices.
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The process of creating materials with pre-determined
properties has been one of the key element of success of
modern solid-state electronics and opto-electronics. Het-

erostructures, i.e., heterogeneous structures built by combining
two or more different materials, were introduced in the fifties1,2,
enabling the engineering of complex structures with tailored
properties such as superlattices3. Semiconductor-based hetero-
structures play a major role in modern integrated electronics and
optoelectronics, enabling applications such as solid-state lasers4,
high electron mobility transistors5 and quantum cascade lasers6.

More recently, another class of materials by design has arisen
due to the possibility of stacking single layer graphene (SLG) and
other layered materials into heterostructures7–13. By varying the
layered materials used, and the angle between them14,15, this gives
rise to a virtually infinite set of options for creating different
heterostructures, not previously produced in the field of semi-
conductor based super-lattices. However, a number of challenges
remain before such heterostructures can be widely applied, such
as the need to use layered materials prepared by scalable tech-
niques, like chemical vapor deposition (CVD)16,17, and to achieve
clean interfaces over the entire heterostructure.

The most widely studied layered material heterostructure is
SLG encapsulated in hexagonal boron nitride (hBN)18–24. Room
temperature (RT) charge carrier mobility (μ) in hBN-
encapsulated SLG can reach values over an order of magnitude
higher than SLG on SiO2

18,19. Furthermore, encapsulation iso-
lates SLG from sources of contamination, such as lithographic
polymers and solvents used during device processing19, or
ambient air20, which can otherwise degrade mobility22,25 and
increase doping20. Thus, hBN encapsulated SLG could enable
state of the art performance for a range of applications in high-
frequency electronics13,26,27 and (opto)electronics28,29.

Encapsulated SLG and other layered material heterostructures
are assembled by first producing the individual layered materials
on separate substrates, typically Si+ SiO2

19, or polymers, such as
Polymethyl methacrylate (PMMA)18,30, followed by transfer and
stacking to achieve the desired heterostructure18,19,30. During
stacking, contaminants such as hydrocarbons31, air23, or
water32,33, can become trapped between the layers, aggregating
into spatially localized pockets with typical lateral sizes from a few
nanometers34 up to micrometers23, known as blisters23 or
bubbles19,20,31, which form due to the interplay of the layered
material elastic properties and van der Waals forces34. This
aggregation of contaminants into blisters leaves the regions
located between them with clean interfaces31, and devices can
therefore be fabricated exploiting these areas30. However, the
device size is constrained by the blister spacing, typically 1–10 μm30.
It is therefore paramount to develop cleaning techniques capable
of removing blisters over the entire dimensions of a
heterostructure.

Blister-free areas >10 μm can be obtained by using a hot pick-
up technique23, where adsorbates present on the layered material
surface can be removed during encapsulation by bringing the
layers together in a conformal manner at 110 °C23. The cleaning
in this process is due to higher diffusivity of the contaminants at
110 °C than at room temperature23, allowing them to diffuse out
of the sample during encapsulation. Blister-free regions were also
reported in ref. 19, although no explanation of how blisters are
avoided was given. In refs. 19,23 residual blisters sometimes
remained within the heterostructure due to incomplete cleaning
during transfer, which could not then be removed. Furthermore,
the technique of ref. 23 only achieves clean interfaces when the
encapsulation is performed slowly, with lateral speeds <1 μm s−1.
The required cleaning time would further scale with the total
number of interfaces within the heterostructure. Therefore, while
refs. 19,23 are in principle capable of cleaning interfaces over

areas larger than the ~20 μm reported to date19,23, their suitability
to cleaning wafer-scale sized samples is limited. There is therefore
a critical need to develop techniques allowing rapid, parallel (i.e.,
independent from the number of layers forming the hetero-
structure) and repeatable assembly and cleaning of hetero-
structures. Ref. 23 also produced heterostructures using SLG
intentionally contaminated with PMMA residuals left from
lithographic processing, suggesting that the hot pick-up technique
could be used to exclude these polymer residuals. However, no
comparison was given of the mobility of samples produced using
clean and polymer contaminated SLG.

Here we show how to remove contamination trapped within
already assembled heterostructures. This is achieved by laminat-
ing the heterostructure onto a SiO2 substrate at ~180 °C. At this
temperature the blisters become physically mobile, enabling them
(and the contaminants trapped inside) to be pushed to the sample
edges, where they are eliminated. We achieve blister-free hBN-
encapsulated SLG with areas up to ~5000 μm2, limited only by the
size of the exfoliated flakes. We manipulate blisters at speeds
>10 μm s−1, over an order of magnitude faster than ref. 23. Our
approach also allows the heterostructure interfaces to be cleaned
simultaneously, unlike existing techniques, where the interfaces
need to be cleaned sequentially19,23. Furthermore, our cleaning
method also works for heterostructures based on different
materials, such as hBN/MoS2 and hBN/SLG/MoS2, indicating the
general suitability of our approach.

We fabricate hBN/SLG/hBN Hall bars with widths W up to
24 μm achieving mobilities up to 180,000 cm2 V−1 s−1 at room
temperature. The mobility is consistently high across all samples,
with an average ~160,000 cm2 V−1 s−1 across 15 Hall bars. We
also report mobilities up to ~1.8 × 106 cm2 V−1 s−1 at 9 K.
Moreover, we show that our approach works on SLG intentionally
exposed to PMMA, acetone and isopropyl alcohol (IPA) before
encapsulation, achieving mobilities up to ~150,000 cm2 V−1 s−1

at room temperature after cleaning, i.e., there is no mobility
degradation compared to non-contaminated SLG. We show
micro-meter scale ballistic transport in our initially contaminated
SLG through bend-resistance measurements, therefore demon-
strating that with appropriate cleaning the mobility of polymer
and solvent contaminated SLG can be equivalent to the highest
quality encapsulated samples in which the interfaces are
clean8,19,20,30. The mobility we achieve is around an order of
magnitude higher than in other polymer and solvent con-
taminated SLG/hBN samples reported in literature18,30. Our
approach paves the way to the optimization of scalable techniques,
such as wet35 and (or) polymer assisted transfers36,37, for the
fabrication process of high mobility encapsulated SLG and other
heterostructures.

Results
Encapsulation, cleaning, and device fabrication. Figure 1 shows
a schematic representation of our approach to produce hBN/SLG/
hBN heterostructures. Flakes of hBN and SLG are prepared by
micro-mechanical cleavage (MC)38 on Si+ 285 nm SiO2 (see
Methods). Suitable SLG and hBN flakes are identified prior to
transfer by a combination of optical microscopy39 and Raman
spectroscopy40–43. We fabricate heterostructures with a range of
hBN thicknesses, thBN (2–300 nm), and widths, WhBN (up to
~200 μm), observing blister manipulation and cleaning in all
cases.

In order to pick up and transfer the flakes we use a stamp
consisting of a layer of polycarbonate (PC) mounted on a block of
polydimethylsiloxane (PDMS) for mechanical support, Fig. 1a.
The stamp is similar to that used in ref. 19, however we use PC
instead of poly-propylene carbonate (PCC) as our cleaning
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requires a temperature of ~180 °C, well above the PPC glass
transition Tg ≈ 40 °C44.

The stamp is placed on a glass slide attached to a micro-
manipulator (resolution ~1 μm) under a microscope. The Si+
SiO2 substrates, with the flakes to be transferred, are positioned
underneath the micro-manipulator, on a heated stage, enabling
temperature control from room temperature up to 300 °C.

The process begins by placing the PC into contact with a
selected hBN flake, then withdrawing, while keeping the
substrate at 40 °C, Fig. 1a. This temperature is chosen because
it allows us to pick both hBN and SLG flakes with a success
rate ~ 100% (as compared to room temperature, where this is
<90%). The hBN adheres to the PC surface and is removed
from the Si+ SiO2 as the stamp is lifted, Fig. 1b. We then
position the hBN over a chosen SLG flake and bring the two
into contact, before again withdrawing while still at 40 °C. The
portion of the SLG in contact with hBN delaminates from the
Si+ SiO2, while that in contact with the PC remains on the Si
+ SiO2, due to the preferential adhesion of SLG to hBN23

Fig. 1c, d. hBN and SLG flakes are then aligned and brought
into contact with another (bottom) hBN flake, Fig. 1e,
encapsulating the SLG.

We next withdraw the stamp with the heterostructure still
attached to the PC, suspending it above the Si+ SiO2, Fig. 1f. The
stage temperature is increased to 180 °C, following which the
stamp is brought into contact with the substrate, Fig. 1g. During
this step the PDMS block is tilted ~1°, so that contact with the
substrate first occurs on one side of the stamp, and then advances
horizontally across it. Control over the stamp vertical position
also defines the position of the contract front (CF) in the
horizontal direction. The CF is the interface between the portion
of the stamp in contact with Si+ SiO2, and that suspended, as in
Fig. 1g. At 180 °C the PC is above Tg ~ 150 °C45, resulting in
decreased viscosity46, allowing greater control over its lateral
movement. Below Tg, the CF can move laterally in uncontrolled,
discrete jumps.

As the CF approaches the encapsulated SLG, we observe the
aggregation of numerous blisters, Fig. 1j. An example of typical
blister coverage is reported in Supplementary Fig. 1. We attribute
this to the heterostructure approaching the Si+ SiO2 surface,
resulting in its temperature increasing to ~180 °C. At room
temperature, trapped contaminants cover the sample interfaces23,
but become increasingly mobile, segregating into spatially
localized blisters as the temperature rises above ~70 °C23.
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Fig. 1 Scheme of the cleaning process. a A stamp, consisting of a PC film (yellow) mounted on a PDMS block (white-translucent) is brought into contact
with a hBN flake (blue) exfoliated on SiO2+ Si (purple/light gray). b The stamp is withdrawn, picking up the hBN. c The hBN is lowered into contact with an
exfoliated SLG (black), and then withdrawn, d picking the SLG portion in contact with hBN. e hBN and SLG are brought into contact with another hBN flake,
forming the encapsulated stack. f Encapsulated stack is picked up from the SiO2+ Si substrate. Steps a–f are performed at 40 °C. g The temperature is
raised to 180 °C and the encapsulated stack is laminated onto SiO2+ Si. The contact front (CF) is defined as the interface between the portion of the
heterostructure suspended and that in contact with the SiO2+ Si. Control over the stamp height determines the CF lateral movement. This is achieved by
tilting the PDMS block, such that the stamp first contacts the substrate on one side. As the CF encounters blisters, these are manipulated and removed. h
The stamp is withdrawn. The PC adheres to the substrate, PDMS is peeled away. i PC is dissolved in chloroform. j–m: optical images of the process. j
Encapsulated sample suspended on the PC stamp above Si+ SiO2. One blister is highlighted with a dashed white circle. Other blisters are seen as dark
spots. k The sample is laminated onto Si+ SiO2. The CF between PC and substrate is marked with a white dashed line. Above the CF, the PC is in contact
with SiO2, while below it is suspended. l as the CF advances it pushes the blisters. The blister in j, originally in the position marked by the white circle, has
now moved, as marked by the black circle. The arrow shows the direction of movement. m hBN/graphene/hBN heterostructure after removal of PC. The
dashed black line marks the SLG location. Scale bars 20 μm
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When the CF passes across the encapsulated stack, the stack is
laminated onto the Si+ SiO2, Fig. 1g. This pushes any blisters
within the heterostructure in the direction of the advancing CF
(see Supplementary Movies 1 and 2). As blisters are swept
through the heterostructure they collide and aggregate. They
continue to move until they reach the heterostructure edge, at
which point they are eliminated, or until they reach a physical
discontinuity, such as a crack or wrinkle in the hBN or SLG,
which may pin them. Once the CF has fully passed across the
encapsulated stack and the blister removal is complete, the stamp
is withdrawn, Fig. 1h. At 180 °C the PC preferentially adheres to
the SiO2, allowing the PDMS to be peeled away, leaving the PC
adhered to the SiO2+ Si surface, Fig. 1h. The PC is then removed
by rinsing the sample in chloroform for ~10 min, Fig. 1i. In the
hot-pick up method a 15 min bake at 130 °C is used to promote
adhesion between the stack and substrate following transfer23.
Here no post transfer bake is necessary, as the 180 °C used during
transfer (maintained for ~2–3 min to allow the PC to melt) is
sufficient to promote adhesion between stack and substrate.

Figure 1j–l show the movement of blisters in response to the
advancing CF. Figure 1j is the sample before cleaning, suspended
on the PC stamp above Si+ SiO2. Numerous blisters can be seen.
In Fig. 1k the CF (marked by the white dashed line) is advancing
across the heterostructure. Above the CF (yellow optical contrast)
the PC is in contact with Si+ SiO2. In Fig. 1l the CF has advanced
further. One blister is highlighted, with its initial location marked
by a dashed white circle in Fig. 1j–l, and by a dashed black circle
in Fig. 1l after being moved by the advancing CF. Figure 1m is the
same sample after cleaning. One blister (highlighted by a dashed
black circle) remains, pinned by a wrinkle. A second hetero-
structure also encapsulated and cleaned using the same method is
shown in Fig. 2a, with optical dark field shown in Fig. 2b, and
atomic-force microscopy scan in Fig. 2c. This is blister-free over
~100 μm× 45 μm. Further examples of hBN/SLG/hBN hetero-
structures are shown in Supplementary Fig. 2.

Blisters are manipulated at speeds >10 μm s−1. They can also
be pulled by withdrawing instead of advancing the CF, i.e., they
can be continuously manipulated both forwards and backwards
(see Supplementary Movie 3). We find no effect of the tilt angle
on the cleaning process for angles in the range ~0.5–5°. The
presence of SLG in the heterostructure plays a significant role in
the ability to manipulate the blisters using the CF. Blisters are
always manipulated by the CF in the hBN/SLG/hBN portion of
the heterostructure. However we observe that, for the hBN/hBN
interface, blisters are mobile in some samples but not in others.
They can also be pinned at the SLG edge (see the right-hand edge
of the dashed white line in Fig. 2b and Supplementary Fig. 2).
This can result in samples where the SLG region is blister-free,
but surrounded at the edges by blisters. Such blisters would not

pose a limitation for large area heterostructure production, as this
edge contamination does not affect the quality of the material in
between, and can be removed by reactive ion etching19.

We do not see evidence of defects created by the CF while it
moves across the heterostructure, as indicated by the lack of D
peak in Raman spectra and by the consistently high, up to 1.8 ×
106 cm2 V−1 s−1, mobility at T= 9 K of the cleaned samples.
Dissolving the PC film in chloroform post-cleaning would likely
leave PC residuals on the top hBN surface. However, these would
be isolated from the SLG by the top hBN, and therefore have no
effect on the SLG.

Our cleaning method also works for heterostructures based on
different materials, such as hBN/MoS2 and hBN/SLG/MoS2, as
shown in Fig. 3, with blister manipulation and interface cleaning
observed in these samples (see Supplementary Movies 4 and 5).
Raman maps of these samples are reported in Supplementary
Figs. 6 and 7.

Ref. 23 reported that temperature plays a key role in the ability
to exclude contaminants from heterostructure interfaces. Thus,
we now consider the effectiveness of blister manipulation at 110
and 180 °C. In the cleaning step, we initiate the process at 110 °C,
until the CF has passed half way across the sample, then we raise
the temperature to 180 °C and advance the CF over the remaining
portion of the heterostructure. Figure 4a–c are optical bright field
and dark field images, and an AFM scan of the sample. In the
portion of the heterostructure cleaned at 110 °C numerous
blisters can be observed, while the portion cleaned at 180 °C is
blister-free. This demonstrates the effect of temperature on the
cleaning process, and highlights the difference in blister coverage
between a cleaned and un-cleaned portion of sample. At 110 °C
the mobility of the blisters is insufficient for them to be
manipulated, while at 180 °C they are mobile and can be
removed from the heterostructure.

Analytical model. To understand the effect of temperature we
consider a model based on quantized fracture mechanics47. In a
stack formed by PDMS, PC, hBN, SLG, and hBN, laminated onto
SiO2 (as in Fig. 1g), we can evaluate the elastic energy per unit
length stored in the heterostructure around the zone of separation
from the substrate (i.e., the curved region in Fig. 1g). This can be
written as: dLds ¼ 1

2
EI
R2, where R is the radius of curvature of this zone

and EI is the heterostructure rigidity (i.e., the Young’s modulus
multiplied by the moment of inertia of the cross-section of the
stack, in N ×m2). Considering the 5 materials in the stack
(PDMS, PC, hBN, SLG and hBN), each with Young’s moduli Ei
and thickness hi, we first derive the position of the elastic neutral

axis (i.e., where the stresses are 0)48: y0=
PN

i¼1
EihiyiPN

i¼1
Eihi

, where yi are

t-hBN

SLG

b-hBN

a b c

100 μm

45 μm

Fig. 2 Optical images and AFM scans of a heterostructure after cleaning. a Optical t-hBN: top hBN. b-hBN: bottom hBN. SLG: single layer graphene. b
Optical dark field image of the sample. c AFM. The dashed lines show the location of the SLG within the heterostructure. Scale bars 20 μm
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the positions of the barycenters of each layers. We get48 EI=
b
12

PN
i¼1 Eih

3
i þ 12Eihi yi � y0ð Þ2� �

, where b is the width of the
stack. For a homogeneous layer with Young’s modulus E and total

thickness h ¼ PN
i¼1 hi, we have49 EI= Ebh3

12 , where I [m4] is the
momentum of inertia of the layer. Equating the last two expres-
sions we get the homogenized Young’s modulus Ehomog of the

hBN

MoS2

hBN

a b c

fed

SLG

MoS2

Fig. 3 Blister manipulation in heterostructures containing MoS2. a–c Bright field, dark field, and AFM images of MoS2/hBN after cleaning. d–f Bright
field, dark field, and AFM images of hBN/SLG/MoS2 after cleaning. In a, c, d, f the black dashed circles mark where the majority of blisters have been
pushed. The arrows indicate the direction of the blister cleaning. The white dashed line in d shows the location of the SLG within the heterostructure. Scale
bars 10 μm
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Fig. 4 Effect of the temperature on blister cleaning. a Optical image of a sample partially cleaned at 110 and 180 °C. b, c Optical dark field and AFM images
of the same sample. d FWHM(2D). The interface between the regions cleaned at 110 and 180 °C is marked by a dashed red line. The SLG location is
marked by a while dashed line. Scale bars 20 μm
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stack. During adhesion, the energy balance imposes47 dL
ds = 2Γb,

where Γ is the adhesion energy (in J/m2) between the stack and
the substrate. The pressure generated at the interface is thus47

p ffi Γ
R ¼ 4

ffiffiffiffiffi
3Γ3
Eh3

q
. The pressure inside a circular-shaped blister of

radius a needed for its propagation is50 pc ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αγi;jE

πðaþq=2Þ

q
, where γi,j

is the adhesion energy between two layers i, j (i.e., hBN and SLG)
forming the blister, α is a non-dimensional shape factor close to
unity47, and q is the minimum value of blister advancement. The
condition for blister cleaning is p > pc. Noting that the adhesion
energies are T-dependent and present maximal values at a given T
(e.g., SLG’s adhesion to SiO2 is maximum at ~250 °C51), we get Γ

= Γ(max)f(T) and γi;j ¼ γðmaxÞ
i;j g Tð Þ, where 0 < f(T), g(T) ≤ 1.

Similarly, Ei(T) are T-dependent, thus E(T)= E(max)e(T), where
0 < e(T) ≤ 1. Accordingly, for blister cleaning the following con-
dition must be satisfied:

CðTÞ ¼ f ðTÞ3
eðTÞ2gðTÞ>

αEðmaxÞ2h3γðmaxÞ
i;j

24πðaþ q=2ÞΓðmaxÞ3 ¼ A ð1Þ

where we introduced the dimensionless cleaning thermal driving
force C(T) and the blister resistance A. By increasing T we can
simultaneously increase C(T) and decrease A, e.g., by reducing
E(max) imposing a glass transition of a polymer layer. Thus, in our
case, well above the PC Tg, EPC becomes negligible. For perfect
cleaning a= 0 and A is maximal. Considering f(T)≅ g(T)
(same T dependence of γi,j and Γ) and e(T)≅ 1 (nearly T-inde-
pendent homogenized E), the blister cleaning requires T in the
range T0− ΔT− ≤ T ≤ T0− ΔT+, where T0 is the T at which
surface energies are maximal, i.e., f(T0)= g(T0)= 1 (note that
ΔT−= ΔT+ if a symmetric function is assumed). In this case, the
condition for blister cleaning becomes C(T)≅ g(T)2 >A. Con-
sidering the T dependence of the adhesion energy for
SLG on SiO2

51, we can assume T0≅ 250 °C. Noting that for PC,
Tg≅ 150 °C, we expect a 150–250 °C range of minimal T for
blister cleaning, in good agreement with our observation of no
blister cleaning below 150 °C and good cleaning at 180 °C.

Our model explains why the condition for blister cleaning
(i.e., the temperature at which blisters become mobile) depends
on the materials forming the heterostructure. Whereas a
temperature of 180° works well for all hBN/SLG/hBN hetero-
structures, this is not always true at the hBN/hBN interface. The
temperature needed for blister cleaning depends on Ei, hi, and
γij. hBN interfaces requires/hBN interfaces, the difference in γ
(assuming all the other parameters identical) would require a
different temperature. Ref. 52 gives γij ≈ 84.7 meV/atom for
SLG/SLG, ≈85.9 meV/atom for hBN/hBN and ≈58.3 meV/atom
for SLG/hBN. Therefore the increment in γij at hBN interfaces
requires/hBN interfaces requires larger temperatures, explain-
ing why blister manipulation is achieved when graphene is
sandwiched between two hBN, but not always at the hBN/hBN
interfaces.

Raman spectroscopy. The quality of the flakes is monitored both
before and after assembly by Raman spectroscopy. Figure 5a–c plots
the spectra of a typical sample, with 92 and 176 nm thickness top
and bottom hBN flakes. Figure 5a shows that the E2g peak for both
the bottom and top hBN are at 1366 cm−1, with full-width half
maximum (FWHM) ≈ 9.2 and 8.6 cm−1, respectively, as expected
for bulk hBN40,43,53. The SLG G and 2D peaks before transfer are
plotted in Fig. 5b. The 2D peak can be fit with a single Lorentzian,
with FWHM(2D)≈ 26 cm−1, and position Pos(2D) ≈ 2687 cm−1,
as expected for SLG41,42. No D peak can be seen,
indicating negligible defects41,42,54. The position of the G peak, Pos

(G) ≈ 1590 cm−1, FWHM(G) ≈ 8 cm−1, and the intensity and areas
ratio of the 2D and G peaks, I(2D)/I(G) ≈ 1.3, A(2D)/A(G) ≈ 3.9
indicate that the sample is doped with EF≳ 300meV55,56.
The spectrum of the assembled heterostructure is shown in black
in Fig. 5b. The hBN E2g peak is now a combination of those
of both top and bottom hBN. This yields a single peak with
Pos(E2g) ≈ 1366 cm−1 and FWHM(E2g) ≈ 9.3, as expected con-
sidering both flakes are bulk40,43,53. For the encapsulated
SLG we have Pos(2D) ≈ 2693 cm−1, Pos(G) ≈ 1583 cm−1,
FWHM(G) ≈ 15 cm−1, I(2D)/I(G) ≈ 11.4 cm−1 and A(2D)/A(G) ≈
12.9 cm−1, indicating EF � 100 meV55,56. FWHM(2D) decreases
to ≈17 cm−1 after encapsulation, indicating a reduction in the
nanometer-scale strain variations within the sample57–60. We note
that the E2g peak of hBN may overlap the D peak. This is a general
issue in hBN-encapsulated samples. However, the D peak shifts
with excitation energy by42 ≈50 cm−1/eV due to a combination of
its double resonance activation40,42 and a Kohn Anomaly at the
K point of the Brillouin Zone61, while the E2g of hBN does not,
since hBN has a band gap and no Kohn anomalies nor double
resonances are present40,61. Figure 5c compares the Raman spectra
at 457, 514, and 633 nm. No D peak is seen even at 633 nm, where
it should be well clear of the E2g of hBN, thus ensuring no extra
defects are introduced in the SLG by the transfer and cleaning
processes.

Following encapsulation and blister removal, we process our
heterostructures into Hall-bars for 4-terminal transport measure-
ments (see Methods for details). We fabricate Hall bars with W
up to= 24 μm, exploiting the entire heterostructure dimensions.
For comparison, for samples containing blisters W ~ 1–3 μm is
typical20,22,30.

We then perform Raman mapping after device fabrication. The
data in Fig. 6a–d are taken from a ≈20 μm× 20 μm map on the
Hall bar in the inset in Fig. 7a. Pos(G) is sensitive to both
doping56 and strain62, meaning that local variations in these
quantities manifest as a spread in the G peak position, i.e., ΔPos
(G). From Figures 6a–d ΔPos(G) ≈ 0.6 cm−1. Figure 6a, b plot
A(2D)/A(G) and FWHM(G) as a function of Pos(G), showing no
correlation. This indicates that the contribution to ΔPos(G)
due to doping is negligible56,60,61, and that the trend in Fig. 6d
is due to strain ϵð Þ. Figure 6d plots Pos(2D) as a function of
Pos(G). A linear correlation can be seen with slope ΔPos(2D)/
ΔPos(G) ≈ 2.18. A similar trend was reported in ref. 63, with a
slope ≈2.2.

The rate of change of Pos(2D) and Pos(G) with strain is
determined by the Grüneisen parameters62, which relate
the relative change in the peak positions in response to strain, i.e.,
[ω−ω0]/[2ϵω0], where ω is the frequency of the Raman peak at
finite strain and ω0 the frequency at zero strain62. For biaxial strain
the Grüneisen parameters for G and 2D peak are γG ≈ 1.8 and
γ2D≈ 2.6, resulting in ΔPos(2D)/ΔPos(G) ≈ 2.562,64,65. In the case of
uniaxial strain γG ≈ 1.862, however extraction of γ2D is not
straightforward, as uniaxial strain shifts the relative position of
the SLG Dirac cones62,64, which in turn effects the 2D peak as it is
activated by an intervalley scattering process42,62. Ref. 62 determined
an upper bound γ2D≈ 3.55 and theoretically calculated γ2D ≈ 2.7,
consistent with experimentally reported ΔPos(2D)/ΔPos(G) ≈
2–362,63,66. Biaxial strain can be differentiated from uniaxial from
the absence of G and 2D peak splitting with increasing strain42,
however at low (≲0.5%) strain the splitting cannot be resolved62,66.
Due to these factors the presence (or coexistence) of biaxial
strain cannot be ruled out in our samples. For uniaxial(biaxial)
strain, Pos(G) shifts62,64,66 by ΔPos(G)/Δϵ ≈ 23 (60) cm−1%−1.
For intrinsic SLG (EF � 100 meV), the unstrained value of Pos(G)
is ≈ 1581.5 cm−1 for 514 nm excitation41. For the sample in Fig. 6d,
ΔPos(G) ≈ 0.6 cm−1 equates to Δϵ≲ 0.026%. The average Pos(G) ≈
1582 cm−1 indicates an average strain ϵ ≈ 0.025%. Figure 6e plots

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07558-3

6 NATURE COMMUNICATIONS |          (2018) 9:5387 | DOI: 10.1038/s41467-018-07558-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Pos(2D) as a function of Pos(G) for 10 samples (S1–S10)
encapsulated using thBN > 10 nm. It shows a linear trend, with a
slope ≈2.19. ΔPos(G) ranges from ≈0.5 to 2 cm−1, indicating
differences in Δϵ up to a factor ≈4. The average Pos(G) for each
sample varies from 1580.8 to 1583.5 cm−1, indicating different
strains. For example, since Pos(G) ≈ 1581.5 cm−1 for zero
strain41,61, sample S2 has an average tensile ϵ ≈ 0.03% while sample
S4 has an average compressive strain ϵ ≈ 0.09%. The maximum
absolute strain is ϵ ≈ 0.1% in sample S4.

Ref. 57 reported a Raman map of SLG encapsulated in hBN
containing blisters. Pos(G) and Pos(2D) varied by ≳5 cm−1

and ≳15 cm−1 across ~200 μm2. Δϵ in ref. 22 was ≈0.2–0.3%,
around one order of magnitude larger than in our samples.
Ref. 57 detected FWHM(2D) > 20 cm−1 over blisters, as
compared to blister-free regions where they found
FWHM(2D) < 20 cm−1. A similar behavior can be observed
in Fig. 4d, where the blisters in the portion of the sample
cleaned at 110 °C appear as spots with increased FWHM(2D)
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in the Raman map, while FWHM(2D) in the portion cleaned
at 180 °C is homogeneous (spread < 1 cm−1) and narrow
(<17 cm−1).

Transport. Figure 7 shows 4 terminal measurements of hBN/
SLG/hBN Hall bars. Figure 7a plots the resistivity (ρ) as a func-
tion of back gate voltage VBG. Carrier density (n) as a function
of VBG is extracted from a measurement of the Hall voltage
with a B= 0.5 T out of plane magnetic field. From a
linear fit of the dependence of n vs. VBG we get a gate capacitance

of Cox= 7 × 10−5 Fm−2. This is in agreement with that calculated
assuming a parallel plate capacitor with a bottom hBN flake in
series with 285 nm SiO2. The bottom hBN thickness is 156 nm
extracted from AFM. We take its dielectric constant ϵr = 3,
considering that values between 2–4 are usually reported27. This
gives Cox= 7.1 × 10−5 Fm−2. We note that Cox is orders of
magnitude smaller than the quantum capacitance of SLG67,
which is therefore neglected in the calculations. The sample is
highly intrinsic, with a charge neutrality point (CNP) at VBG of
V0=−0.2V, corresponding to a residual n0= (Cox/e)V0= 9 ×
109 cm−2.
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The carrier density dependent mobility is extracted assuming a
Drude model of conductivity μ= σ/(ne), as shown in Fig. 7b. The
peak mobility close to the CNP is ≈180,000 cm2 V−1 s−1,
decreasing at higher densities. Of 13 Hall bars with W ranging
from 3 up to 24 μm, all exhibit peak room temperature mobilities
>100,000 cm2 V−1 s−1. The conductivity (σ) of SLG is commonly
fit using σ−1= (neμL+ σ0)−1+ ρs, where μL represents the
contribution from long-range scattering, and ρs the density
independent contribution from short-range scattering18,22,68. ρs
results in a sublinear dependence of σ with n and therefore
decreasing μ with increasing n. Fitting the data of Fig. 7a yields
μL= 217,000 cm2 V−1 s−1 and ρs= 33Ω. For encapsulated sam-
ples at room temperature, the dominant contribution to ρs has
been attributed to electron-phonon scattering ρe-ph19, which sets
an upper bound on the achievable μ= 1/(neρe-ph). At 290 K the
theoretically predicted ρe-ph ~ 32Ω69,70 is consistent with our
extracted value ρs= 33Ω. For n= 9 × 1012 cm−2 we measure μ ~
19,000 cm2 V−1 s−1 (see Supplementary Fig. 4), close to the
phonon limit ~21 000 cm2 V−1 s−1 calculated for this density69.

The resistivity of the same sample at 9 K (corresponding to the
base temperature for our measurement system) is plotted in
Fig. 7c. μ as a function on n at this temperature is shown in
Fig. 7d, with a peak value ~1.8 × 106 cm2 V−1 s−1. We note that
for p-doping, μ remains above 1.5 × 106 cm2 V−1 s−1 even at n >
1 × 1012 cm−2, in close agreement with ballistic measurements on
SLG encapsulated in hBN at similar n19–21. Assuming diffusive
transport, i.e., lm <W20, we can write lm ¼ h=2e2ð Þσ 1=

ffiffiffiffiffiffi
nπ

pð Þ71,
meaning lm∝ σ for a given n. As the lateral dimensions of the
sample constrain lm≲W20,30, W sets an upper bound on the
achievable σ, and therefore μ, for a particular value of n.
Achieving μ= 1.7 × 106 cm2 V−1 s−1 at n= 1.5 × 1012 cm−2 can
therefore be seen as a direct result of W > 20 μm.

The CNP FWHM, δV, as a function of carrier density,
δn= (Cox/e)δV, places an upper bound on the disorder induced
charge inhomogeneity, n*22,72,73. From the measurements in
Fig. 7c δn= 1010 cm−2, almost an order of magnitude lower
than typical reports for SLG on hBN18,30. A more precise n*

can be extracted by fitting the linear and plateau regions of σ at
the CNP72,74 (inset in Fig. 7c), giving n*= 3.5 × 109 cm−2. n*

provides a measure of the spatial inhomogeneity of the carrier
density close to the CNP75, which arises due to disorder (e.g.,
local variations in strain76, or chemical doping77). Lower n* are
indicative of less disordered, more homogeneous samples. Our
n*= 3.5 × 109 cm−2 is approximately three times lower than
typical n* > 1 × 1010 cm−2 for SLG encapsulated in hBN22,30.

Figure 7e shows the mobility of seventeen different samples at
room temperature as a function of the bottom hBN thickness. A
clear increase in mobility with thBN is seen. The maximum values
of mobility are achieved for thBN ≥ 15 nm, above which the
mobility plateaus out. This can be attributed to screening of the
roughness and charged impurities of the underlying SiO2

78.
Indeed, the roughness of hBN on SiO2 shows an equivalent trend,
with atomic flatness achieved only for thBN≳ 15 nm18. lm
extracted from a Hall bar with W= 18 μm is plotted in Fig. 7f
between 9 and 290 K. The sample width is marked by a dashed
line, showing that lm <W for all carrier densities and tempera-
tures, indicating transport remains diffusive20. The values of lm
are in close agreement with ref. 19 where a 15 × 15 μm square
sample free of blisters was measured. Transport properties of
encapsulated bilayer graphene are reported in Supplementary
Fig. 3.

Cleaning of polymer-contaminated samples. Our method also
works for heterostructures where the SLG surface is exposed to
polymers and solvent before encapsulation, which is a common

occurrence when the SLG undergoes lithographic processing23 or
wet and (or) polymer-assisted transfer used to process large-area
SLG films22,36,37. To demonstrate this, we spin coat PMMA onto
exfoliated SLG on SiO2+ Si. PMMA is then removed by rinsing
in Acetone/IPA. SLG is then encapsulated following the same
procedure as in Fig. 1. The only modification is that cleaning
(Fig. 1g) is performed at 250 °C, as we find the blisters remain
immobile at 180 °C in these samples. This need for higher tem-
perature cleaning could be attributed to the increased amount of
contaminants trapped at the interfaces in these samples. This is in
agreement with the analytical model, which predicts optimal
cleaning at T0 ~ 250 °C.

Figure 8a show optical image of the cleaned heterostructure,
with the SLG indicated by a white dashed line. Figure 8b is an
AFM scan, with the SLG marked by a dashed black line, from
which it can be seen that the blisters have been pushed to the SLG
edge. A few blisters remain within the SLG, pinned by folds and
cracks. A FWHM(2D) map across the sample is shown in Fig. 8c.
The blister-free region exhibits homogeneous (spread < 1 cm−1)
and narrow (~17 cm−1) FWHM(2D), consistent with unconta-
minated SLG (see Fig. 4d).

We measure the mobility of our initially polymer contaminated
SLG samples by processing them into 4-terminal geometries.
Figure 8d, e respectively show a Hall bar and Hall cross processed
from the sample in Fig. 8a. Figure 8f plots the resistivity extracted
from the Hall bar at 290 and 9 K. We get μ ~ 150,000 cm2 V−1 s−1

at 290 K and 1.3 × 106 cm2 V−1 s−1 at 9 K, and n* ~ 5.5 × 109 cm−2.
For comparison refs. 17,18 used SLG on hBN (un-encapsulated)
where the SLG surface was also exposed to polymers and solvents,
and reported μ ~ 50,000–100,000 cm−2 V−1 s−1 at T < 10 K. Ref. 30

used encapsulated SLG in hBN, where the SLG was exposed
to solvent and polymer residue before encapsulation, achieving
μ ~ 150,000 cm−2 V−1 s−1 at T < 10 K. We achieve mobilities an
order of magnitude higher, demonstrating the effectiveness of our
technique.

In order to further confirm the cleanliness of the interfaces in
the heterostructure containing initially polymer contaminated
SLG we also investigate ballistic transport. To the best of our
knowledge, micrometer scale ballistic transport in SLG was only
reported in the highest quality SLG encapsulated in hBN
samples19–21, where the interfaces are clean19,31, and
μ � 100; 000 cm2 V−1 s−1. Ballistic transport is commonly
probed using bend resistance measurements19–21,79, where
current is applied around a bend in a sample and the
corresponding voltage developed measured. We perform
these measurements on the Hall cross shown in Fig. 8e, with
arm width H= 2 μm. A current is passed from contact 1 to 2
(I1,2), while measuring the voltage drop between contacts 4 and
3 (V4,3). The bend resistance is defined as RB= V4,3/I1,220. For
diffusive transport, where lm � H, carriers travel diffusively
around the bend, and RB is positive and determined by the van-
der-Pauw formula20 RB= ρπ/ln 2. However if lm exceeds H,
carriers injected at contact 1 travel ballistically to contact 3,
resulting in negative RB

20,79. A negative RB therefore imposes
lm >H, from which a lower bound on the mobility can be
calculated from μ ¼ ð2e=hÞlm

ffiffiffiffiffiffiffiffi
π=n

p
where lm >H19,21. Figure 8g

plots RB as a function of temperature. At 9 K and n= 1.1 × 1012

cm−2 we estimate μ > 520,000 cm2 V−1 s−1. At 290 K the
mobility extracted diffusively from the cross is μ ~ 150,000
cm2 V−1 s−1. These measurements are consistent with those
on the highest mobility encapsulated SLG in literature where
room temperature mobilities ~150,000 cm2 V−1 s−1 are
achieved19,20,30, demonstrating that exposure of the SLG
surface to polymers or solvents before encapsulation poses no
limitations once the appropriate cleaning procedure is used.
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Discussion
We developed a transfer method that allows blisters to be
mechanically manipulated, and removed from layered material
heterostructures. This enabled us to achieve blister-free regions of
SLG encapsulated in hBN limited only by the size of the exfoliated
flakes. We achieved mobilities up to ≈180,000 cm2 V−1 s−1 at
room temperature, and ≈1.8 × 106 cm2 V−1 s−1 at 9 K. Our
method can be used to clean encapsulated samples assembled
with polymer contaminated SLG, and these show equivalent
mobilities, up to ≈150,000 cm2 V−1 s−1 at room temperature,
indicating that the polymer and solvent residuals can be removed
from the SLG/hBN interface. Our method provides consistent
results, as shown in Supplementary Table 1, which summarized
transport and Raman measurements of 18 encapsulated SLG Hall
bars. Finally, our approach is general and can be used for other
heterostructures.

Methods
Layered material synthesis and micro-mechanical cleavage. hBN single crystals
are grown under high pressure and high temperature, as detailed in ref. 80. The
graphite is first cleaved using adhesive tape. The Si+ SiO2 substrate is then exposed

to an oxygen plasma (100W, 360 s). The surface of the tape is brought into contact
with the SiO2 substrate, which is then placed on a hot plate at 100 °C for 2 min,
before the tape is removed. Heating the substrate allows us to achieve large (>100
μm) SLG flakes, whereas flakes produced without heating are typically <50 μm in
size, in agreement with findings of ref. 50. For the exfoliation of hBN, no plasma
treatment of the SiO2 surface is used, as we find this has no effect on the flakes’
lateral size. Polymer-contaminated samples are produced by first exfoliating SLG
and subsequently depositing PMMA (8% in Anisole, 495 K molecular weight) via
spin coating at 4000 rpm for 60 s. PMMA is then removed by acetone and iso-
propyl alcohol.

Stamp preparation. A PC film is prepared by drop casting a solution in chloro-
form (5% weight) onto a glass slide. A second slide is then used to sandwich and
spread the solution between the two slides. The slides are immediately slid apart,
and left to allow the chloroform to evaporate. After drying, the resultant film is
picked up and mounted on a PDMS block (a few mm thick) to complete the stamp.
A detailed description of the PC film preparation is reported in Supplementary
Fig. 5.

Device fabrication. The heterostructure is first dry etched, defining the geometry, as
well as exposing the SLG edge. Depositing metal onto the exposed edges results in
ohmic contacts between the SLG and metal19. We first deposit an Al mask using e-
beam lithography, metal evaporation and lift-off. We then use a reactive ion etcher
(RIE), with a forward radio frequency (RF) power of 20W and a ≈20 sccm flow of

t-hBN

b-hBN

–20 –10 0
VBG (V) VBG (V)

10 20 –20 –10 0 10

9 K

100 K 200 K

50 K

290 K

20

5

80

2.5

2.0

1.5

1.0

0.5

0.0
–4 –3 –2

VBG (V)
–1

70 60

25

20

15

10

5

0

–5

–10

–15

–20

50 40 30 20 10 0

10

15

20

25

30

x (μm)

y 
(μ

m
)

15

20

25

30

F
W

H
M

(2
D

)

Initially contaminated SLG

400

350

300

250

� 
(Ω

)

R
b 

(Ω
)

� 
(k

Ω
)

200

150
2

3

4

1

290 K

9 K

100

50

0

a

d f g

e

c

b

Fig. 8 Characterization of heterostructures produced using SLG exposed to both polymer residuals and solvents. a False color optical image. SLG is
indicated by the white dashed line. Blisters have been pushed to the SLG edges. Scale bar 20 μm. b AFM scan of the sample. The black dashed line shows
the SLG. c Spatial map of FWHM(2D) of the sample, taken at an excitation wavelength of 514 nm. d Hall bar processed from the sample. Scale bar 5 μm. e
Hall cross with arm width 2 μm from the same heterostructure. Scale bar 2 μm. The contacts are labeled 1–4. f Resistivity at 9 and 290 K. Inset: Resistivity
at 9 and 290 K plotted close to CNP. g Bend resistance measurements of Hall cross in b as a function of temperature

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07558-3

10 NATURE COMMUNICATIONS |          (2018) 9:5387 | DOI: 10.1038/s41467-018-07558-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CF4. The etch rate is ≈0.2 nm/s, with the total etch time set depending on the
heterostructure thickness. After wet-etching to remove the Al mask, metal contacts
are patterned by e-beam lithography followed by either e-beam evaporation and lift-
off of 5/150 nm Cr/Au19, or DC sputtering and lift-off of 5/150 nm of Cr/Cu. We note
that our contact success rate >90% is not affected by the thickness of the bottom hBN,
which in some cases exceeds the thickness of the metal film. This is due to the
anisotropic etching of the hBN when exposed to plasma, which consistently results in
edges with a slope of 45–60°19. Upon evaporation or sputtering, the metal conformally
coats both hBN surface and edge, resulting in a good contact with SLG. Using a hard
(Al) mask increases contact yield, and lowers contact resistance, compared to con-
ventional polymer etch masks.

Characterization. Raman measurements are performed using a Renishaw inVia
microspectrometer equipped with 457, 514, and 633 nm excitation wavelengths.
AFM images are acquired using a Bruker Dimension Icon, operated in PeakForce
mode.

Transport measurements. Transport measurements are performed using a dual
lock-in amplifier (Stanford Research Systems SR810 and SR860), combined with a
low noise voltage pre-amplifier (Stanford Research Systems SR860) in a Lakeshore
cryogenic probe station at ~3 × 10−8 Torr. A bias current of 100 nA and a lock-in
frequency ~13 Hz are used at all temperatures.

Data availability
Data supporting the findings of this manuscript are available from the corre-
sponding author upon reasonable request.
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Supplementary Figures

A B C

D E F

Supplementary Figure 1: Comparison of heterostructures with and without blister cleaning. a)-c) Optical
false color, AFM topography, and AFM topography error images of a sample encapsulated without blister
cleaning. d)-f) Optical false color, AFM topography, and AFM topography error images of a sample with
blister cleaning (d and e are reproduced from Figure 2 in the main text). The blue dashed line represents the
location of the SLG in the heterostructures. The reduction in blisters can clearly be observed in the error signal
images (c and f).
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Supplementary Figure 2: Optical images, AFM, and Raman Maps of different hBN/SLG/hBN heterostruc-
tures cleaned of blisters. a)-d): Optical images of five different samples consisting of SLG encapsulated in hBN,
prepared using our blister cleaning method. The corresponding AFM scans and Raman maps of FWHM(2D)
are shown in e)-h): and i)-l): respectively. The location of the Raman maps is marked by the dashed black
rectangle in a)-d). The location of the SLG within the samples is marked by the dashed blue line in e-h
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Supplementary Figure 3: Transport properties of bilayer graphene. Transport measurements of a Hall
bar and Hall cross produced using bilayer graphene encapsulated in hBN, prepared using our blister cleaning
method. a) Resistivity of the sample measured as a function of the back gate voltage at T = 290K and T = 9K.
An optical image of the Hall bar is shown in the inset of a). The scale bar is 10µm. The Hall bar width is 9µm.
The capacitance of the back gate is C ∼ 6.15 × 10−5F/m2, extracted from a Hall measurement. The mobility
reaches µ ∼ 40 000cm2V−1s−1 at T = 290K and µ ∼ 500 000cm2V−1s−1 at T = 9K. b) Magnetotransport
measurements performed on the Hall bar shown in A at T = 9K and B = 2.5T. c) Bend resistance of a Hall
cross with arm width W = 1µm, fabricated from the same heterostructure as the Hall bar in a, measured at
T = 9K. An optical image of the Hall cross is shown in the inset. The scale bar is 1µm. The negative bend
resistance indicates lm > W .
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Supplementary Figure 4: Mobility as a function of charge carrier density for SLG encapsulated in hBN. The
data corresponds to sample S16 in Supplementary Table 1. The data are fit using σ−1 = (neµL + σ0)

−1
+ ρs,

which for electrons(holes) yields µL = 214000(140700)cm2V−1s−1 and ρs = 30.3(32.1)Ω. The mobility limit
resulting from electron-phonon scattering µe-ph = 1/ (neρe-ph) is calculated assuming ρe-ph ∼ 33Ω following
Ref.[1].
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Prepare PC Film

1. Drop cast PC onto glass slide 2. Sandwich with second glass slide 3. Press to spread film between slides

4. Slide the glass slides apart 5. Leave to dry

PC solution Glass slide

Transfer PC onto PDMS

Slide 1

Slide 1
PC Glass

Scotch tape

PDMS

Slide 2

Slide 3

1. Glass slide with PC film 2. Remove PC with scalpel to 
produce ~1x1cm square

5. Place tape on PC square

7. Peel away 
tape with PC film 
suspended

8. Place PC film onto 
PDMS block

9. Remove excess 
tape with scalpel

6. Mount ~5x5mm block of 
PMDS onto glass slide

3. Place scotch tape onto glass 
slide

4. Cut ~7x7mm 
square hole using 
scalpel

Supplementary Figure 5: Preparation of the polycarbonate stamp. The polycarbonate (PC) solution is
prepared by dissolving 5% by weight polycarbonate in chloroform. The method for preparing the transfer
stamp is outlined in the above figure. The PC is drop cast onto a glass slide using a pipette (typically 10-20
drops), and a second slide is then used to sandwich and spread the solution between the two slides. The slides
are immediately slid apart, and left to allow the chloroform to evaporate. Excess PC is then removed by a
scalpel to define a ∼ 1 × 1cm square of PC. A window is cut into a piece of scotch tape, which is then used to
pick up the PC from the glass slide. The tape is then used to place the PC onto a block of PDMS, and excess
tape is removed again using a scalpel. For the completed stamp, the PC is held in place on the PDMS by the
scotch tape. During the final step of the cleaning process, where the PC is brought into contact with the Si +
SiO2 surface and the temperature is raised to 180◦, the edges of the PC tear, releasing it from the scotch tape,
allowing the stamp to be withdrawn while the PC remains on the Si + SiO2 surface.
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Supplementary Figure 6: Raman mapping of an hBN/SLG/MoS2 sample, showing peaks associated with
MoS2. The sample is the same as that in Figures 3d-f in the main text. a) Pos(A1g). b) FWHM(A1g). c)
Pos(E2g). d) FWHM(E2g.)
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Supplementary Figure 7: Raman mapping of an hBN/SLG/MoS2 sample, showing peaks associated with
hBN. The sample is the same as that in Figures 3d-f in the main text. a) Pos(E2g). b) FWHM(E2g)
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Supplementary Table

Summary of the electrical transport and Raman measurements of encapsulated SLG Hall bars produced using the
blister cleaning method

Sample Raman Transport

Hall Bar W L tb-hBN Pos(2D) Pos(G) FWHM(2D) FWHM(G) I(2D)/I(G) A(2D)/A(G) µ290K µ9K

S1 24 21 156 2689.9 1582.0 17.3 12.8 9.4 12.7 180 1800
S2 18 18 156 2687.8 1580.8 16.5 14.5 12.3 14.0 170 1300
S3 7.5 7.5 176 2688.5 1581.1 16.8 14.8 17.0 19.3 160 1000
S4 17 16 117 2692.7 1583.3 18.5 11.0 3.4 5.6 − −
S5 22 22 58 2693.1 1582.7 17.6 13.4 16.4 21.6 130 400
S6 16 22 93 2688.6 1581.2 17.9 12.4 6.5 9.4 180 950
S7* 9 11 147 2691.1 1582.2 17.2 13.4 8.6 11.0 150 1300
S8 18 18 62 2692.8 1582.8 17.3 14.3 9.1 10.9 180 −
S9 15 15 47 2690.6 1581.9 17.6 14.0 12.8 16.0 120 1800
S10 16 22 143 2690.9 1582.1 17.1 14.0 8.9 10.8 160 750
S11 12 13 71 2691.5 1582.0 17.4 12.5 14.6 20.2 180 800
S12 12 15 66 2690.8 1581.9 17.0 12.7 19.9 26.7 160 800
S13 10 11.5 93 2686.6 1580.4 17.6 12.5 7.3 10.3 140 970
S14* 3 4 119 2690.5 1582.1 20.1 12.9 4.8 7.6 165 200
S15* 2.5 4 16 2693.0 1582.5 17.7 13.2 10.4 13.9 125 390
S16 3 4 31 2692.6 1582.4 16.4 14.7 14.8 16.6 140 −
S17 8 7.75 2.7 2693.9 1583.4 17.0 12.2 7.4 8.5 60 −
S18 8 7.75 6 2693.5 1583.0 16.9 12.3 7.2 9.9 75 −

Supplementary Table 1: Data for eighteen different Hall bars (S1-S18). *denotes samples produced with graphene exposed to PMMA/Acetone/IPA before
encapsulation. W : Hall bar channel width. L: Hall bar voltage probe arm separation. tb-hBN: Thickness of the bottom hBN flake of the heterostructure (nm).
Pos(2D): Position of the 2D peak (cm−1). Pos(G): Position of the G peak (cm−1). FWHM(2D): full width half maximum of the 2D peak (cm−1). FWHM(G):
Full width half maximum of the G peak (cm−1). I(2D)/I(G): 2D to G peak intensity ratio. A(2D)/A(G): 2D to G peak area ratio. In the case Raman mapping
has been performed on the sample (S1−S10) the Raman parameters are the average value mapped across the sample. For the other samples (S11−S18) the
parameters are extracted from a single spectra taken at the center of the sample. µ290K: Mobility of the Hall bar measured at T = 290K (103cm2V−1s−1). µ9K:
Mobility of the Hall bar measured at T = 9K (103cm2V−1s−1). The given values of µ are the peak values of µ(n) measured for each sample. When calculating
the average RT µ ∼ 160000cm2V−1s−1 quoted in the main text we consider only samples S1−S16 where tb-hBN > 10nm.
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Supplementary Movie 1  
Blister cleaning of a hBN/SLG/hBN heterostructure. The sample corresponds to that shown in Figure 
1 H‐M in the main text. Blisters are pushed by the advancing CF. When blisters meet other blisters 
they aggregate. Blisters are pushed until they reach the edge of the heterostructure when they are 
eliminated. One blister remains stuck within the heterostructure, pinned by a wrinkle in the hBN. 

Supplementary Movie 2  
Blister cleaning of a second hBN/SLG/hBN heterostructure. An optical bright field image, AFM scan, 
and spatial map of FWHM(2D) of the sample are shown in Supplementary Figure 2 C, G, and K. A 
number of blisters can be observed becoming pinned when the reach the edge of the SLG region. 
The interior of the graphene flake (an area of ~100µm ×40µm) is entirely cleaned apart from a single 
residual blister (see Supplementary Figure 2G).  

Supplementary Movie 3  
Continuous blister manipulation. The sample is the same as that shown in Supplementary Movie 2. A 
blister is shown to be moved first in one direction, and then in the opposite direction.  

Supplementary Movie 4  
Blister cleaning of a MoS2/hBN heterostructure. The sample corresponds to that shown in Figure 3A‐
C in the main text. The majority of the blisters are pushed to the bottom of the MoS2 flake.  

Supplementary Movie 5  
Blister cleaning of a hBN/SLG/MoS2 heterostructure. The sample corresponds to that shown in 
Figure 3D‐F in the main text. The majority of blisters are pushed to the bottom edge of the SLG flake 
where they become pinned (shown by the dashed circle in Figure 3D and 3F). A single large blister 

remains at the centre of the sample after cleaning. 
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