
Noname manuscript No.
(will be inserted by the editor)

Multi-Objective Reasoning
with Constrained Goal Models

Chi Mai Nguyen · Roberto Sebastiani
· Paolo Giorgini · John Mylopoulos

Received: date / Accepted: date

Abstract Goal models have been widely used in Computer Science to represent soft-
ware requirements, business objectives, and design qualities. Existing goal modelling
techniques, however, have shown limitations of expressiveness and/or tractability in
coping with complex real-world problems. In this work, we exploit advances in auto-
mated reasoning technologies, notably Satisfiability and Optimization Modulo Theo-
ries (SMT/OMT), and we propose and formalize: (i) an extended modelling language
for goals, namely the Constrained Goal Model (CGM), which makes explicit the no-
tion of goal refinement and of domain assumption, allows for expressing preferences
between goals and refinements, and allows for associating numerical attributes to
goals and refinements for defining constraints and optimization goals over multi-
ple objective functions, refinements and their numerical attributes; (ii) a novel set
of automated reasoning functionalities over CGMs, allowing for automatically gen-
erating suitable refinements of input CGMs, under user-specified assumptions and
constraints, that also maximize preferences and optimize given objective functions.
We have implemented these modelling and reasoning functionalities in a tool, named
CGM-Tool, using the OMT solver OptiMathSAT as automated reasoning backend.
Moreover, we have conducted an experimental evaluation on large CGMs to support
the claim that our proposal scales well for goal models with thousands of elements.

Keywords requirements engineering · goal models · SAT/SMT/OMT

This research was partially supported by the ERC advanced grant 267856, ‘Lucretius: Foundations for
Software Evolution’.

Chi Mai Nguyen
E-mail: chimai.nguyen@unitn.it

Roberto Sebastiani
E-mail: roberto.sebastiani@unitn.it

Paolo Giorgini
E-mail: paolo.giorgini@disi.unitn.it

John Mylopoulos
E-mail: jm@cs.toronto.edu

2 Chi Mai Nguyen et al.

1 Introduction

The concept of goal has long been used as useful abstraction in many areas of com-
puter science, for example artificial intelligence planning [29], agent-based systems [34],
and knowledge management [21]. More recently, software engineering has also been
using goals to model requirements for software systems, business objectives for en-
terprises, and design qualities [2,3,11,42,18].

Goal-oriented requirements engineering approaches have gained popularity for a
number of significant benefits in conceptualizing and analyzing requirements [42].
Goal models provide a broader system engineering perspective compared to tradi-
tional requirements engineering methods, a precise criterion for completeness of the
requirements analysis process, and rationale for requirements specification, as well as
automated support for early requirements analysis. Moreover, goal models are useful
in explaining requirements to stakeholders, and goal refinements offer an accessible
level of abstraction for validating choices among alternative designs.

Current goal modelling and reasoning techniques, however, have limitations with
respect to expressiveness and/or scalability. Among leading approaches for goal mod-
elling, KAOS offers a very expressive modelling language but reasoning isn’t scal-
able (in fact, it is undecidable). i*, on the other hand, is missing constructs such as
preferences, priorities and optimization goals. Although more recent proposals, such
as Techne [22,26] offer expressive extensions to goal models, they still lack some
features of our proposal, notably optimization goals, and also lack scalable reasoning
facilities.

As a result of these deficiencies, no goal modelling framework can express goals
such as “Select which new requirements to implement for the next release, such as to
optimize customer value while maintaining costs below some threshold” and be able
to reason about it and generate a specification/solution for it. As another example,
consider a situation where a goal model changes and a new specification/solution
needs to be generated for the new goal model. In this case, the new specification
may be required to fulfill the evolution goal “Minimize implementation effort” or
“Maximize user familiarity by changing as little as possible the new functionality
of the system relative to the old one”. (For the latter case, see also [30].) In both
cases we are dealing with requirements that are beyond the state-of-the-art for goal
modelling and reasoning. As we will discuss in §3, our proposal can accommodate
such requirements both with respect to modelling and scalable reasoning.

We are interested in advancing the state-of-the-art in goal models and reasoning
by proposing a more expressive modelling languages that encompasses many of the
modelling constructs proposed in the literature, and at the same time offers sound,
complete and tractable reasoning facilities. We are aiming for a goal modelling lan-
guage in the spirit of Sebastiani et al. [36], rather than a social dependencies mod-
elling language, such as i*. To accomplish this, we exploit advances in automated
reasoning technologies, notably Satisfiability Modulo Theories (SMT) [5] and Opti-
mization Modulo Theories (OMT) [38], to propose and formalize an extended notion
of goal model, namely Constrained Goal Model (CGM).

CGMs treat (AND/OR) refinements as first class citizens allowing associated con-
straints, such as Boolean formulas or SMT/OMT formulas. For instance, when mod-

Multi-Objective Reasoning with Constrained Goal Models 3

elling a meeting scheduling system, we may want to express the fact that, to fulfill
the nice-to-have requirement of keeping the scheduling fast enough (e.g., strictly less
than 5 hours) we cannot afford both the time-consuming tasks of performing the
schedule manually (3 hours) and of calling the participant one-by-one by phone (2
hours). CGMs provide user-friendly constructs by which we can encode constraints
like this, either by adding Boolean formulas on the propositions which label such
requirement and tasks, or by associating to those propositions numerical variables
and by adding SMT formulas encoding mixed Boolean-arithmetical constraints on
those variables and propositions. (See §3.) To the best of our knowledge, this was not
possible with previous goal modelling techniques, including that in [36].

At the same time, the CGM tool we developed can cope with goal models an
order of magnitude beyond what has been reported in the literature in most cases. In
some cases involving optimization goals, e.g., “minimize development costs for the
next release of software product S”, the CGM tool performs more modestly, but can
still handle models of size in the hundreds of elements.

The main contributions of this work include:

I. An integration within one modelling framework of constructs that have been
proposed in the literature in a piecemeal fashion, specifically,

(i) Allow for explicit labelling of goal refinements with Boolean propositions
that can be interactively/automatically reasoned upon;

(ii) Provide an explicit representation of domain assumptions to represent pre-
conditions to goals;

(iii) Allow for Boolean constraints over goals, domain assumptions and refine-
ments;

(iv) Provide a representation of preferences over goals and their refinements,
by distinguishing between mandatory and nice-to-have requirements and
by assigning preference weights (i.e., penalties/rewards) to goals and do-
main assumptions. Alternatively, preferences can be expressed explicitly
by setting binary preference relations between pairs of goals or pairs of
refinements;

(v) Assign numerical attributes (e.g., resources like cost, worktime, and room)
to goals and/or refinements and define constraints and multiple objective
functions over goals, refinements and their numerical attributes.

(vi) Define optimization goals over numerical attributes, such as cost or cus-
tomer value;

II. Fully support automated reasoning over CGMs that is both sound and complete,
i.e., returns only solutions that are consistent with CGM semantics, and all such
solutions;

III. Establish that reasoning with CGM models is scalable with models including
thousands of elements.

Taking advantage of CGMs’ formal semantics and the expressiveness and efficiency
of current SMT and OMT solvers, we also provide a set of automated reasoning
functionalities on CGMs. Specifically, on a given CGM, our approach allows for:

(a) the automatic check of the CGM’s realizability (i.e., check if the goal model has
any solution);

4 Chi Mai Nguyen et al.

(b) the interactive/automatic search for realizations;
(c) the automatic search for the “best” realization in terms of penalties/rewards and/or

of user-defined preferences;
(d) the automatic search for the realization(s) which optimize given objective func-

tions.

Our approach is implemented as a tool (CGM-Tool), a standalone java application
based on the Eclipse RCP engine. The tool offers functionalities to create CGM mod-
els as graphical diagrams and to explore alternatives scenarios running automated
reasoning techniques. CGM-Tool uses the SMT/OMT solver OptiMathSAT [38,40,
39], which is built on top of the SMT solver MATHSAT5 [8], as automated reasoning
backend. 1

The structure of the paper is as follows: §2 provides a succinct account of nec-
essary background on goal modelling and on SMT/OMT; §3 introduces the notion
of CGM through an example; §4 introduces the syntax and semantics of CGMs; §5
presents the set of automated reasoning functionalities for CGMs; §6 gives a quick
overview of our tool based on the presented approach; §7 provides an experimental
evaluation of the performances of our tool on large CGMs, showing that the approach
scales well with respect to CGM size; §8 gives overview of related work, while in §9
we draw conclusions and present future research challenges.

2 Background

Our research baseline consists of our previous work on qualitative goal models and of
Satisfiability and Optimization Modulo Theories (SMT and OMT respectively). Our
aim in this section is to introduce the necessary background notions on the these top-
ics, so that the reader can follow the narrative in subsequent sections. As prerequisite
knowledge, we assume only that the reader is familiar with the syntax and semantics
of standard Boolean logic and of linear arithmetic over the rationals.

2.1 Goal Models.

Qualitative goal models are introduced in [28], where the concept of goal is used
to represent respectively a functional and non-functional requirement in terms of a
proposition. A goal can be refined by means of AND/OR refinement relationships
and qualitative evidence (strong and weak) for/against the fulfillment of a goal is
provided by contribution links labelled +,− etc. In [18], goal models are formalized
by replacing each proposition g, standing for a goal, by four propositions (FSg , PSg ,
PDg , FDg) representing full (and partial) evidence for the satisfaction/denial of g.
A traditional implication such as (p ∧ q) → r is then translated into a series of
implications connecting these new symbols, including (FSp∧FSq)→ FSr, (PSp∧
PSq) → PSr, as well as FDp → FDr, FDq → FDr, etc. The conflict between

1 The OMT solver OptiMathSAT can be used also as an SMT solver if no objective function is set: in
such case it works as a wrapper of MATHSAT5.

Multi-Objective Reasoning with Constrained Goal Models 5

goals a and b is captured by axioms of the form FSa → FDb, and it is consistent to
have both FSa and FDa evaluated to true at the same time. As a result, even though
the semantics of a goal model is a classical propositional theory, inconsistency does
not result in everything being true. In fact, a predicate g can be assigned a subset of
truth values {FS, PS, FD,PD}.

[36] extended the approach further by including axioms for avoiding conflicts of
the form FSa∧FDa. The approach recognized the need to formalize goal models so
as to automatically evaluate the satisfiability of goals. These goal models, however, do
not incorporate the notion of conflict as inconsistency, they do not include concepts
other than goals, cannot distinguish “nice-to-have” from mandatory requirements and
have no notion of a robust solution, i.e. solution without ”conflict”, where a goal can
not be (fully or partially) denied and (respectively, fully or partially) satisfied at the
same time.

2.2 Satisfiability and Optimization Modulo Theories.

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a quantifier-free first-order formula Φ with respect to some decidable theory T (see
[35,5]). In this paper, we focus on the theory of linear arithmetic over the ratio-
nals, LRA: SMT(LRA) is the problem of checking the satisfiability of a formula Φ
consisting in atomic propositionsA1, A2, ... and linear-arithmetic constraints over ra-
tional variables like “(2.1x1−3.4x2+3.2x3 ≤ 4.2)”, combined by means of Boolean
operators ¬,∧,∨,→,↔. (Notice that a Boolean formula is also a SMT(LRA) for-
mula, but not vice versa.) An LRA-interpretation µ is a function which assigns truth
values to Boolean atoms and rational values to numerical variables; µ satisfies Φ in
LRA, written “µ |= Φ” –aka, µ is a solution for Φ in LRA– iff µ makes the formula
Φ evaluate to true; Φ is LRA-satisfiable iff it has at least one LRA-interpretation µ
s.t. µ |= Φ.

An Optimization Modulo Theories overLRA (OMT(LRA)) problem 〈Φ, 〈obj1, ..., objk〉〉
is the problem of finding solution(s) to an SMT(LRA) formula Φwhich optimize the
rational-valued objective functions obj1, ..., objk, either singularly or lexicographi-
cally [31,37,38,40]). A solution optimizes lexicographically 〈obj1, ..., objk〉 if it op-
timizes obj1 and, if more than one such obj1-optimum solutions exists, it also opti-
mizes obj2,..., and so on.

Very efficient SMT(LRA) and OMT(LRA) solvers are available, which com-
bine the power of modern SAT solvers with dedicated linear-programming decision
and minimization procedures (see [35,5,8,31,37,38,40,39]). For instance, in the em-
pirical evaluation reported in [38] the OMT(LRA) solver OptiMathSAT [38,39] was
able to handle optimization problems with up to thousands Boolean/rational variables
in less than 10 minutes each.

3 Constrained Goal Models

The narrative of the next 3 sections is in line with the following schema.

6 Chi Mai Nguyen et al.

Fig. 1 An example of a CGM with one of its realizations. Here and elsewhere, round-corner rectangles
are requirements; ovals are intermediate goals; hexagons are tasks; rectangles are domain assumptions.
Labeled bullets at the merging point of a group of edges are refinements; contribution edges are labeled
with ++; conflict edges are labeled with –; and refinement bindings are edges between refinements only.
Values of numerical attributes associated with the elements and their positive prerequisite formulas are
written below the respective elements. The realization is highlighted in yellow, and the denied elements
are visible but are not highlighted.

Multi-Objective Reasoning with Constrained Goal Models 7

Fig. 2 A CGM and its realization with minimized Weight. The realization is highlighted in yellow, and
the denied elements are visible but are not highlighted.

8 Chi Mai Nguyen et al.

Fig. 3 A CGM and its realization with minimized lexicographically 〈Weight,workTime, cost〉, or min-
imized lexicographically 〈Weight, numUnsatPrefs〉. The realization is highlighted in yellow, and the
denied elements are visible but are not highlighted.

Multi-Objective Reasoning with Constrained Goal Models 9

In this section (§3), we introduce the notions of constrained goal model (CGM),
and of realization of a CGM; we also present the automated-reasoning functionalities
of our CGM-Tool through a meeting scheduling example (Figure 1), without getting
into the formal details yet.

In §4 we present the abstract syntax and semantics of CGMs, defining formally
the building blocks of a CGM and of its realizations, to which the reader has already
been introduced informally in §3.

In §5 we describe how to support automated reasoning functionalities on CGMs
by encoding them into SMT and OMT. We first show how to encode a CGM M
into a SMT(LRA) formula ΨM, so that the search for an optimum realization of
M reduces to an OMT(LRA) problem over the formula ΨM, which is then fed to
an OMT solver. Then we present the reasoning functionalities over CGMs we have
implemented on top of our OMT solver.

3.1 The CGM Backbone: Goals, Refinements, and Domain Assumptions.

We model the requirements for a meeting scheduling system, including the func-
tional requirement ScheduleMeeting, as well as non-functional/quality requirements
LowCost, FastSchedule, MinimalEffort and GoodQualitySchedule. They are repre-
sented as root goals.

Notationally, round-corner rectangles (e.g., ScheduleMeeting) are root goals, rep-
resenting stakeholder requirements; ovals (e.g. CollectTimetables) are intermediate
goals; hexagons (e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf goals; rect-
angles (e.g., ParticipantsUseSystemCalendar) are domain assumptions. We call el-
ements both goals and domain assumptions. Labeled bullets at the merging point of
the edges connecting a group of source elements to a target element are refinements
(e.g., (GoodParticipation,MinimalConflict)

R20−−→ GoodQualitySchedule), while the
Ris denote their labels.

Remark 1 Unlike previous goal modelling proposals, refinements are explicitly la-
beled, so that stakeholders can refer to them in relations, constraints and preferences.
(This fact will be eventually discussed with more details.) The label of a refinement
can be omitted when there is no need to refer to it explicitly.

Intuitively, requirements represent desired states of affairs we want the system-
to-be to achieve (either mandatorily or preferrably); they are progressively refined
into intermediate goals, until the process produces actionable goals (tasks) that need
no further decomposition and can be executed; domain assumptions are propositions
about the domain that need to hold for a goal refinement to work. Refinements are
used to represent alternatives of how to achieve a non-leaf element, i.e., a refinement
of an element represents one of the alternative of sub-elements that are necessary to
achieve it.

The principal aim of the CGM in Figure 1 is to achieve the requirement ScheduleMeeting,
which is mandatory. (A requirement is set to be mandatory by means of user asser-
tions, see below.) ScheduleMeeting has only one candidate refinement R1, consist-
ing in five sub-goals: CharacteriseMeeting, CollectTimetables, FindASuitableRoom,

10 Chi Mai Nguyen et al.

ChooseSchedule, and ManageMeeting. Since R1 is the only refinement of the re-
quirement, all these sub-goals must be satisfied in order to satisfy it. There may be
more than one way to refine an element; e.g., CollectTimetables is further refined
either by R10 into the single goal ByPerson or by R2 into the single goal BySystem.
Similarly, FindASuitableRoom and ChooseSchedule have three and two possible re-
finements respectively. The subgoals are further refined until they reach the level of
domain assumptions and tasks.

The requirements that are not set to be mandatory are “nice-to-have” ones, like
LowCost, MinimalEffort, FastSchedule, and GoodQualitySchedule (in blue in Fig-
ure 1). They are requirements that we would like to fulfill with our solution, provided
they do not conflict with other requirements.

3.2 Boolean Constraints: Relation Edges, Boolean Formulas and User Assertions.

Importantly, in a CGM, elements and refinements are enriched by user-defined Boolean
constraints, which can be expressed either graphically as relation edges, or textually
as Boolean or SMT(LRA) formulas, or as user assertions.

Relation Edges. We have three kinds of relation edges. Contribution edges “Ei
++−−→

Ej” between elements (in green in Figure 1), like “ScheduleAutomatically
++−−→

MinimalConflicts”, mean that if the source elementEi is satisfied, then also the target
element Ej must be satisfied (but not vice versa). Conflict edges “Ei

−−←→ Ej” be-
tween elements (in red), like “ConfirmOccurrence

−−←→ CancelMeeting”, mean that
Ei and Ej cannot be both satisfied. Refinement bindings “Ri←→Rj” between two
refinements (in purple), like “R2←→R7”, are used to state that, if the target elements
Ei and Ej of the two refinements Ri and Rj , respectively, are both satisfied, then
Ei is refined by Ri if and only if Ej is refined by Rj . Intuitively, this means that the
two refinements are bound, as if they were two different instances of the same global
choice.

For instance, in Figure 1, the refinements R2 and R7 are bound because such
binding reflects a global choice between a manual approach and an automated one.

Boolean Formulas. It is possible to enrich CGMs with Boolean formulas, represent-
ing arbitrary constraints on elements and refinements. Such constraints can be either
global or local to elements or to refinements, that is, each goal G can be tagged with
a pair of prerequisite formulas

{
φ+G, φ

−
G

}
–called positive and negative prerequisite

formulas respectively– so that φ+G [resp. φ−G] must be satisfied when G is satisfied
[resp. denied]. (The same holds for each requirement R.)

For example, to require that, as a prerequisite for FastSchedule, ScheduleManually
and CallParticipants cannot be both satisfied, one can add a constraint to the positive
prerequisite formula of FastSchedule:

φ+FastSchedule
def
= ... ∧ ¬(ScheduleManually ∧ CallParticipants), (1)

or, equivalently, add globally to the CGM the following Boolean formula:

FastSchedule → ¬(ScheduleManually ∧ CallParticipants). (2)

Multi-Objective Reasoning with Constrained Goal Models 11

Notice that there is no way we can express (1) or (2) with the relation edges above.

User Assertions. With CGM-Tool, one can interactively mark [or unmark] require-
ments as satisfied (true), thus making them mandatory (if unmarked, they are nice-to-
have ones). In our example ScheduleMeeting is asserted as true to make it mandatory,
which is equivalent to add globally to the CGM the unary Boolean constraint:

(ScheduleMeeting). (3)

Similarly, one can interactively mark/unmark (effortful) tasks as denied (false). More
generally, one can mark as satisfied or denied every goal or domain assumption. We
call these marks user assertions, because they correspond to asserting that an element
must be true, i.e., it is part of the solutions we are interested in, or false, i.e., we are
interested in solutions that do not include it.

Notice that the process of marking/unmarking elements is conceived to be more
interactive than that of adding/dropping relation edges or constraints.

3.3 Arithmetical Constraints: Numerical Attributes and SMT(LRA) Formulas

Numerical Attributes. In addition to Boolean constraints, it is also possible to use
numerical variables to express different numerical attributes of elements (such as
cost, worktime, space, fuel, etc.) and to add arithmetical constraints in the form of
SMT(LRA) formulas over such numerical variables.

For example, suppose we estimate that fulfilling UsePartnerInstitutions costs
80AC, whereas fulfilling UseHotelsAndConventionCenters costs 200AC. With CGM-
Tool one can express these facts straightforwardly by adding a global numerical vari-
able cost to the model;

then, for every element E in the CGM, CGM-Tool automatically generates a nu-
merical variable costE representing the attribute cost of the element E, it adds the
following defaultglobal constraint and prerequisite formulas:

(cost =
∑
E

costE), (4)

for every element E, φ+E
def
= ... ∧ (costE = 0) (5)

φ−E
def
= ... ∧ (costE = 0), (6)

that set the default value 0 for each costE. (Notice that (4) is a default global con-
straint: the user is free to define his/her own objective functions.) Eventually, for the
elements E of interest, one can set a new value for costE in case E is satisfied: e.g.,
costUsePartnerInstitutions := 80AC and costUseHotelsAndConventionCenters := 200AC. When
so, CGM-Tool automatically updates the values in the positive prerequisite formulas
(5), e.g.:

φ+UsePartnerInstitutions
def
= ... ∧ (costUsePartnerInstitutions = 80) (7)

φ+UseHotelsAndConventionCenters
def
= ... ∧ (costUseHotelsAndConventionCenters = 200),

12 Chi Mai Nguyen et al.

whereas the corresponding constraint (6) is not changed. Similarly, one can set a new
value for costE in case E is denied by updating the values in the negative prerequisite
formulas (6).
Remark 2 Notationally, we use variables and formulas indexed by the element they
belong to (like, e.g., costUsePartnerInstitutions and φ+UsePartnerInstitutions) rather than at-
tribute variables and formulas of the elements in an object-oriented notation (like,
e.g., UsePartnerInstitutions.cost and UsePartnerInstitutions.φ+) because they are
more suitable to be used within the SMT(LRA) encodings (§4 and §5).

SMT(LRA) Formulas. Suppose that, in order to achieve the nice-to-have require-
ment LowCost, we need to have a total cost smaller than 100AC. This can be expressed
by adding to LowCost the prerequisite formula:

φ+LowCost = . . . ∧ (cost < 100). (8)

Hence, e.g., due to (4)-(8), LowCost and UseHotelsAndConventionCenters cannot
be both satisfied, matching the intuition that the latter is too expensive to comply to
the nice-to-have LowCost requirement.

Similarly to cost, one can introduce, e.g., another global numerical attribute workTime
to reason on working time, and estimate, e.g., that the total working time for ScheduleManually,
ScheduleAutomatically, EmailParticipants, CallParticipants, CollectFromSystemCalendar
are 3, 1, 1, 2, and 1 hour(s), respectively, and state that the nice-to-have requirement
FastSchedule must require a global time smaller than 5 hours. As a result of this
process, the system will produce the following constraints.

(workTime =
∑
E

workTimeE) (9)

φ+FastSchedule
def
= ... ∧ (workTime < 5) (10)

φ+ScheduleManually
def
= ... ∧ (workTimeScheduleManually = 3) (11)

φ+ScheduleAutomatically
def
= ... ∧ (workTimeScheduleAutomatically = 1)

φ+EmailParticipants
def
= ... ∧ (workTimeEmailParticipants = 1)

φ+CallParticipants
def
= ... ∧ (workTimeCallParticipants = 2)

φ+CollectFromSystemCalendar
def
= ... ∧ (workTimeCollectFromSystemCalendar = 1),

plus the corresponding negative prerequisite formula, which force the corresponding
numerical attributes to be zero.

As with the previous case, e.g., the arithmetic constraints make the combina-
tion of ScheduleManually and CallParticipants incompatible with the nice-to-have
requirement FastSchedule.

Notice that one can build combinations of numerical attributes. E.g., if labor cost
is 35AC/hour, then one can redefine cost as (cost =

∑
E costE + 35 · workTime), or

introduce a new global variable totalCost as (totalCost = cost + 35 · workTime).

Multi-Objective Reasoning with Constrained Goal Models 13

Remark 3 Although the nice-to-have requirements LowCost and FastSchedule look
isolated in Figure 1, they are implicitly linked to the rest of the CGM by means of
arithmetic constraints on the numerical variables cost and workTime respectively,
which implicitly imply Boolean constraints like:

LowCost → ¬UseHotelsAndConventionCenters (12)
FastSchedule → ¬(ScheduleManually ∧ CallParticipants) (13)

FastSchedule → ¬

ScheduleManually ∧
EmailParticipants ∧
CollectFromSystemCalendar

 (14)

...

Nevertheless, there is no need for stakeholders to consider these implicit constraints,
since they are automatically handled by the internal OMT(LRA) reasoning capabil-
ities of CGM-Tool.

3.4 Realizations of a CGM.

We suppose now that ScheduleMeeting is marked satisfied by means of an user as-
sertion (i.e. it is mandatory) and that no other element is marked. Then the CGM in
Figure 1 has more than 20 possible realizations. The sub-graph which is highlighted
in yellow describes one of them.

Intuitively, a realization of a CGM under given user assertions represents one
of the alternative ways of refining the mandatory requirements (plus possibly some
of the nice-to-have ones) in compliance with the user assertions and user-defined
constraints. It is a sub-graph of the CGM including a set of satisfied elements and
refinements: it includes all mandatory requirements, and [resp. does not include] all
elements satisfied [resp. denied] in the user assertions; for each non-leaf element
included, at least one of its refinement is included; for each refinement included, all
its target elements are included; finally, a realization complies with all relation edges
and with all Boolean and SMT(LRA) constraints. (Notationally, in Figures 1, 2 and
3 a realization is highlighted in yellow, and the denied elements are visible but they
are not highlighted.)

Apart from the mandatory requirement, the realization in Figure 1 allows to
achieve also the nice-to-have requirements LowCost, GoodQualitySchedule, but not
FastSchedule and MinimalEffort; in order to do this, it requires accomplishing the
tasks CharacteriseMeeting, CallParticipants, ListAvailableRooms, UseAvailableRoom,
ScheduleManually, ConfirmOccurrence, GoodParticipation, MinimalConflicts, and
it requires the domain assumption LocalRoomAvailable.

3.5 Setting Preferences in a CGM.

In general, a CGM under given user assertions has many possible realizations. To
distinguish among them, stakeholders may want to express preferences on the re-

14 Chi Mai Nguyen et al.

quirements to achieve, on the tasks to accomplish, and on elements and refinements
to choose. The CGM-Tool provides various methods to express preferences:

– attribute penalties and rewards for tasks and requirements;
– introduce numerical objectives to optimize;
– introduce binary preference relations between elements and between refinements.

These methods, which are described in what follows, can also be combined.

Preferences via Penalties/Rewards. First, stakeholders can define two numerical at-
tributes called Penalty and Reward, then stakeholders can assign penalty values to
tasks and reward values to (non-mandatory) requirements (the numbers “Penalty =
. . .” and “Reward = . . .” in Figure 1). This implies that requirements [resp. tasks]
with higher rewards [resp. smaller penalties] are preferable. Next, stakeholders can
define another numerical attribute Weight, that represents the total difference between
the penalties and rewards. (This can be defined as a global constraint: (Weight =
Penalty − Rewards).) When a model represents preferences, an OMT solver will
look for a realization that minimizes its global weight. For instance, one minimum-
weight realization of the example CGM, as shown in Figure 2, achieves all the nice-
to-have requirements except MinimalEffort, with a total weight of −65, which is the
minimum which can be achieved with this CGM. Such realization requires accom-
plishing the tasks CharacteriseMeeting, EmailParticipants, UsePartnerInstitution,
ScheduleManually, ConfirmOccurrence, GoodParticipation, and MinimalConflicts,
and requires no domain assumption. (This was found automatically by our CGM-
Tool in 0.008 seconds on an Apple MacBook Air laptop.)

Preferences via Multiple Objectives. Stakeholders may define rational-valued ob-
jectives obj1, ..., objk to optimize (i.e., maximize or minimize) as functions of Boolean
and numerical variables —e.g., cost, workTime, totalCost can be suitable objectives—
and ask the tool to automatically generate realization(s) which optimize one objective,
or some combination of more objectives (like totalCost), or which optimizes lexico-
graphically an ordered list of objectives 〈obj1, obj2, ...〉. (We recall that a solution
optimizes lexicographically an ordered list of objectives 〈obj1, obj2, ...〉 if it makes
obj1 optimum and, if more than one such solution exists, it makes also obj2 optimum,
..., etc.) Notice that lexicographic optimization allows for defining objective functions
in a very fine-grained way and for preventing ties: if the stakeholder wants to prevent
tie solutions on objective obj1, he/she can define one further preference criterion obj2
in case of tie on obj1, and so on.

Importantly, our CGM-Tool provides some pre-defined objectives of frequent us-
age. Weight (see last paragraph) is one of them. Other examples of pre-defined ob-
jectives stakeholders may want to minimize, either singularly or in combination with
other objectives, are:

numUnsatRequirements: the number of nice-to-have requirements which are not in-
cluded in the realization;

numSatTasks: the number of tasks which are included in the realization;
numUnsatPrefs: the number of user-defined binary preference relations which are

not fulfilled by the realization (see later).

Multi-Objective Reasoning with Constrained Goal Models 15

For example, the previously-mentioned optimum-weight realization of Figure 2
is such that Weight = −65, workTime = 4 and cost = 80. Our CGM has many dif-
ferent minimum-weight realizations s.t. Weight = −65, with different values of cost
and workTime. Among them, it is possible to search, e.g., for the realizations with
minimum workTime, and among these for those with minimum cost, by setting lex-
icographic minimization with order 〈Weight,workTime, cost〉. This results into one
realization with Weight = −65, workTime = 2 and cost = 0 achieving all the nice-
to-have requirements, as shown in Figure 3, which requires accomplishing the tasks:
CharacteriseMeeting, CollectFromSystemCalendar, GetRoomSuggestions, CancelLessImportantMeeting,
ScheduleAutomatically, ConfirmOccurrence, GoodParticipation, MinimalConflicts,
CollectionEffort, MatchingEffort, and which requires the domain assumptions: ParticipantsUseSystemCalendar,
LocalRoomAvailable. (This was found automatically by our CGM-Tool in 0.016 sec-
onds on an Apple MacBook Air laptop.)

Preferences via Binary Preference Relations. In general, stakeholders might not al-
ways be at ease in assigning numerical values to state their preferences, or in dealing
with SMT(LRA) terms, constraints and objectives. Thus, as a more coarse-grained
and user-friendly solution, it is also possible for stakeholders to express their prefer-
ences in a more direct way by stating explicitly a list of binary preference relations,
denoted as “P1 � P2”, between pairs of elements of the same kind (e.g. pair of
requirements, of tasks, of domain assumptions) or pairs of refinements. “P1 � P2”
means that one prefers to have P1 satisfied than P2 satisfied, that is, that he/she would
rather avoid having P1 denied and P2 satisfied. In the latter case, we say that a pref-
erence is unsatisfied. Notice that P1 � P2 allows for having both P1 and P2 satisfied
or both denied.

Remark 4 These are binary preferences, so that they say nothing on the fact that
each Pi is singularly desirable or not, which in case must be stated separately (e.g., by
penalties/rewards.) Thus, the fact that a binary preference P1 � P2 allows for having
both P1 and P2 denied should not be a surprise: if both {P1 = false, P2 = true}
and {P1 = false, P2 = false} violated P1 � P2, then P2 would play no role in the
preference, so that it would reduce to the unary preference “I’d rather have P1 than
not have it.” A dual argument holds for the fact that P1 � P2 allows for having both
P1 and P2 satisfied.

Also, this choice is a very general one, since it implements the case in which
〈P1, P2〉 are both desirable/rewarding (“I prefer winning the Turing Award than win-
ning at the lottery.”) like the preference between two requirements, as well as the
opposite case in which they are both undesirable/expensive (“I prefer being shot than
being hanged.”) like the preference between two tasks, plus obviously the trivial case
in which P1 is desirable and P2 is undesirable. If this choice is considered too general,
then the stakeholder can add mutual-exclusion constraints, or combine it lexicograph-
ically with penalty/rewards, or directly use penalty/rewards instead.

With CGM-Tool, binary preference relations can be expressed either graphically,
via a “prefer” arc “P1

prefer−→ P2”, or via and ad-hoc menu window. Once a list of
binary preference relations is set, the system can be asked to consider the number of
unsatisfied preference relations as a pre-defined objective (namely numUnsatPrefs),

16 Chi Mai Nguyen et al.

and it searches for a realization which minimizes it. It is also possible to combine
such objective lexicographically with the other objectives.

One typical usage we envision for binary preferences is between pairs of refine-
ments of the same element –or equivalently, in case of single-source refinements,
between their relative source elements. This allows for expressing stakeholders’ pref-
erences between possible ways one intermediate element can be refined.

For example, suppose we want to minimize the total weight of our example
goal model. As previously mentioned, there is more than one realization with mini-
mum weight −65. Unlike the previous example, as a secondary choice we disregard
workTime and cost; rather, we express also the following binary preferences:

BySystem � ByPerson, (15)
UseLocalRoom � UsePartnerInstitutions,

UseLocalRoom � UseHotelsAndConventionCenters.

(Notice that the goal preferences in (15) are pairwise equivalent to the following
refinement preferences:

R2 � R10, R5 � R3, and R5 � R4 (16)

because the refinements in (16) are all single-source ones, whose sources are pairwise
the goals in (15).)

Then we set numUnsatPrefs as secondary objective to minimize after Weight,
that is, we set the lexicographic order 〈Weight, numUnsatPrefs〉. Then our tool re-
turned the same realization of Figure 3 —that is, the same as with minimizing workTime
and cost as secondary and tertiary choice— instead of that in Figure 2. (This solution
was found in 0.018 seconds on an Apple MacBook Air laptop.)

4 Abstract Syntax and Semantics

In this section we describe formally the abstract syntax and semantics of CGMs.

4.1 Abstract Syntax

We introduce first some general definitions. We call a goal graphD a directed acyclic
graph (DAG) alternating element nodes and refinement nodes (collapsed into bullets),
s.t.: (a) each element has from zero to many outgoing edges to distinct refinements
and from zero to many incoming edges from distinct refinements; (b) each refinement
node has exactly one outgoing edge to an element (target) and one or more incoming
edges from distinct elements (sources).

We call a root element node any element node that has no outgoing refinement
edges, a leaf element node any (non-root) element node that has no incoming refine-
ment edges, and an internal element node any other element node. (Hereafter we will
usually drop the word “node”, simply saying “refinement” for “refinement node”,
“element” for “element node”, etc.)

Multi-Objective Reasoning with Constrained Goal Models 17

Table 1 Summary of Goal Model Structure

Constructor Textual Representation Graphical Representation Propositional Encoding

Goal refinement
(
E1, . . . , En

) R−→ E
. . .

E

E2 EnE1

R

((
∧n

j=1 Ej)↔ R)∧
(R→ E)

Closed world —

.

E

RiR1 Rm E →
(∨

Ri∈Ref(G) Ri

)

Contribution E1
++−−→ E2

E2E1
++

(E1 → E2)

Conflict E1
−−←→ E2

E2E1
−−

¬
(
E1 ∧ E2

)

Preferences E1 � E2

E2E1

prefer

(E1 ∨ (¬E2))

Notice that, by construction, only elements can be roots and leaves of a goal
graph. The sets of root, leaf and internal elements of a goal graph D are denoted as
Roots(D), Leaves(D), Internals(D) respectively. Given a refinement R with outgo-
ing edge to the element E and incoming edges from the element s E1, . . . , En, we
call E1, . . . , En the source elements of R and E the target element of R, which are
denoted by Sources(R) and Target(R) respectively. We say that R is a refinement of

E and that R refines E into E1, . . . , En, denoted “(E1, . . . , En)
R−→ E”. The set of

refinements of an element E are denoted with Refinements(E).
Elements are goals or domain assumptions, subject to the following rules:

– a domain assumption cannot be a root element;
– if the target of a refinement R is a domain assumption, then it sources are only

domain assumptions;
– if the target of a refinement R is a goal, then at least one of its sources is a goal.

We call root goals and leaf goals requirements and tasks respectively.
Notationally, we use the symbolsR,Rj for labeling refinements,E,Ei for generic

elements (without specifying if goals or domain assumptions),G,Gi for goals,A,Ai

for domain assumptions. Graphically (see Figure 1) we collapse refinements nodes
into one bullet, so that we see a refinement as an aggregation of edges from a set
of other goals. (See Table 1.) Hence, in a goal graph we consider element nodes as
the only nodes, and refinements as (aggregations of) edges from a group of source
elements to a target element.

18 Chi Mai Nguyen et al.

Definition 1 (Constrained Goal Model) A Constrained Goal Model (CGM) is a
tupleM def

= 〈B,N ,D, Ψ〉, s.t.

– B def
= G ∪ R ∪ A is a set of atomic propositions, where G def

= {G1, ..., GN}, R
def
=

{R1, ..., RK}, A
def
= {A1, ..., AM} are respectively sets of goal, refinement and

domain-assumption labels. We denote with E the set of element labels: E def
= G∪A;

– N is a set of numerical variables in the rationals;
– D is a goal graph, s.t. all its goal nodes are univocally labeled by a goal label in
G, all its refinements are univocally labelled by a refinement label in R, and all
its domain assumption are univocally labeled by a assumption label in A;

– Ψ is a SMT(LRA) formula on B and N .

A CGM is thus a “backbone” goal graphD –i.e., an and-or directed acyclic graph
(DAG) of elements, as nodes, and refinements, as (grouped) edges, which are labeled
by atomic propositions in B– which is augmented with an SMT(LRA) formula Ψ
on the element and refinement labels in B and on the numerical variables in N . The
SMT(LRA) formula Ψ is a conjunction of smaller formulas encoding relation edges,
global and local Boolean/SMT(LRA) constraints, user assertions, and the definition
of numerical objectives, all of which will be described later in this section.

Intuitively, a CGM describes a (possibly complex) combination of alternative
ways of realizing a set of requirements in terms of a set of tasks, under certain domain
assumptions and constraints. A couple of remarks are in order.

Remark 5 The fact that the goal graphD is an and-or graph can be deduced from the
propositional encoding of Goal refinement and Closed World in Table 1: by combin-
ing the propositional encodings of goal refinement and Closed World in Table 1, we
can infer the formulas: 2

E ↔ (
∨
i

Ri) and R↔ (
∧
j

Ej). (17)

Thus, each non-leaf element E is or-decomposed into the set of its incoming refine-
ments {Ri}i, and each refinement R is and-decomposed into the set of its source
elements {Ej}j .

Remark 6 CGMs are more succinct in terms of number of goals than standard and-or
goal models. On the one hand, a standard n-ary and-decomposition of a goal can be
represented straightforwardly in a CGM by one refinement with n sources (Figure 4,
Top), and an or-decomposition by n one-source refinements (Figure 4, Middle), so
that no extra goals are added. On the other hand, in order to represent a piece of CGM
with n non-unary refinements by standard goal models, we need introducing n new
auxiliary intermediate goals to encode refinements, which CGMs encode natively
(Figure 4, Bottom). We recall from §3 that refinements do not need to be explicitly
labeled unless they need to be mentioned in other parts of the model.

2 We recall that in Boolean logic the formula
∧

i(Ri → E), which comes from the goal refinement
encoding in Table 1, is equivalent to E ← (

∨
i Ri). The latter, combined with the encoding of Closed

World E → (
∨

i Ri), gives the left formula in (17). The right formula in (17) is the other part of the goal
refinement encoding in Table 1.

Multi-Objective Reasoning with Constrained Goal Models 19

or

or

andand

with standard goal models
And−or decomposition

with CGMs
And−or decomposition

and

G

G′ G”

G

G′ G”

G11 G12 G21 G22

G

R2R1

G11 G12 G21 G22

G

G′ G”

G

G′ G”

G

G′ G”

R2

R

R1

Fig. 4 Top: and-decomposition and its translation into CGM format as a single multi-source refinement.
Middle: or-decomposition and its translation into CGM format as multiple single-source refinements.
Bottom: a simple piece of CGM (right) and its translation into standard and-or goal model format (left): it
is necessary to introduce two auxiliary goals G′ and G′′ to encode the refinements R1 and R2.

Stakeholders might not be at ease in defining a possibly-complex global SMT(LRA)
formula Ψ to encode constraints among elements and refinements, plus numerical
variables. To this extent, as mentioned in §3, apart from the possibility of defining
global formulas, CGMs provide constructs allowing the user to encode graphically
and locally desired constraints of frequent usage: relation edges, prerequisite formu-
las
{
φ+G, φ

−
G

}
and

{
φ+R, φ

−
R

}
and user assertions. Each is automatically converted

into a simple SMT(LRA) formula as follows, and then conjoined to Ψ .

Element-contribution edges, E1
++−−→ E2, meaning that satisfying E1 forces E2 to

be satisfied (but not vice versa). They are encoded into the formula (E1 → E2).
(The edge E1

++←→ E2 can be used to denote the merging of the two contribution
edges E1

++−−→ E2 and E2
++−−→ E1 into one.)

Element-conflict edges, E1
−−←→ E2, meaning that E1 and E2 cannot be both satis-

fied. They are encoded into the formula ¬(E1 ∧ E2).
Refinement-binding edges, R1←→R2, meaning that, if both the target goals of R1

and R2 (namely E1 and E2 respectively) are satisfied, then R1 refines E1 if and
only if R2 refines E2. They are encoded into the formula (E1 ∧ E2) → (R1 ↔
R2).

User assertions, Ei := > and Ej := ⊥, are encoded into the formulas (Ei), (¬Ej)
respectively.

Prerequisite formulas,
{
φ+G, φ

−
G

}
[resp.

{
φ+R, φ

−
R

}
] are encoded into the formulas

(G→ φ+G) and (¬G→ φ−G) [resp. (R→ φ+R) and (¬R→ φ−R)].

20 Chi Mai Nguyen et al.

The following are instead encoded into SMT(LRA) “soft” 3 constraints:

Preference edges, E1
prefer−→ E2 [resp.R1

prefer−→ R2], and their equivalent binary prefer-
ence relationsE1 � E2 [resp.R1 � R2], are implemented into the soft constraint
φE1�E2

def
= (E1 ∨ (¬E2)) [resp. φR1�R2

def
= (R1 ∨ (¬R2))]. (See also Remark 4

in §3.5.) Notice that E1 and E2 [resp. R1 and R2] must be of the same kind,
i.e. they must be both tasks, or both requirements, or both refinements, or both
intermediate goals, or both domain assumptions.

Unlike with other constraints, these soft constraints are not added directly to
Ψ . Rather, the following SMT(LRA) constraint, which defines a numeric Pseudo-
Boolean cost function, is added to Ψ :

(numUnsatPrefs =
∑

〈EiEj〉∈P

ite(φEi�Ej , 0, 1) +
∑

〈RiRj〉∈P

ite(φRi�Rj , 0, 1)), (18)

where P is the list of binary preference relations, and “ite(φ∗, 0, 1)” denotes an if-
then-else arithmetical term, which is evaluated to 0 if φ∗ is evaluated to true, to 1
otherwise. Hence, numUnsatPrefs counts the number of unsatisfied preferences, that
is, the number of binary preferences Pi � Pj s.t. Pi is false and Pj is true. 4

Notice that, unlike refinements, relation edges and preference edges are allowed
to create loops, possibly involving refinements. In fact, refinements are acyclic be-
cause they represent the and-or decomposition DAG or the CGM requirements. Other
arcs (and formulas) represent relations and constraints among elements, and as such
they are free to form loops, even with refinements.

Finally we provide the user of a list of syntactic-sugaring constructs, which al-
low for defining, both globally and locally, the most standard and intuitive con-
straints among assumption, goal and refinement labels, with no need of defining the
corresponding complicate or less-intuitive propositional formulas. (In what follows,
P1, ..., Pn denote atomic propositions in B.)

Alt (P1, P2) denotes the fact P1 and P2 are alternative, e.g., that one and only one of
them is satisfied. This is encoded by the formula (P1 ↔ ¬P2).

Causes (P1, P2) denotes the fact that satisfying P1 causes P2 to be satisfied. This is
encoded by the formula (P1 → P2).

Requires (P1, P2) denotes the fact that satisfying P1 requires P2 to be satisfied. This
is encoded by the formula (P1 → P2). 5

3 In constraint programming and other related disciplines (e.g. MaxSAT, MaxSMT, OMT) constraints
which must be satisfied are called “hard”, whereas constraints which are preferably satisfied but which can
be safely violated, although paying some penalty, are called “soft”.

4 In practice, the OMT solver OptiMathSAT [39] provides more efficient ad-hoc encodings for soft
constraints like those in (18), which we have exploited in the implementation of CGM-Tool; we refer the
reader to [39] for details.

5 Notice that the relation edge P1
++−−→ P2, and the Boolean constraints Causes (P1, P2),

Requires (P1, P2), and (P1 → P2) are equivalent from the perspective of Boolean semantics. Never-
theless, stakeholders may use them in different contexts: e.g., “Causes (P1, P2)” is used when event P1

occurs before P2 and the former causes the latter, whereas “Requires (P1, P2)” is used when P1 occurs
after P2 and the former requires the latter as a prerequisite.

Multi-Objective Reasoning with Constrained Goal Models 21

AtMostOneOf ({P1, ..., Pn}) denotes the fact that at most one of {P1, ..., Pn} must
be satisfied. This is encoded by the formula

(∧
1≤i<j≤n(¬Pi ∨ ¬Pj)

)
.

AtLeastOneOf ({P1, ..., Pn}) denotes the fact that at least one of {P1, ..., Pn} must
be satisfied. This is encoded by the formula

(∨
1≤i≤n Pi

)
.

OneOf ({P1, ..., Pn}) denotes the fact that exactly one of {P1, ..., Pn} must be sat-
isfied. This is encoded by the conjunction of the previous two formulas.

4.2 Semantics

The semantics of CGMs is formally defined in terms of the semantics of simple
Boolean expressions, as follows.

Definition 2 (Realization of a CGM) LetM def
= 〈B,N ,D, Ψ〉 be a CGM. A real-

ization ofM is a LRA-interpretation µ over B ∪N such that:

(a) µ |= ((
∧n

i=1Ei)↔ R) ∧ (R→ E) for each refinement
(
E1, . . . , En

) R−→ E;
(b) µ |=

(
E → (

∨
Ri∈Ref(E)Ri)

)
, for each non-leaf element E;

(c) µ |= Ψ .

We say thatM is realizable if it has at least one realization, unrealizable otherwise.

Alternatively and equivalently, (a) and (b) can be substituted by the conditions:

(a′) µ |= ((
∧n

i=1Ei)↔ R) for each refinement
(
E1, . . . , En

) R−→ E;
(b′) µ |=

(
E ↔ (

∨
Ri∈Ref(E)Ri)

)
, for each non-leaf element E,

which reveal the and-or structure of D. (Recall Remark 5 and Footnote 2.)

In a realization µ for a CGM M def
= 〈B,N ,D, Ψ〉, each element E or refine-

ment R can be either satisfied or denied (i.e., their label can be assigned true or false
respectively by µ), and each numerical value is assigned a rational value. µ is rep-
resented graphically as the sub-graph of D which includes all the satisfied elements
and refinements and does not include the denied elements and refinements. As an
example, consider the realization highlighted in yellow in Figure 1, where cost = 0
and costE = 0 for every element E. From Definition 2, a realization µ represents a
sub-graph of the CGM, such that:

(a) A refinement R is part of µ if and only if all its source elements Ei are also
included. Moreover, if R is part of µ, then also its target element E is part of it.
(See, e.g., refinement R1 for ScheduleMeeting, with all its source goals.)

(b) If a non-leaf goal is in a realization sub-graph, then at least one of its refinements
is included in the realization. (See, e.g., refinement R5 for FindASuitableRoom.)

(c) A realization complies with all Boolean and SMT(LRA) constraints of the CGM,
including relational edges, global and local formulas, user assertions, and the
definitions of the numerical attributes and objectives. In particular:

E1
++−−→ E2: If E1 is in µ, then E2 is in µ. (See, e.g., the contribution edge
BySystem

++−−→ CollectionEffort.)

22 Chi Mai Nguyen et al.

E1
−−←→ E2: E1 and E1 cannot be both part of µ. (See, e.g., the conflict edge

Byperson
−−←→ CollectionEffort.)

R1←→R2: if both the target goals of R1 and R2 are part of the realization µ,
then R1 is in µ if and only if R2 is there. (See, e.g., the binding R16←→R17.)

User assertions: If Ei is marked satisfied [resp. denied], then Ei is [resp. is not]
part of a realization µ. (See, e.g., the requirement ScheduleMeeting, which is
mandatory, i.e., it is marked satisfied.)

φ+G: if G is part of a realization µ, then φ+G must be satisfied in µ. (E.g., LowCost

is part of µ, so that φ+G
def
= ... ∧ (cost < 100) is satisfied, in compliance with

the fact that µ sets cost = 0.)
φ−G: if G is not part of a realization µ, then φ−G must be satisfied in µ. (E.g.,

UsePartnerInstitutions is not part of µ, so that φ−UsePartnerInstitutions –which
includes (costUsePartnerInstitutions = 0) by (6)– is satisfied, in compliance with
the fact that µ sets costE = 0 for every E.)

Global formulas and attribute definitions: The realization complies with all global
formulas and attribute definitions. (E.g., the global formula (cost =

∑
E costE),

which defines the attribute cost, is satisfied by µ because cost = 0 and
costE = 0 for every element E.)

Remark 7 Importantly, in the definition of objectives only non-zero terms of the sums
need to be considered. (E.g., the sum in (cost =

∑
E∈E costE) can be safely restricted

to the elements UsePartnerInstitutions and UseHotelsAndConventionCenters.) This
allows for reducing drastically the number of rational variables involved in the en-
coding. In the implementation of CGM-Tool we have exploited this fact.

5 Automated Reasoning with Constrained Goal Models

In this section we describe how to perform automated reasoning functionalities on
CGMs by encoding them into SMT and OMT.

5.1 Encoding of Constrained Goal Models

Definition 3 (SMT(LRA) Encoding of a CGM) Let M def
= 〈B,N ,D, Ψ〉 be a

CGM. The SMT(LRA) encoding ofM is the formula ΨM
def
= Ψ ∧ ΨR ∧ ΨE , where:

ΨR
def
=

∧(
E1,...,En

)
R−→E, R∈R

(
(

n∧
i=1

Ei ↔ R) ∧ (R→ E)
)
, (19)

ΨE
def
=

∧
E∈Roots(D)∪Internals(D)

(
E → (

∨
Ri∈Refinements(E)

Ri)
)
. (20)

Roots(D) and Internals(D) being the root and internal elements of D respectively.
We call ΨM the SMT(LRA) Encoding of the CGMM.

Multi-Objective Reasoning with Constrained Goal Models 23

Notice that the formulas ΨR and ΨE in (19) and (20) encode directly points (a)
and (b) in Definition 2, for every element and refinement in the CGM. In short, the
ΨR ∧ΨE component of ΨM encodes the relation induced by the and-or goal graph D
inM. The component Ψ is the formula described in point (c) in Definition 2, which
encodes all Boolean and SMT(LRA) constraints of the CGM, including relational
edges, global and local formulas, user assertions, and the definitions of the numerical
attributes and objectives.

Therefore, the following facts are straightforward consequences of Definitions 2
and 3 and of the definition and OMT(LRA).

Proposition 1 LetM def
= 〈B,N ,D, Ψ〉 be a CGM; let ΨM its SMT(LRA) encoding

as in Definition 3; let µ a LRA-interpretation over B∪N . Then µ is a realization of
M if and only if µ |= ΨM.

In short, Proposition 1 says that µ is a realization for the CGMM if and only if µ is
a model in SMT(LRA) for the formula ΨM. Therefore, a realization µ forM can
be found by invoking a SMT(LRA) solver on the CGM encoding ΨM.

Proposition 2 Let M and ΨM be as in Proposition 1, and let µ be a realization
ofM. Let {obj1, ..., objk} be numerical objectives occurring in ΨM. Then we have
that:

(i) for every i in 1, ..., k, µminimizes [resp. maximizes] obji if and only if µ is a solu-
tion of the OMT(LRA) minimization [resp. maximization] problem 〈ΨM, 〈obji〉〉;

(ii) µ lexicographically minimizes [resp. maximizes] 〈obj1, ..., objk〉 if and only if µ
is a solution of the OMT(LRA) lexicographic minimization [resp. maximization]
problem 〈ΨM, 〈obj1, ..., objk〉〉.

In short, Proposition 2 says that µ is a realization for the CGM M which opti-
mizes lexicographically 〈obj1, ..., objk〉 if and only if µ is a model in SMT(LRA)
for the formula ΨM which optimizes lexicographically 〈obj1, ..., objk〉. Therefore,
one such realization can be found by invoking a OMT(LRA) solver on ΨM and
〈obj1, ..., objk〉. Notice that we are always looking for one realization at a time. Mul-
tiple realizations require multiple calls to the OMT solver.

5.2 Automated Reasoning on Constrained Goal Models

Propositions 1 and 2 suggest that realizations of a CGM M can be produced by
applying SMT(LRA) solving to the encoding ΨM, and that optimal realizations
can be produced by applying OMT(LRA) to ΨM and a list of defined objectives
obj1, ..., objk. (Notice that such list may include also the pre-defined objectives Weight,
numUnsatRequirements, numSatTasks and numUnsatPrefs of §3 and (18) to be
minimized.) This allowed us to implement straightforwardly the following reason-
ing functionalities on CGMs by interfacing with a SMT/OMT tool.
Search/enumerate realizations. Stakeholders can automatically check the realizabil-

ity of a CGMM –or to enumerate one or more of its possible realizations– under

24 Chi Mai Nguyen et al.

a group of user assertions and of user-defined Boolean and SMT(LRA) con-
straints; the tool performs this task by invoking the SMT solver on the formula
ΨM of Definition 3.

Search/enumerate minimum-penalty/maximum reward realizations. Stakeholders can
assert the desired requirements and set penalties of tasks; then the tool finds au-
tomatically realizations achieving the former while minimizing the latter, by in-
voking the OMT solver on ΨM with the pre-defined Weight objective. The vice
versa is obtained by negating undesired tasks and setting the rewards of nice-to-
have requirements. Every intermediate situations can be also be obtained.

Search/enumerate optimal realizations wrt. pre-defined/user-defined objectives. Stakeholders
can define their own objective functions obj1, ..., objk over goals, refinements and
their numerical attributes; then the tool finds automatically realizations optimiz-
ing them, either independently or lexicographically, by invoking the OMT solver
on ΨM and obj1, ..., objk. User-defined objectives can also be combined with
the pre-defined ones, like Weight, numUnsatRequirements, numSatTasks and
numUnsatPrefs.

In particular, notice that numUnsatPrefsallows for addressing the fulfillment of the
maximum number of binary preferences as the optimization of a pre-defined objec-
tive.

Example 1 As a potentially frequent scenario, stakeholders may want to find a re-
alization which minimizes, in order of preference, the number of unsatisfied non-
mandatory requirements, the number of unsatisfied binary preferences, and the num-
ber of satisfied tasks. This can be achieved by setting the following ordered list of
pre-defined objectives to minimize lexicographically:

〈numUnsatRequirements, numUnsatPrefs, numSatTasks〉.
Notice that all the above actions can be performed interactively by marking an

unmarking (nice-to-have) requirements, tasks and domain assumptions, each time
searching for a suitable or optimal realization.

Importantly, when a CGM is found un-realizable under a group of user assertions
and of user-defined Boolean and SMT(LRA) constraints, it highlights the subparts
of the CGM and the subset of assertions causing the problem. This is implemented
by asking the SMT/OMT solver to identify the unsatisfiable core of the input formula
—i.e. the subset of sub-formulas which caused the inconsistency, see e.g. [9]— and
mapping them back into the corresponding information.

6 Implementation

CGM-Tool provides support for modelling and reasoning on CGMs. Technically,
CGM-Tool is a standalone application written in Java and its core is based on Eclipse
RCP engine. Under the hood, it encodes CGMs and invokes the OptiMathSAT 6

SMT/OMT solver [39] to support reasoning on goal models. It is freely distributed as
a compressed archive file for multiple platforms 7. CGM-Tool supports:

6 http://optimathsat.disi.unitn.it
7 http://www.cgm-tool.eu/

Multi-Objective Reasoning with Constrained Goal Models 25

Fig. 5 CGM-Tool: Component view

2 GUI and Working Environment

This section describes the basic GUI parts of CGM-Tool, and also provides a general overview

of the tool working environment. Figure 3 outlines the general appearance of the tool.

Figure 3: CGM-Tool Overview

2.1 CGM-Tool GUI

The graphical user interface of CGM-Tool is composed of menus, editor area, palette and

several di↵erent views. The following sub-sections will explain parts of the GUI one by one.

2.1.1 Menus

Commands, which are scattered over the tool menu bar and tool bar are the main interfaces

to access the primary functions of CGM-Tool. The succeeding sub-sections will introduce

these commands and their use.

3

Fig. 6 CGM-Tool: Graphical User Interface as in the tool manual [27] (green notes are for description).

Specification of projects: CGMs are created within the scope of project containers.
A project contains a set of CGMs that can be used to generate reasoning sessions
with OptiMathSAT (i.e., scenarios);

26 Chi Mai Nguyen et al.

1.	Click	on	SMT	Variable	to	define	the	numerical	a9ribu:ons	

2.	Fill	in	the	name	of	the	numerical	
a9ribu:on	and	click	Define		

Fig. 7 CGM-Tool: How to Define Numerical Attributes (instructions in red).

2nd:	click	on	an	element	

1st:	choose	the	Node	Variable	tab	

Then	you	will	see	(and	be	able	to	define)	all	the	local	numerical	a=ributes	of	the	chosen	element	

Fig. 8 CGM-Tool: How to Define the Value of the Numerical Attributes Associated with Elements (in-
structions in red).

Choose	Model	Variable	tab	to	be	able	to	access	to	the	
global	numerical	a5ributes.	

You	can	change	the	value	of	Priority	of	an	a3ribute.	The	lower	
the	value	(>	1),	the	higher	its	op?miza?on	priority.	0	mean	
that	we	do	not	care	about	op?miza?on	of	this	a3ribute.	

Choose	to	either	maximize	the	total	value	of	the	a3ribute	
or	to	minimize	it	

Fig. 9 CGM-Tool: How to define objectives from Numerical Attributes (instructions in red).

Multi-Objective Reasoning with Constrained Goal Models 27

1.	Click	on	Global	Constraint	to	define	Constraints	

2.	Type	in	the	
constraint	and	click	
ADD	to	add	the	
constraint	Right	click	on	the	constraint	

to	be	able	to	REMOVE	the	
constraint	(when	necessary)	

Fig. 10 CGM-Tool: How to Define Global Constraints (instructions in red).

1.	Click	on	Generate	Scenario	to	create	a	scenario	

2.	Give	the	scenario	a	name	and	click	Finish	

Fig. 11 CGM-Tool: How to Create a Scenario (instructions in red).

Diagrammatic modelling: the tool enables the creation (drawing) of CGMs in terms
of diagrams; furthermore it enhances the modelling process by providing real-
time check for refinement cycles and by reporting invalid refinement, contribution
and binding links;

Consistency/well-formedness check: CGM-Tool allows for the creation of diagrams
conform with the semantics of the modelling language by providing the ability to
run consistency analysis on the model;

28 Chi Mai Nguyen et al.

Click	on	the	cgm	file	to	open	the	
generated	scenario	

Fig. 12 CGM-Tool: How to Open the created Scenario (instructions in red).

Right-click	on	an	element	to	force	it	as	
true	or	false.”	

Note	that:	Mandatory	requirements	must	be	“Force	True”	
“Force	True”	elements	are	marked	as	red,	while	“Force	False”	elements	
are	marked	as	green.	

Fig. 13 CGM-Tool How to Add User’s Assertions (instructions in red).

Fig. 14 CGM-Tool How to Automatically Generate a Realization: click on Launch Reasoner in the menu
(instructions in red).

Multi-Objective Reasoning with Constrained Goal Models 29

Automated Reasoning: CGM-Tool provides the automated reasoning functionalities
of §5 by encoding the model into an SMT formula. The results of OptiMathSAT
are shown directly on the model as well as in a tabular form.

One essential feature of the tool is that expressive constructs (which may be more
complex and difficult to use) are only available on demand: there are easy-to-use
default settings for everything, so that the user can decide the level of expressiveness
he/she feels at ease with.

CGM-Tool extends the STS-Tool [32] as an RCP application by using the major
frameworks shown in Figure 5: Rich Client Platform (RCP), a platform for build-
ing rich client applications, made up of a collection of low level frameworks such as
OSGi, SWT, JFace and Equnix, which provide us a workbench where to get things
like menus, editors and views; Graphical Editing Framework (GEF), a framework
used to create graphical editors for graphical modelling tools (e.g., tool palette and
figures which can be used to graphically represent the underlying data model con-
cepts); Eclipse Modelling Framework (EMF), a modelling framework and a code gen-
eration facility for building tools and applications based on a structured data model.

With CGM-Tool, a CGM is built progressively as a sequence of scenarios, which
are versions of the CGM to which the automated reasoning functionalities of the
CGM-Tool can be applied. Figure 6 shows the graphical user interface (GUI) of the
tool. Figures 7 and 8 show respectively how to define a numerical attribute of an ele-
ment and how to set its value. Figure 9 shows how to set objective functions from the
numerical attributes (e.g., set the priorities, choose the form of optimization (max-
imize/minimize), . . .). Figure 10 shows how to define the global constraints in the
model. Figure 11 and Figure 12 show how to create and open a scenario. Figure 13
shows how the user assertions can be added by using the option “Force True” (ele-
ment that must be included in the realization) and “Force False” (element that must
not be included in the realization). Figure 14 shows how to automatically generate a
realization for the current scenario by invoking the automated-reasoning functionali-
ties.

7 Scalability of the Reasoning Tool

We address the issue of the scalability of the automated-reasoning functionalities of
§5 wrt. the size of CGMs, by providing an empirical evaluation of the performance
of CGM-Tool on increasingly-large CGMs. (For the sake of readability, here we pro-
vide only a qualitative description, whereas the data and plots are reported in an
Appendix.) As in §3, all experiments have been run on a MacBook Air laptop, Intel
Core i5 1.8 GHz, 2 cores, 256 KB L2 Cache per Core, 3 MB L3 Cache, 4GB RAM.

For the readers’ convenience, a compressed directory containing all the material
to reproduce these experiments (models, tools, scripts, etc.) is available at http:
//www.cgm-tool.eu/experiment-version/.

We consider first the schedule-meeting CGM of §3 as a seed model. The model
consists in 32 goals –among which there are 1 mandatory requirement, 4 nice-to-
have requirements, and 18 tasks– plus 20 refinements and 2 domain assumptions,
totaling 54 nodes. The CGM contains also 3 numerical objectives: cost, workTime,

30 Chi Mai Nguyen et al.

and Weight. The user-defined objectives cost and workTime involve respectively 2
and 5 tasks and no requirement, whilst the pre-defined attributes Weight involves 16
tasks plus all 4 non-mandatory requirements. This involves 3+ 2+5+0+0+16+
4 = 30 rational variables (recall Remark 7). There are also three binary preference
relations (15).

In the example reported in §3 with different configurations, the tool returned the
optimal solutions in negligible time (all took less than 0.02 seconds). This is not
surprising: as mentioned in §2.1, in previous empirical evaluation of OMT-encoded
problems from formal verification, OptiMathSAT successfully handled optimization
problems with up to thousands Boolean/rational variables [38], so that hand-made
CGMs resulting into SMT formulas with few tens of Boolean and rational variables,
like that in §3, are not a computational challenge.

In perspective, since CGM-Tool is supposed to be used to design CGMs repre-
senting possibly-large projects, we wonder how its automated-reasoning functionali-
ties will scale on large models. To do this, we choose to build benchmark CGMs of
increasing size, by combining different instances of the schedule-meeting CGM of
§3 in various ways, and testing them with different combination of objectives.

7.1 Experiment Setup.

In all our experiments CGMs were produced as follows, according to three positive
integer parameters N , k, and p, and some choices of objectives.

GivenN and k, we pickN distinct instances of the schedule-meeting CGM of §3,
each with a fresh set of Boolean labels and rational variables, we create an artificial
root goal G with only one refinement R whose source goals are the N mandatory
requirements “ScheduleMeetingi” of each CGM instance. Hence, the resulting CGM
has 54 ·N+2 nodes and 30 ·N rational variables (see Figure 16). In another group of
experiments (see Figure 15) we dropped the non-mandatory requirements and their 4
direct sub-tasks, so that each instance contains 24 goals, 2 domain assumptions and
18 refinements, and the resulting CGM has 44 · N + 2 nodes and 26 · N rational
variables.

Then we randomly add (k − 1) ·N contribution relations “ ++−−→” and N conflict
relations “ −−←→” between tasks belonging to different instances. When binary prefer-
ence relations are involved (see below), we also randomly add p ·N binary preference
relations, each involving two refinements of one same goal.

In each group of experiments we fix the definition of the objectives and we set
the value of k (and p when it applies), and increase the values of N . For every choice
of N , we automatically 8 generate 100 instances of random problems as in the above
schema, which we feed to our tool, and collect the median CPU times over the solved
instances –including both encoding and solving times– as well as the number of un-
realizable instances as well as the number of instances which OptiMathSAT could
not solve within a timeout of 1000 seconds.

8 To perform this test automatically, we developed an automated problem generator/manipulator which
interfaces directly with the internal data structure representing the CGMs inside CGM-Tool.

Multi-Objective Reasoning with Constrained Goal Models 31

Notice that, following some ideas from a different context [20,33], the parameters
N , k and p have been chosen so that to allow us to increase monotonically and tune
some essential features of the CGMs under test, which may significantly influence
the performances. E.g.,

– N increases linearly the number of Boolean and rational variables,
– k (and, to some extent, p) increases the connectivity of the graph and the ratio

between unrealizable and realizable CGMs.
– Importantly, k and p also play an essential role in drastically reducing the sym-

metry of the resulting CGMs, and insert some degree of randomness.

Another important parameter, which we borrowed from the schedule-meeting CGM,
is the number of Boolean atoms per objective.

Remark 8 We are aware that the CGMs produced with this approach may not rep-
resent realistic problems. However, we stress the fact that here we focus only on
providing a test on the scalability of our automated-reasoning functionalities.

7.2 Results.

We run two groups of experiments in which we focus on optimizing, respectively:

– numerical attributes, like cost, work-time, penalty/rewards;
– discrete features, like the number of binary preferences, of want-to-have require-

ments and of tasks to accomplish.

In the first group of experiments we consider the reduced version of the CGMs
(i.e. without nice-to-have requirements) without random binary preference relations.
We fix k = 2, 4, 5, 8. In each setting, we run experiments on three functionalities:

a. plain realizability check (without objectives),
b. single-objective optimization on cost, workTime, and Weight respectively,
c. lexicographic optimization respectively on 〈cost,workTime,Weight〉 and on 〈Weight,workTime, cost〉.

Figure 17 shows the overall median CPU time over the solved instances of the first
group of experiments, which are plotted against the total number of nodes of the
CGM under test. 9 (For more details about the experiment data and the median CPU
time over the solved instances for each special case please see Figures 19-26 in the
Appendix.)

First, we notice that checking the realizability of the CGM, that is, finding one
realization or verifying there is none, requires negligible time, even with huge CGMs
(> 8, 000 nodes, > 5, 000 rational variables) and even when the CGM is not real-
izable. Second, the time taken to find optimal solutions on single objectives seem
to depend more on the number of variables in the objective than on the actual size
of the CGM: for cost (2 · N variables) the solver can find optimum solutions very
quickly even with huge CGMs (> 8.000 nodes, > 5, 000 rational variables) whilst

9 The choice of using the total number of nodes for the X axis in all our plots aims at providing an
eye-catching indication of the actual size of the CGMs under test.

32 Chi Mai Nguyen et al.

with Weight (16 · N variables) it can handle problems of up to ≈ 400 nodes and
≈ 200 rational variables. Third, lexicographic optimization takes more time than

single-objective optimization, but the time mostly depends on the first objective in
the list.

In the second group of experiments we consider the full version of the CGMs
(with nice-to-have requirements) and introduce the random binary preference rela-
tions. We fix k = 2 and we run different experiments for p = 6, p = 8 and p = 12.
In each setting, we run experiments on three functionalities:

a. plain realizability check (without objectives),
b. lexicographic optimization on 〈numUnsatPrefs, numUnsatRequirements, numSatTasks〉

(PRT),
c. lexicographic optimization on 〈numUnsatRequirements, numUnsatPrefs, numSatTasks〉

(RPT).

Figure 18 shows the overall median CPU time over the solved instances of the second
group of experiments. (For more details about the experiment data and the median
CPU time over the solved instances for each special case please see Figures 27-32 in
the Appendix.)

First, checking realizability is accomplished in negligible time even with huge
CGMs (> 10, 000 nodes, > 6, 000 rational variables), as before. Second, we notice
that optimal solutions, even with a three-level lexicographic combination of objec-
tives, can be found with large CGMs (>1, 000 nodes, >600 rational variables).

On the negative side, for some problems, in particular large ones with objectives
involving large amounts of elements, we notice that the search for the optimal real-
ization could not be accomplished within the timeout.

To this extent, a few remarks are in order.
First, when interrupted by a timeout, OptiMathSAT can be instructed to return

the current best solution. Since OptiMathSAT typically takes most of its time in fine-
tuning the optimum and in checking there is no better one (see [38]), we envisage that
good sub-optimal solutions can be found even when optimal ones are out of reach.

Second, our CGMs are very large in breadth and small in depth, with a domi-
nating percentage of tasks over the total number of goals. We envisage that this may
have made the number of variables in the sums defining Weight and numSatTasks
unrealistically large wrt. the total size of the CGMs. This underscores the need for
further experimentation to confirm the scalability of our proposal.

Third, in our experiments we did not consider user assertions which, if consid-
ered, would force deterministic assignments and hence reduce drastically the size of
the OMT search space.

Fourth, OMT is a recent technology [37] which is progressing at a very high pace,
so that it is reasonable to expect further performance improvements for the future
versions of OMT tools. In particular, a recent enhancement for handling Pseudo-
Boolean cost functions as in (18) has provided interesting preliminary results [41].

Overall, our evaluation showed that CGM-Tool always checks the realizability of
huge CGMs in negligible time and finds optimal realizations on problems whose size
ranges from few hundreds to thousands of nodes, mostly depending on the number
of variables involved in the objective functions.

Multi-Objective Reasoning with Constrained Goal Models 33

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

N
um

be
ro

fG
oa

ls

N
um

be
ro

fR
efi

ne
m

en
ts

N
um

be
ro

fD
om

ai
n

A
ss

um
pt

io
ns

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

1 100 2 49 37 4 90 52
2 100 3 73 55 6 134 78
3 100 4 97 73 8 178 104
4 100 5 121 91 10 222 130
5 100 6 145 109 12 266 156
6 100 7 169 127 14 310 182
7 100 9 217 163 18 398 234
8 100 11 265 199 22 486 286
9 100 13 313 235 26 574 338

10 100 15 361 271 30 662 390
11 100 17 409 307 34 750 442
12 100 21 505 379 42 926 546
13 100 26 625 469 52 1146 676
14 100 31 745 559 62 1366 806
15 100 36 865 649 72 1586 936
16 100 41 985 739 82 1806 1066
17 100 46 1105 829 92 2026 1196
18 100 51 1225 919 102 2246 1326
19 100 101 2425 1819 202 4446 2626
20 100 151 3625 2719 302 6646 3926
21 100 201 4825 3619 402 8846 5226

Fig. 15 First group of experiments, summary of experimental data.

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

N
um

be
ro

fG
oa

ls

N
um

be
ro

fR
efi

ne
m

en
ts

N
um

be
ro

fD
om

ai
n

A
ss

um
pt

io
ns

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

1 100 2 65 41 4 110 60
2 100 3 97 61 6 164 90
3 100 4 129 81 8 218 120
4 100 5 161 101 10 272 150
5 100 6 193 121 12 326 180
6 100 7 225 141 14 380 210
7 100 9 289 181 18 488 270
8 100 11 353 221 22 596 330
9 100 13 417 261 26 704 390

10 100 15 481 301 30 812 450
11 100 17 545 341 34 920 510
12 100 21 673 421 42 1136 630
13 100 26 833 521 52 1406 780
14 100 31 993 621 62 1676 930
15 100 36 1151 721 72 1946 1080
16 100 41 1313 821 82 2216 1230
17 100 46 1473 921 92 2486 1380
18 100 51 1633 1021 102 2756 1530
19 100 101 3233 2021 202 5456 3030
20 100 151 4833 3021 302 8156 4530
21 100 201 6433 4021 402 10856 6030

Fig. 16 Second group of experiments, summary of experimental data.

34 Chi Mai Nguyen et al.

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

co
st
(2
N
)	

co
st
(4
N
)	

co
st
(5
N
)	

co
st
(8
N
)	

0m
e(
2N

)	

0m
e(
5N

)	

0m
e(
4N

)	

0m
e(
8N

)	

w
ei
gh
t(
2N

)	

w
ei
gh
t(
4N

)	

w
ei
gh
t(
5N

)	

w
ei
gh
t(
8N

)	

co
st
/0
m
e/
w
ei
gh
t(
2N

)	

co
st
/0
m
e/
w
ei
gh
t(
4N

)	

co
st
/0
m
e/
w
ei
gh
t(
5N

)	

co
st
/0
m
e/
w
ei
gh
t(
8N

)	

w
ei
gh
t/
0m

e/
co
st
(2
N
)	

w
ei
gh
t/
0m

e/
co
st
(4
N
)	

w
ei
gh
t/
0m

e/
co
st
(5
N
)	

w
ei
gh
t/
0m

e/
co
st
(8
N
)	

Fig. 17 First group of experiments: overall median CPU times over solved instances. The name of each
plot denotes the cost function used and the value of N : e.g., cost/time/weight(2N) detotes the
lexicographic optimization of {cost,WorkTime,Weight} on problems built on N = 2 replicas.

Multi-Objective Reasoning with Constrained Goal Models 35

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

6P
_p

re
fe
re
nc
es
	p
rio

rit
y	

8P
_p

re
fe
re
nc
es
	p
rio

rit
y	

12
P_

pr
ef
er
en

ce
s	p

rio
rit
y	

6P
_s
o5

	re
qu

ire
m
en

ts
	p
rio

rit
y	

8P
_s
o5

	re
qu

ire
m
en

ts
	p
rio

rit
y	

12
P_

so
5	
re
qu

ire
m
en

ts
	p
rio

rit
y	

Fig. 18 Second group of experiments: overall median CPU times over solved instances.

36 Chi Mai Nguyen et al.

8 Related work

We next offer a quick overview of, and comparison with some the state of the art
goal-oriented modelling languages. [24], [23], and [6] provide better and deeper
comparisons on requirements modelling languages and the goal-oriented approach,
including their advantages and limitations.

KAOS. KAOS [11] supports a rich ontology for requirements that goes well beyond
goals, as well as a Linear Temporal Logic (LTL)-grounded formal language for con-
straints. This language is coupled with a concrete methodology for capturing and
analyzing requirements problems. KAOS supports a number of analysis techniques,
including obstacle, inconsistency and probabilistic goal analysis. However, unlike
our proposal, KAOS does not support nice-to-have requirements and preferences,
nor does it exploit SAT/SMT solver technologies for scalability.

Sebastiani et al.. Sebastiani et al. [18,36] propose a formal goal modelling language
that supports scalable reasoning using SAT-solving techniques. Our proposal sub-
sumes that work in many ways, including a more expressive language and much
more advanced SMT/OMT-solving technology.

There is one construct of [18,36] that was left out of the CGM language: + and−
contributions from goals to goals. There are several reasons for this decision. In un-
constrained) goal models, formalizing (+, −) contributions require a 4-value logic
(fully/partially satisfied/denied). In principle our CGM framework could be extended
to such a logic, with the following drawbacks:

(a) The size of the Boolean search space would extend from 2N to 4N . Given that
reasoning functionality in this paper are much more sophisticated and computa-
tionally more demanding than those in our earlier papers, this might drastically
reduce the efficiency of the approach.

(b) Unlike standard 2-value logic, which allows us to give a clear semantics of “re-
alization”, without any vagueness, it is not obvious to us what a “realization”
could be in such logic. (E.g., should realizations admit partially satisfied/denied
tasks/requirements/assumptions? If yes, how should an user interpret a partially-
satisfied/denied requirement/task/assumption in a realization returned by the sys-
tem? In which sense a realization involving partial values can be considered “op-
timal” or “optimum”?

There are other differences between the two proposals. In CGMs, we have made
and/or-decompositions explicit by making refinement a first class citizen that can be
named and talked about (see Figure 4 and Remark 5). Moreover, unlike with [18,
36], we have a backbone and/or DAG, where arbitrary constraints can be added. This
DAG is such that a non-leaf goal is equivalent to the disjunction (“or”) of its re-
finements, and each refinement is equivalent to the conjunction (“and”) of its source
goals. Relation edges, constraints and assertions further constrain this structure.

I∗ and Tropos. i∗ [43] focuses on modelling actors for a requirements engineering
problem (stakeholders, users, analysts, etc.), their goals and inter-dependencies. i∗

provides two complementary views of requirements: the Actor Strategic Dependency
Model (SD model) and the Actor Strategic Rationale Model (SR model). Typically,

Multi-Objective Reasoning with Constrained Goal Models 37

SD models are used to analyze alternative networks of delegations among actors for
fulfilling stakeholder goals, whilst SR models are used to explore alternative ways
of fulfilling a single actor’s goals. i∗ is expressively lightweight, intended for early
stages of requirements analysis, and did not support formal reasoning until recent the-
sis work by Horkoff [19]. Tropos [7] is a requirements-driven agent-oriented software
development methodology founded on i∗. Goal models can be formalized in Tropos
by using Formal Tropos [17], an extension of i∗ that supports LTL for formalizing
constraints. The main deficiencies of this work relative to our proposal is that Formal
Tropos is expressive but not scalable.

Techne and Liaskos. Techne [22] is a recent proposal for a family of goal-modelling
languages that supports nice-to-have goals and preferences, but it is strictly propo-
sitional and uses hand-crafted algorithms, and therefore does not support optimiza-
tion goals. [15] constitutes a first attempt to reason with nice-to-have requirements
(aka preferences). The scalability experiments conducted used the SAT solver of Se-
bastiani et al. [36] and added local search algorithms to deal with preferences. All
experiments where conducted on a model with about 500 elements and the search
algorithms returned maximal consistent solution but also near-solutions. [12] fo-
cuses on finding new solutions for a goal model that has changed (new goals were
added/removed), such that the change minimizes development effort (EvoR1) or
maximizes familiarity (EvoR2). Note that EvoR1, EvoR2 are evolution requirements.
The paper uses a Truth-Maintenance System (TMS) and builds algorithms on top for
finding solutions to EvoR1, EvoR2 that “repair” the previous solution and construct a
new one. The search algorithms would need to be redone if we used different evolu-
tion algorithms, unlike the CGM tool where you can formally express EvoR1, EvoR2
or variants, and search is handle by the backend OMT/SMT solver. [14,13] continue
the study of reasoning with Techne models and use SAT solvers and hand-crafted
search algorithms to establish scalability for models size O(1K). Nevertheless the re-
sulting tools from this work still can’t handle quantitative optimization problems and
other features of CGMs.

Liaskos [26,25] has proposed extensions to qualitative goal models to support
nice-to-have goals and preferences, as well as decision-theoretic concepts such as
utility. This proposal is comparable to our proposal in this paper, but uses AI reason-
ers for reasoning (AI planners and GOLOG) and, consequently, does not scale very
well relative to our proposal.

Feature Models. Feature models [10] share many similarities with goal models: they
are hierarchically structured, with AND/OR refinements, constraints and attributes.
However, each feature represents a bundle of functionality or quality and as such, fea-
ture models are models of software configurations, not requirements. Moreover, rea-
soning techniques for feature models are limited relative to their goal model cousins.

Search-Based Software Engineering. Scalable reasoning for optimization problems
has been studied by Harman et al in the context of formalizing and solving the next
release problem [44]: given a set of preferences with associated cost and customer
value attributes, select a subset of preferences to be included in the next release that
optimizes given attributes. That work uses genetic algorithms and other search tech-

38 Chi Mai Nguyen et al.

niques that may return close-to-optimal solutions and use heuristics (meaning that
reasoning is not complete).

9 Conclusions and Future Work

We have proposed, an expressive goal-based modelling language for requirements
that supports the representation of nice-to-have requirements, preferences, optimiza-
tion requirements, constraints and more. Moreover, we have exploited automated rea-
soning solvers in order to develop a tool that supports sound and complete reasoning
with respect to such goal models, and scales well to goal models with thousands of
elements. Our proposal advances the state-of-the-art on goal modelling and reasoning
with respect to both expressiveness and scalability of reasoning.

The contributions of this work are being exploited in several directions. [4] has
proposed an expressive modelling framework for the next release problem that is
founded on the same OMT/SMT solver technology as this work. [1] has offered
a formalization of the next adaptation problem that chooses a next adaptation for
an adaptive software system that minimizes the degree of failure over existing re-
quirements. And [30] has exploited CGMs to capture evolution requirements, such as
“System evolution shall minimize implementation costs” and showed how to conduct
scalable reasoning over models that include such requirements.

As future work, we have planned to do an empirical validation of the CGM-Tool
with modelers and domain experts. We are currently working in this direction within
our research group with PhD students and post-docs who are expert in the modelling
field. Next, we will extend the validation to industrial experts of different domains.
We have also planned to do different case studies with real-life-complex-large-scale
goal models of a specific domain, such as Air-Traffic Control Management, health-
care, and smart cities and smart environments.

Our proposal does not address another notorious scalability problem of goal mod-
els, namely scalability-of-use. Goal models have been shown empirically to become
more difficult to conceptualize and comprehend as they grow in size [16], and there-
fore become unwieldy for use. As with other kinds of artifacts (e.g., programs, on-
tologies) where scalability-of-use is an issue, the solution lies in introducing mod-
ularization facilities that limit interactions between model elements and make the
resulting models easier to understand and evolve. This is an important problem on
our agenda for future research on goal models.

Acknowledgements We would like to thank Dagmawi Neway for his technical support in developing
CGM-Tool, and Patrick Trentin for assistance with the usage of OptiMathSAT.

References

1. Angelopoulos, K., Aydemir, F., Giorgini, P., Mylopoulos, J.: Solving the next adaptation problem with
prometheus. RCIS (2016)

2. Anton, A.I.: Goal-based requirements analysis. In: Proceedings of the 2nd International Conference
on Requirements Engineering, ICRE ’96, pp. 136–. IEEE Computer Society (1996)

Multi-Objective Reasoning with Constrained Goal Models 39

3. Anton, A.I., Potts, C.: The use of goals to surface requirements for evolving systems. In: Proceedings
of the 20th international conference on Software engineering, ICSE ’98, pp. 157–166. IEEE Computer
Society (1998)

4. Aydemir, F., Mekuria, D., Giorgini, P., Mylopoulos, J.: Scalable solutions to the next release problem:
A goal-oriented perspective (2016). Under submission.

5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Handbook
of Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)

6. Borgida, A., Dalpiaz, F., Horkoff, J., Mylopoulos, J.: Requirements models for design- and runtime:
A position paper. In: Proceedings of the 5th International Workshop on Modeling in Software Engi-
neering, MiSE ’13, pp. 62–68. IEEE Press (2013)

7. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engineering:
The tropos project. Inf. Syst. 27(6), 365–389 (2002). DOI 10.1016/S0306-4379(02)00012-1

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT 5 SMT Solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’13., LNCS, vol. 7795, pp. 95–109.
Springer (2013)

9. Cimatti, A., Griggio, A., Sebastiani, R.: Computing Small Unsatisfiable Cores in SAT Modulo Theo-
ries. Journal of Artificial Intelligence Research, JAIR 40, 701–728 (2011)

10. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling: Syntax and se-
mantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011). DOI 10.1016/j.scico.2010.10.005

11. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput.
Program. 20(1-2), 3–50 (1993)

12. Ernst, N.A., Borgida, A., Jureta, I.: Finding incremental solutions for evolving requirements. In: RE,
pp. 15–24. IEEE (2011)

13. Ernst, N.A., Borgida, A., Jureta, I.J., Mylopoulos, J.: Agile requirements engineering via paraconsis-
tent reasoning. Information Systems 43, 100 – 116 (2014). DOI http://dx.doi.org/10.1016/j.is.2013.
05.008

14. Ernst, N.A., Borgida, A., Mylopoulos, J., Jureta, I.: Agile Requirements Evolution via Paraconsistent
Reasoning. In: J. Ralyté, X. Franch, S. Brinkkemper, S. Wrycza (eds.) CAiSE, Lecture Notes in
Computer Science, vol. 7328, pp. 382–397. Springer (2012)

15. Ernst, N.A., Mylopoulos, J., Borgida, A., Jureta, I.J.: Reasoning with optional and preferred require-
ments. In: J. Parsons, M. Saeki, P. Shoval, C. Woo, Y. Wand (eds.) Conceptual Modeling – ER
2010: 29th International Conference on Conceptual Modeling, Vancouver, BC, Canada, November
1-4, 2010. Proceedings, pp. 118–131. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). DOI
10.1007/978-3-642-16373-9 9

16. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An empirical evaluation of the i* framework in
a model-based software generation environment. In: E. Dubois, K. Pohl (eds.) Advanced Information
Systems Engineering, 18th International Conference, CAiSE 2006, Luxembourg, Luxembourg, June
5-9, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4001, pp. 513–527. Springer (2006).
DOI 10.1007/11767138 34

17. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and analyzing
early requirements in tropos. Requir. Eng. 9(2), 132–150 (2004). DOI 10.1007/s00766-004-0191-7

18. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal reasoning techniques for goal
models. JOURNAL OF DATA SEMANTICS 1, 1–20 (2004)

19. Horkoff, J.M.: Iterative, interactive analysis of agent-goal models for early requirements engineering.
Ph.D. thesis, University of Toronto (2012). AAINR97565

20. Horrocks, I., Patel-Schneider, P.F., Sebastiani, R.: An Analysis of Empirical Testing for Modal Deci-
sion Procedures. Logic Journal of the IGPL 8(3), 293–323 (2000)

21. Jarvis, R., McArthur, G., Mylopoulos, J., Rodrı́guez-Gianolli, P., Zhou, S.: Semantic models for
knowledge management. In: WISE (1), pp. 8– (2001)

22. Jureta, I., Borgida, A., Ernst, N.A., Mylopoulos, J.: Techne: Towards a new generation of requirements
modeling languages with goals, preferences, and inconsistency handling. In: RE, pp. 115–124. IEEE
Computer Society (2010)

23. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in requirements
engineering. In: Proceedings of the 2008 16th IEEE International Requirements Engineering Confer-
ence, RE ’08, pp. 71–80. IEEE Computer Society (2008). DOI 10.1109/RE.2008.13

24. Lapouchnian, A.: Goal-Oriented Requirements Engineering: An Overview of the Current Research.
Tech. rep., Department of Computer Science, University of Toronto (2005)

40 Chi Mai Nguyen et al.

25. Liaskos, S.: On eliciting contribution measures in goal models. In: Proceedings of the 2012 IEEE
20th International Requirements Engineering Conference (RE), RE ’12, pp. 221–230. IEEE Computer
Society (2012). DOI 10.1109/RE.2012.6345808

26. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrating preferences into goal models for
requirements engineering. In: RE, pp. 135–144. IEEE Computer Society (2010)

27. Mekuria, D.N.: Constrained goal modeling and reasoning tool’s user manual
28. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements: A process-

oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992). DOI 10.1109/32.142871
29. Newell, A., Simon, H.: GPS: A program that simulates human thought. In: E.A. Feigenbaum, J. Feld-

man (eds.) Computers and Thought, pp. 279–293. McGraw-Hill (1963)
30. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Requirements Evolution and Evolution

Requirements with Constrained Goal Models. In: Proceedings of the 37nd International Conference
on Conceptual Modeling, LNCS. Springer (2016)

31. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Proc
SAT’06, LNCS, vol. 4121. Springer (2006)

32. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-Tool: socio-technical security
requirements through social commitments. In: Proceedings of the 20th IEEE International Conference
on Requirements Engineering, pp. 331–332 (2012)

33. Patel-Schneider, P.F., Sebastiani, R.: A New General Method to Generate Random Modal Formulae
for Testing Decision Procedures. Journal of Artificial Intelligence Research, (JAIR) 18, 351–389
(2003). Morgan Kaufmann

34. Rao, A.S., George, M.P.: BDI Agents: From Theory to Practice. In: Proceedings of the First Interna-
tional Conference on Multiagent Systems. AAAI (1995)

35. Sebastiani, R.: Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Modeling and
Computation, JSAT 3(3-4), 141–224 (2007)

36. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for Goal Models.
In: Proc. 16th International Conference on Advanced Information Systems Engineering - CAISE’04,
LNCS. Springer, Riga, Latvia (2004)

37. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In: IJCAR, LNAI, vol.
7364, pp. 484–498. Springer (2012)

38. Sebastiani, R., Tomasi, S.: Optimization Modulo Theories with Linear Rational Costs. ACM Trans-
actions on Computational Logics 16(2) (2015)

39. Sebastiani, R., Trentin, P.: OptiMathSAT: A Tool for Optimization Modulo Theories. In: Proc. Inter-
national Conference on Computer-Aided Verification, CAV 2015, LNCS, vol. 9206. Springer (2015)

40. Sebastiani, R., Trentin, P.: Pushing the Envelope of Optimization Modulo Theories with Linear-
Arithmetic Cost Functions. In: Proc. Int. Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’15, LNCS, vol. 9035. Springer (2015)

41. Sebastiani, R., Trentin, P.: On the Benefits of Enhancing Optimization Modulo Theories with Sorting
Networks for MaxSMT. In: Proceedings of the 14th International Workshop on Satisfiability Modulo
Theories, SMT-2016., CEUR Workshop Proceedings (2016)

42. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proceedings of the
Fifth IEEE International Symposium on Requirements Engineering, RE ’01, pp. 249–. IEEE Com-
puter Society (2001)

43. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineering.
In: RE ’97: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering
(RE’97), p. 226. IEEE Computer Society (1997)

44. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem. In: Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 1129–1137.
ACM, New York, NY, USA (2007). DOI 10.1145/1276958.1277179

Multi-Objective Reasoning with Constrained Goal Models 41

A Appendix: Data Tables and Plots

A.1 First Group of Experiments

42 Chi Mai Nguyen et al.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost

(2N terms) (5N terms) (16N terms)

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 90 52 1 0.00 0.00 0.00 0 0.01 0 0.02 0 0.01 0 0.02 0
2 100 3 134 78 1 0.00 0.00 0.01 0 0.01 0 0.03 0 0.01 0 0.25 0
3 100 4 178 104 3 0.00 0.00 0.01 0 0.01 0 0.41 0 0.01 0 1.53 0
4 100 5 222 130 3 0.00 0.00 0.02 0 0.03 0 5.51 0 0.02 0 7.48 0
5 100 6 266 156 2 0.00 0.00 0.01 0 0.02 0 24.74 0 0.18 0 29.74 2
6 100 7 310 182 5 0.00 0.00 0.01 0 0.04 0 533.90 19 0.02 0 329.34 30
7 100 9 398 234 7 0.00 0.00 0.02 0 0.09 0 185.23 84 0.02 4 494.33 87
8 100 11 486 286 4 0.00 0.00 0.02 0 0.11 0 — — 7.29 30 — —
9 100 13 574 338 7 0.00 0.00 0.05 0 0.30 0 — — 17.98 83 — —

10 100 15 662 390 13 0.00 0.00 0.04 0 18.13 0 — — — — — —
11 100 17 750 442 15 0.00 0.00 0.04 0 3.11 0 — — — — — —
12 100 21 926 546 14 0.00 0.00 0.06 0 58.08 11 — — — — — —
13 100 26 1146 676 13 0.00 0.00 0.07 0 600.99 78 — — — — — —
14 100 31 1366 806 14 0.00 0.00 0.09 0 — — — — — — — —
15 100 36 1586 936 19 0.00 0.00 0.11 0 — — — — — — — —
16 100 41 1806 1066 26 0.00 0.00 0.13 0 — — — — — — — —
17 100 46 2026 1196 24 0.00 0.00 0.18 0 — — — — — — — —
18 100 51 2246 1326 32 0.00 0.00 0.20 0 — — — — — — — —
19 100 101 4446 2626 49 0.00 0.00 0.49 0 — — — — — — — —
20 100 151 6646 3926 68 0.00 0.00 0.77 0 — — — — — — — —
21 100 201 8846 5226 71 0.00 0.00 0.93 0 — — — — — — — —

Fig. 19 First group of experiments, k = 2: median time over solved instances.
Optimum Optimum Optimum Lexic. Order Lexic. Order

cost time weight cost time weight weight time cost
(2N terms) (5N terms) (16N terms)

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 90 52 2 0.00 0.00 0.00 0 0.01 0 0.02 0 0.03 0 0.04 0
2 100 3 134 78 1 0.00 0.00 0.01 0 0.01 0 0.03 0 0.04 0 0.05 0
3 100 4 178 104 2 0.00 0.00 0.01 0 0.02 0 0.08 0 0.06 0 0.13 0
4 100 5 222 130 4 0.00 0.00 0.01 0 0.01 0 0.41 0 0.08 0 0.79 0
5 100 6 266 156 7 0.00 0.00 0.01 0 0.02 0 1.09 0 0.11 0 2.82 0
6 100 7 310 182 7 0.00 0.00 0.02 0 0.05 0 9.53 4 0.13 0 14.47 4
7 100 9 398 234 7 0.00 0.00 0.02 0 0.06 0 13.54 56 0.64 0 447.13 67
8 100 12 486 286 10 0.00 0.00 0.02 0 0.14 0 — — 1.53 5 — —
9 100 13 574 338 9 0.00 0.00 0.03 0 0.43 0 — — 36.78 23 — —

10 100 15 662 390 11 0.00 0.00 0.04 0 2.42 0 — — 368.94 55 — —
11 100 17 750 442 9 0.00 0.00 0.04 0 28.45 0 — — — — — —
12 100 21 926 546 15 0.00 0.00 0.05 0 97.86 2 — — — — — —
13 100 26 1146 676 22 0.00 0.00 0.09 0 537.73 62 — — — — — —
14 100 31 1366 806 25 0.00 0.00 0.12 0 — — — — — — — —
15 100 36 1586 936 27 0.00 0.00 0.16 0 — — — — — — — —
16 100 41 1806 1066 32 0.00 0.00 0.14 0 — — — — — — — —
17 100 46 2026 1196 36 0.00 0.00 0.17 0 — — — — — — — —
18 100 51 2246 1326 40 0.00 0.00 0.20 0 — — — — — — — —
19 100 101 4446 2626 55 0.00 0.00 0.80 0 — — — — — — — —
20 100 151 6646 3926 77 0.00 0.00 0.72 0 — — — — — — — —
21 100 201 8846 5226 85 0.00 0.00 1.18 0 — — — — — — — —

Fig. 20 First group of experiments, k = 4: median time over solved instances.

Multi-Objective Reasoning with Constrained Goal Models 43

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost

(2N terms) (5N terms) (16N terms)

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 90 52 4 0.00 0.00 0.01 0 0.01 0 0.02 0 0.03 0 0.03 0
2 100 3 134 78 3 0.00 0.00 0.00 0 0.01 0 0.06 0 0.04 0 0.08 0
3 100 4 178 104 6 0.00 0.00 0.01 0 0.01 0 0.07 0 0.04 0 0.11 0
4 100 5 222 130 6 0.00 0.00 0.01 0 0.02 0 0.56 0 0.07 0 0.67 0
5 100 6 266 156 7 0.00 0.00 0.03 0 0.03 0 1.51 0 0.14 0 1.69 0
6 100 7 310 182 5 0.00 0.00 0.01 0 0.03 0 0.45 0 0.11 0 0.69 0
7 100 9 398 234 7 0.00 0.00 0.02 0 0.27 0 284.79 31 0.71 0 557.00 36
8 100 11 486 286 9 0.00 0.00 0.02 0 0.13 0 852.66 80 0.92 0 705.92 85
9 100 13 574 338 17 0.00 0.00 0.03 0 0.17 0 — — 47.55 9 — —

10 100 15 662 390 14 0.00 0.00 0.04 0 1.23 0 — — 111.58 28 — —
11 100 17 750 442 13 0.00 0.00 0.05 0 11.87 0 — — 35.31 56 — —
12 100 21 926 546 24 0.00 0.00 0.07 0 104.67 0 — — — — — —
13 100 26 1146 676 27 0.00 0.00 0.12 0 455.20 51 — — — — — —
14 100 31 1366 806 32 0.00 0.00 0.12 0 — — — — — — — —
15 100 36 1586 936 33 0.00 0.00 0.12 0 — — — — — — — —
16 100 41 1806 1066 33 0.00 0.00 0.16 0 — — — — — — — —
17 100 46 2026 1196 53 0.00 0.00 0.16 0 — — — — — — — —
18 100 51 2246 1326 48 0.00 0.00 0.23 0 — — — — — — — —
19 100 101 4446 2626 73 0.00 0.00 0.51 0 — — — — — — — —
20 100 151 6646 3926 76 0.00 0.00 3.33 0 — — — — — — — —
21 100 201 8846 5226 93 0.00 0.00 1.49 0 — — — — — — — —

Fig. 21 First group of experiments, k = 5: median time over solved instances.

Optimum Optimum Optimum Lexic. Order Lexic. Order
cost time weight cost time weight weight time cost

(2N terms) (5N terms) (16N terms)

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 90 52 10 0.00 0.00 0.01 0 0.01 0 0.03 0 0.02 0 0.04 0
2 100 3 134 78 15 0.00 0.00 0.01 0 0.01 0 0.03 0 0.04 0 0.06 0
3 100 4 178 104 9 0.00 0.00 0.01 0 0.01 0 0.14 0 0.04 0 0.19 0
4 100 5 222 130 11 0.00 0.00 0.01 0 0.02 0 0.07 0 0.06 0 0.09 0
5 100 6 266 156 21 0.00 0.00 0.01 0 0.03 0 1.85 0 0.07 0 2.25 0
6 100 7 310 182 24 0.00 0.00 0.01 0 0.02 0 14.71 0 0.10 0 14.11 0
7 100 9 398 234 33 0.00 0.00 0.01 0 0.11 0 17.37 1 0.15 0 25.14 1
8 100 11 486 286 23 0.00 0.00 0.03 0 0.31 0 79.55 19 0.51 0 253.57 28
9 100 13 574 338 28 0.00 0.00 0.03 0 0.22 0 131.37 55 0.64 0 240.96 59

10 100 15 662 390 36 0.00 0.00 0.04 0 0.41 0 — — 6.89 0 — —
11 100 17 750 442 20 0.00 0.00 0.05 0 0.86 0 — — 0.56 1 — —
12 100 21 926 546 48 0.00 0.00 0.05 0 149.86 7 — — 104.81 17 — —
13 100 26 1146 676 43 0.00 0.00 0.06 0 406.31 23 — — — — — —
14 100 31 1366 806 61 0.00 0.00 0.10 0 — — — — — — — —
15 100 36 1586 936 67 0.00 0.00 0.23 0 — — — — — — — —
16 100 41 1806 1066 71 0.00 0.00 0.39 0 — — — — — — — —
17 100 46 2026 1196 77 0.00 0.00 0.17 0 — — — — — — — —
18 100 51 2246 1326 75 0.00 0.00 0.17 0 — — — — — — — —
19 100 101 4446 2626 98 0.00 0.00 1.47 0 — — — — — — — —
20 100 151 6646 3926 97 0.00 0.00 40.11 0 — — — — — — — —
21 100 201 8846 5226 100 0.00 0.00 — — — — — — — — — —

Fig. 22 First group of experiments, k = 8: median time over solved instances.

44 Chi Mai Nguyen et al.

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

co
st
	

)m
e	

w
ei
gh
t	

co
st
/)
m
e/
w
ei
gh
t	

w
ei
gh
t/
)m

e/
co
st
	

Fig. 23 First group of experiments, k = 2, median run times over solved instances.

Multi-Objective Reasoning with Constrained Goal Models 45

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

co
st
	

)m
e	

w
ei
gh
t	

co
st
/)
m
e/
w
ei
gh
t	

w
ei
gh
t/
)m

e/
co
st
	

Fig. 24 First group of experiments, k = 4, median run times over solved instances.

46 Chi Mai Nguyen et al.

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

co
st
	

)m
e	

w
ei
gh
t	

co
st
/)
m
e/
w
ei
gh
t	

w
ei
gh
t/
)m

e/
co
st
	

Fig. 25 First group of experiments, k = 5, median run times over solved instances.

Multi-Objective Reasoning with Constrained Goal Models 47

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

co
st
	

)m
e	

w
ei
gh
t	

co
st
/)
m
e/
w
ei
gh
t	

w
ei
gh
t/
)m

e/
co
st
	

Fig. 26 First group of experiments, k = 8, median run times over solved instances.

48 Chi Mai Nguyen et al.

A.2 Second Group of Experiments

Lexic. Order PRT Lexic. Order RPT

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es
.

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 110 60 1 0.00 0.00 0.04 0 0.08 0
2 100 3 164 90 2 0.00 0.00 0.07 0 0.08 0
3 100 4 218 120 1 0.00 0.00 0.11 0 0.09 0
4 100 5 272 150 3 0.00 0.00 0.12 0 0.15 0
5 100 6 326 180 2 0.00 0.00 0.13 0 0.20 0
6 100 7 380 210 3 0.00 0.00 0.21 0 0.26 0
7 100 9 488 270 2 0.00 0.00 0.52 0 0.45 0
8 100 11 596 330 7 0.00 0.00 0.90 0 0.50 0
9 100 13 704 390 8 0.00 0.00 2.42 0 2.33 0

10 100 15 812 450 4 0.00 0.00 39.45 0 1.55 0
11 100 17 920 510 6 0.00 0.00 1.64 0 1.57 0
12 100 21 1136 630 7 0.00 0.00 694.50 52 468.88 20
13 100 26 1406 780 6 0.00 0.00 — — — —
14 100 31 1676 930 14 0.00 0.00 — — — —
15 100 36 1946 1080 15 0.00 0.00 — — — —
16 100 41 2216 1230 19 0.00 0.00 — — — —
17 100 46 2486 1380 16 0.00 0.00 — — — —
18 100 51 2756 1530 27 0.00 0.00 — — — —
19 100 101 5456 3030 33 0.00 0.00 — — — —
20 100 151 8156 4530 46 0.00 0.00 — — — —
21 100 201 10856 6030 56 0.00 0.00 — — — —

Fig. 27 Second group of experiments, k = 2, p = 6: median time over solved instances.

Multi-Objective Reasoning with Constrained Goal Models 49

Lexic. Order PRT Lexic. Order RPT

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es
.

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 110 60 0 0.00 0.00 0.06 0 0.07 0
2 100 3 164 90 1 0.00 0.00 0.08 0 0.08 0
3 100 4 218 120 0 0.00 0.00 0.18 0 0.09 0
4 100 5 272 150 2 0.00 0.00 0.18 0 0.14 0
5 100 6 326 180 1 0.00 0.00 0.36 0 0.18 0
6 100 7 380 210 2 0.00 0.00 0.21 0 0.20 0
7 100 9 488 270 6 0.00 0.00 0.28 0 0.30 0
8 100 11 596 330 4 0.00 0.00 0.61 0 0.47 0
9 100 13 704 390 6 0.00 0.00 0.73 0 0.53 0

10 100 15 812 450 12 0.00 0.00 1.38 0 0.69 0
11 100 17 920 510 6 0.00 0.00 1.81 0 0.99 0
12 100 21 1136 630 10 0.00 0.00 7.00 0 3.92 0
13 100 26 1406 780 11 0.00 0.00 330.39 10 9.38 1
14 100 31 1676 930 11 0.00 0.00 327.86 72 8.40 10
15 100 36 1946 1080 14 0.00 0.00 — — — —
16 100 41 2216 1230 13 0.00 0.00 — — — —
17 100 46 2486 1380 14 0.00 0.00 — — — —
18 100 51 2756 1530 20 0.00 0.00 — — — —
19 100 101 5456 3030 33 0.00 0.00 — — — —
20 100 151 8156 4530 40 0.00 0.00 — — — —
21 100 201 10856 6030 59 0.00 0.00 — — — —

Fig. 28 Second group of experiments, k = 2, p = 8: median time over solved instances.

Lexic. Order PRT Lexic. Order RPT

E
xp

er
im

en
t

N
um

be
ro

fI
ns

ta
nc

es
.

N
um

be
ro

fR
ep

lic
as

(N
)

To
ta

lN
um

be
ro

fN
od

es

N
um

be
ro

fR
at

io
na

lV
ar

ia
bl

es

%
U

nr
ea

liz
ab

le

So
lv

in
g

Ti
m

e

Ti
m

e
fo

rP
ro

vi
ng

U
nr

ea
liz

ab
le

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

O
pt

im
iz

at
io

n
Ti

m
e

%
Ti

m
eo

ut

1 100 2 110 60 1 0.00 0.00 0.06 0 0.06 0
2 100 3 164 90 0 0.00 0.00 0.09 0 0.07 0
3 100 4 218 120 0 0.00 0.00 0.13 0 0.12 0
4 100 5 272 150 0 0.00 0.00 0.15 0 0.17 0
5 100 6 326 180 0 0.00 0.00 0.25 0 0.20 0
6 100 7 380 210 0 0.00 0.00 0.39 0 0.30 0
7 100 9 488 270 0 0.00 0.00 0.43 0 0.49 0
8 100 11 596 330 0 0.00 0.00 0.81 0 0.56 0
9 100 13 704 390 1 0.00 0.00 1.15 0 0.89 0

10 100 15 812 450 1 0.00 0.00 1.32 0 0.37 0
11 100 17 920 510 2 0.00 0.00 14.66 0 1.97 0
12 100 21 1136 630 0 0.00 0.00 602.22 23 2.13 0
13 100 26 1406 780 2 0.00 0.00 911.26 87 905.11 9
14 100 31 1676 930 4 0.00 0.00 — — 14.79 24
15 100 36 1946 1080 0 0.00 0.00 — — — —
16 100 41 2216 1230 1 0.00 0.00 — — — —
17 100 46 2486 1380 2 0.00 0.00 — — — —
18 100 51 2756 1530 1 0.00 0.00 — — — —
19 100 101 5456 3030 5 0.00 0.00 — — — —
20 100 151 8156 4530 5 0.00 0.00 — — — —
21 100 201 10856 6030 10 0.00 0.00 — — — —

Fig. 29 Second group of experiments, k = 2, p = 12: median time over solved instances.

50 Chi Mai Nguyen et al.

0.
00
	

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

pr
ef
er
en

ce
s	p

rio
rit
y	

so
0	
re
qu

ire
m
en

ts
	p
rio

rit
y	

Fig. 30 Second group of experiments, k = 2, k = 6, median run times over solved instances.

Multi-Objective Reasoning with Constrained Goal Models 51

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

pr
ef
er
en

ce
s	p

rio
rit
y	

so
0	
re
qu

ire
m
en

ts
	p
rio

rit
y	

Fig. 31 Second group of experiments, k = 2, k = 8, median run times over solved instances.

52 Chi Mai Nguyen et al.

0.
01
	

0.
10
	

1.
00
	

10
.0
0	

10
0.
00
	

10
00
.0
0	

11
0	

11
00
	

11
00
0	

Time	(seconds)	

N
um

be
r	o

f	N
od

es
	

pr
ef
er
en

ce
s	p

rio
rit
y	

so
0	
re
qu

ire
m
en

ts
	p
rio

rit
y	

Fig. 32 Second group of experiments, k = 2, k = 12, median run times over solved instances.

