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Abstract A novel approach to obtain weighted likelihood estimates of multi-
variate location and scatter is discussed. A weighting scheme is proposed that
is based on the univariate distribution of the Mahalanobis distances rather
than the multivariate distribution of the data at the assumed model. This
strategy allows to avoid the curse of dimensionality affecting multivariate
non-parametric density estimation, that is involved in the construction of the
weights through the Pearson residuals. Asymptotic properties of the proposed
weighted likelihood estimator are also discussed. Then, weighted likelihood
based outlier detection rules and robust dimensionality reduction techniques
are developed. The effectiveness of the methodology is illustrated through some
numerical studies and real data examples.
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1 Introduction

Several multivariate techniques are based on the assumption of multivariate
normality and the use of the sample mean vector and covariance matrix. Actu-
ally, they lead to a simple description of the overall shape of the multivariate
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data at hand through the related ellipsoid (Huber and Ronchetti, 2009). It is
well known that small departures from normality may invalidate multivariate
estimation of location and scatter and have dramatic effects on all those tech-
niques based on them, such as Principal Component Analysis or Discriminant
Analysis, for instance (Maronna et al, 2006; Huber and Ronchetti, 2009). Such
departures result in data inadequacies that are typically observed in the form
of several outliers. Outliers are observations that exhibit patterns not shared
by the remaining genuine part of the data. They can be defined as observations
that are highly unlikely to occur under the assumed model (Markatou et al,
1998). In other words, outliers contaminate the data with respect to (w.r.t.)
the postulated model. Outliers may be generated by an unexpected and un-
known overlapping random mechanism but can also occur because of a wrong
specification, when, for instance, the true underlying model is characterized
by longer tails and/or an asymmetric shape. However, we should keep in mind
that any model is only an approximation to reality.

On the contrary, by supplying robust estimates of multivariate location
and scatter, one could rely on techniques that are resistant to contamination
(Hubert et al, 2008). Furthermore, the appropriate use of robust estimators
may also lead to detect outliers, find unexpected structures in the data and
explore the types of occurred departures. There is a growing literature on
robust multivariate estimation. The reader is pointed to the book by Farcomeni
and Greco (2016) for a recent account on robustness in a multivariate setting.

Robust estimates of multivariate location and covariance are obtained by
attaching a weight to each data point in order to bound the effect of possible
outliers on the resulting fit. Weights are determined according to an outly-
ingness measure, that is a measure of the distance of the multivariate data
point from the robust fit. In summary, we can consider three main classes of
estimators.

1. Estimators based on hard trimming: weights are 0-1 and outliers are trimmed.
The final estimate is based on a subset of the original data points, whose
size is tuned by the user. The Minimum Covariance Determinant (MCD) is
undoubtedly one of the most popular techniques (Rousseeuw, 1985; Croux
and Haesbroeck, 1999).

2. Estimators based on adaptive hard trimming: outliers are trimmed but
the final sample is determined adaptively by the data. The main tool is
represented by the Forward Search (F'S, see Riani et al, 2009; Atkinson and
Riani, 2012, for a recent account).

3. Estimators based on soft trimming: outliers are down-weighted, with weights
varying in [0, 1], and the final estimate consists of a weighted mean and
weighted covariance matrix. This feature characterizes M-estimators and
related methods such as S-estimators (Lopuhaa, 1989) and MM-estimators
(Salibian-Barrera et al, 2006), but also the weighted likelihood estimator
(WLE, Markatou et al, 1998; Kuchibhotla and Basu, 2015, 2018a). In this
class we also include those methods stemming from projection of multi-
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variate data onto univariate directions, as the Stahel-Donoho estimator,
for instance.

The weighting strategy that characterizes the MCD, the FS and M-estimation
is based on the inspection of the Mahalanobis distances

d(y; p, X) = \/(y—u)TZ‘l(y—u), (1)

where y denotes a p-variate observation, p > 1, sampled from a multivariate
normal model, Y ~ N, (u, X) with mean vector u = (u1, fi2, ..., itp) | and pxp

covariance matrix X. Let (fi, b)) ) be a robust estimate of location and scatter,
then data points are discarded or down-weighted according to their distance
d(y; fi, ﬁ) from the robust fit: the larger the robust distance the closer to zero
the weight and more likely the point will be treated as an outlier.

In a different fashion, the computation of the WLE is not based on such
robust distances, but outlyingness is measured according to the agreement be-
tween the data, summarized by a non parametric density estimate, and the
assumed multivariate normal model. Actually, the weighting scheme based on
the computation of a multivariate density estimate becomes troublesome for
large dimensions, because of the curse of dimensionality (Huber, 1985; Scott
and Wand, 1991). With growing dimensions the data are more sparse and ker-
nel density estimation may become unfeasible. The reader is pointed to Deng
and Wickham (2011) for a comparison of several density estimation methods
available from the statistical environment R (R Core Team, 2018). This fea-
ture represents a serious limitation of the weighted likelihood methodology
in a multivariate framework. Such a restriction is much more annoying since
all the other multivariate estimators that we have mentioned so far are well
behaved in large dimensions. It is worth to stress here that we only consider
the case where the sample size n is larger than the dimension p.

In this paper, a novel approach to overcome this hindrance is presented.
We introduce a weighting algorithm that is still based on non parametric
density estimation, but now a univariate density estimate is evaluated over
(robust) distances. We obtain multivariate estimators of location and covari-
ance that are consistent and expected to be highly efficient at the assumed
multivariate normal model, as there is negligible downweighting. On the con-
trary, the proposed multivariate WLE is robust w.r.t. the presence of outliers,
since the weights will penalize the contribution of those data points exhibiting
large distances from the fitted model. A similar goal to build efficient and ro-
bust estimators has been pursued by Gervini and Yohai (2002) in a regression
framework, for instance.

In the following, the emphasis is on those situations in which a multivariate
normal sample is contaminated by some anomalous values following a different
random mechanism, that is the data come from the e-contaminated model

Gly) = A= e)N(y; p, ) + €H(y), (2)

where H(y) is an arbitrary distribution generating outliers and e < 0.50. Nev-
ertheless, we also expect that the proposed robust method works satisfactory
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under some type of misspecifications. Let
Q= {q(y;u, ) = cost(p)| 2|~ 2 bld(y; p, £)), pn € R?, X € PDS(p),p > 1}

be an elliptically symmetric family of distributions where PDS(p) is the set
of all positive-definite symmetric p x p matrices and cost(p) is a normalization
constant depending on p. Misspecification issues may arise since the shape of
b() is only approximately known (Maronna, 1976). The multivariate normal
family corresponds to b(d) = exp(—d?/2). Another example is represented by
the multivariate Student ¢, distribution, with b(d) = (1 4 d2/v)~@+¥)/2,

Nevertheless, the proposed approach is meant to be much more general.
Therefore, hereafter G(y) will denote the ¢rue underlying model and Q(y; 0) the
specified parametric model. The rest of the paper is structured as follows. Some
background on the weighted likelihood methodology is given in Section 2. The
new weighting algorithm is introduced in Section 3 and then detailed in the
case of the multivariate normal model in Section 3.1. Asymptotic properties are
discussed in Section 4. Outlier detection rules are illustrated in Section 5. Some
numerical studies are given in Section 6 and real data examples concerning
estimation, outlier detection, principal component analysis and discriminant
analysis are presented in Section 7.

2 Background

Beran (1977) studied the minimum Hellinger distance estimation in case of
continuous parametric models with asymptotic first order efficiency and very
interesting robust properties. Since then, minimum disparity estimation has
become a popular and attractive technique from both the robustness and ef-
ficiency perspectives. Lindsay (1994) established first order efficiency under
fairly general conditions on the class of disparities for discrete models. Park
and Basu (2004) discussed a general framework for continuous models, even if
their approach is somewhat restrictive since it excluded some common dispari-
ties such as the Pearson’s chi-square, the Hellinger distance and the likelihood
disparity. A review has been provided in Basu et al (2011), in which several
applications concerning different statistical problems were illustrated.
Minimum disparity estimators are obtained by minimizing the correspond-
ing disparity function but can be also defined as the root of an estimating equa-
tion defined as the first derivative of the disparity function. In most cases, the
estimating function is obtained as the product of the usual score function with
another function that can be thought as a weighting factor. The estimation
procedure requires an integral evaluation over the whole support of the data
in both approaches. In a different fashion, in Markatou et al (1998) integrals
were naturally replaced by summations, leading to the weighted likelihood
estimating equations (WLEE), whose solution can be found by one readily
available iterative reweighting algorithm. However, the corresponding estima-
tor does not minimize any proper objective function. Then, in summary, mini-
mum disparity estimation describes a minimization problem whereas weighted
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likelihood estimation equations is a root solving problem. These two methods
have been dealt with separately in the literature until the work by Kuchib-
hotla and Basu (2015) and Kuchibhotla and Basu (2018a,b), who provided a
unified approach meant to reconcile them. In the papers mentioned above, it
is shown that, under very standard conditions, one can build a simple WLEE
matching a minimum disparity objective function. In the following, we briefly
review this approach.

Let y = (y1, -+ ,yn) be a random sample from a p-random vector ¥ with
unknown distribution function G and corresponding density function g. The
assumed model for Y is

Q={q(y;0):06 c© CRF,p>1}

where ¢(y;0) is a probability density function and @ = Q(y;0) is the corre-
sponding distribution function. Furthermore, it is assumed that the support of
G is the same as that of () and independent of 6. Let 6, € © be such that g is
close to q(y; 6,) in some appropriate sense. Let Gn denote the empirical distri-
bution function. The Pearson residual function §(y) (Lindsay, 1994; Markatou
et al, 1998) is defined by comparing the true density by the model density as

5(0) = 036.6) = 0 1.

It is worth to notice that [d(y) dQ(y;0) = 0 for all § and G. Let C be a
thrice differentiable convex function defined on [—1, o), satisfying C(0) = 0
and k € R. Consider the class of disparities defined by

c(9: ) /C ) dQ(y;0)

/ C (5(y)) + k5(y) dQ(y:6)

(y)) + kd(y)
/5()_'_1 dG(y) ,

where gg stands for ¢(y; 0), and let 6, = arg mingco pc (g, o) be the best fitting
parameter according to the disparity measure pc. Let {A,}52; be a sequence
such that A, T R as n — oo, 14, be the indicator function of the set A,,
and consider the following approximation of pc (g, qs)

peta.an) = [ 14,00 dcy)

A natural estimate of 5c (g, ge) is given by

feninan = [ 10,0 SHIERRE iy

_ 1 ¢ C ((sn(yi)) + k5n(y1)
= > ki 5 () T 1 , (3)

i=1
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where, £, ; = 14, (y;) and

A gn (y)
on(y) =0(y;0,Gn) = =— = — 1,
l ) q(y; 0)
is the finite sample Pearson residual, which compares g, (y), that is an estimate
of g(y), with the model density ¢(y;#). In discrete families of distributions,
dn(y) can be driven by the observed relative frequencies (Lindsay, 1994). In
continuous models, a non parametric density estimate

only) = / K(yst,h) dG (1)

based on the kernel k(-; ¢, h) with bandwidth h is often used (Basu and Lindsay,
1994; Markatou et al, 1998). Furthermore, in this situation, the model density
is replaced by a smoothed model density ¢*(y;6)

¢ (y:0) = / K(yst,h) dQ(t:6)

The key idea is that by smoothing the model, the convergence of g, (y) towards
q*(y;0) does not require the bandwidth h to go to zero, as n increases. In
the proposed approach, we will not use the smoothed model and we consider
Ap ={y : gn(y) > vn/2} for some 7, | 0 as n — oo at some rate as specified
in Kuchibhotla and Basu (2018a). The estimating equation stemming from
the objective function (3) is given by

2 e i) =0, 8

where s(y;;0) = Vlog(q(y;;0)) denotes the i-th contribution to the score func-
tion. The trimming sequence &, ; is meant to avoid numerical instabilities due
the occurrence of small (almost null) densities in the denominator for y in the
tails. As stated in Kuchibhotla and Basu (2018a), trimming is not necessary
and could not be considered, especially in those models where the tails decay
exponentially.

Hereafter we set k = 1 so that we can formulate (4), apart from the trim-
ming function &, ; (whenever introduced) and the smoothed model, as the
WLEE defined in Markatou et al (1998)

> w(y)s(yi6) =0, (5)
i=1
with Al () + 1
nly)) +
w(y) = w(dy =fni —— 6
() = w(on(y)) ou(y) + 1 (6)
where A(-) is the Residual Adjustment Function (RAF, Lindsay, 1994; Basu
and Lindsay, 1994; Markatou et al, 1998; Park et al, 2002). The RAF plays
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the role to bound the effect of large Pearson residuals on the fitting procedure,
as well as the Huber and Tukey-bisquare function bound large distances in
M-type estimation. By using a RAF such that |A(d)| < |§] both outliers and
inliers will be downweighted. Here, we consider the families of RAF based on
the Power Divergence Measure

(G + DY —1) T<oo
Apam (0,7) = {10g((5+ 1) T — 00 .

Special cases are maximum likelihood (7 = 1, as the weights become all equal
to one), Hellinger distance (7 = 2), Kullback—Leibler divergence (7 — oo) and
Neyman’s Chi-Square (7 = —1). An alternative is represented by the families
of RAF based on the Generalized Kullback-Leibler divergence

_ log(10 4 1)

T

Agri(9,7) ,0<7<1;

maximum likelihood is a special case when 7 — 0 and Kullback—Leibler diver-
gence is obtained for 7 = 1 (see Cressie and Read, 1984, 1988; Park and Basu,
2003, and references therein). As one referee pointed out, one could define
other functions to bound the effect of large Pearson residuals. However, in this
paper, we still focused on the residual adjustment function. First, this choice is
motivated by historical reasons, in the spirit of the work by Lindsay (1994) and
Markatou et al (1998), among others. Then, despite the construction of the
WLEE does not depend on the availability of an objective function, the RAF
still arises naturally from a minimum disparity estimation problem. There-
fore, the special role played by the RAF is justified in light of the connections
between weighted likelihood estimation and minimum disparity estimation.

When the model is correctly specified, the Pearson residual function eval-
uated at the true parameter value converges almost surely to zero, whereas,
otherwise, for each value of the parameters, large Pearson residuals detect re-
gions where the observation is unlikely to occur under the assumed model.
Hence, those observations lying in such regions are attached a weight that
decreases with increasing Pearson residual. Large Pearson residuals and small
weights will correspond to data points that are likely to be outliers.

Under the assumptions (A1)-(A9) stated in Section ?? of the Supplemen-
tary Material, Kuchibhotla and Basu (2018a, Theorem 3.4) proves that there
exists a zero of the WLEE (5), say 6,,, which converges almost surely to 04
and

n'/2(0, — 0,) % N(0, B~1(0,)V (6,)B~"(0,)) -
with V(6) and B(#) defined as in (A9). Furthermore, it is proved that un-
der the model there exists a §y € © such that ¢ = ¢(y;6p), 6, = 6y and
B71(00)V(60)B~1(0y) = I~1(0y) where I(0) represents the expected Fisher
Information matrix. The last statement means that the WLE is asymptoti-
cally first order efficient at the model.

Consider a contamination model such as in (2),

G(y) = Qen(y) = (1 = €)Q(y;0) + eHn(y)
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where the contaminant component H might depend on the sample size n,
that is we assume a sequence {H,}52 . Let 6(G) = argmingeo pc(y,qo)-
Following Simpson (1987), it is possible to state that breakdown occurs for the
functional A(G) at a contamination level € if there exists a sequence {Qc.n}
such that ||9(Q€,n)700|| — 00 as n — oo. Under assumptions (B1)-(B4) stated
in section ?? of the Supplementary Material, Kuchibhotla and Basu (2018a,
Theorem 4.2) proves that the asymptotic breakdown point of the WLE is at
least 0.5.

3 A new type of weighted likelihood estimator

Let us consider a measurable function h and the distribution function of h(Y")
both under the true model G(y) and the postulated model Q(y; 6). We denote
them by F(y) = F(h(y)) and M(y;0) = M(h(y);0), respectively, whereas
f(y) and m(y; 0) are the corresponding densities. The newly established WLE
is defined as the root of a WLEE that is obtained by combining the densities
f(y) and m(y; @) in the construction of the Pearson residuals and the weights,
while the score function is the one stemming from the assumed model Q(y; 0).
In details, the Pearson residual function is now defined as

fy)
6(y) =0(y; 0, f) = -
) = ) m(y; 0)
In a similar fashion, the finite sample Pearson residual is given by
n fn (y)
) ( ) i 0)

where f,(y) = fu(h(y)) is a non parametric kernel estimate evaluated over
the transformed data set (h(y1),...,h(yn)). The WLEE is the same as in
expression (4) but, now, the weights are driven from the distribution of the
transformed data. We note that, obviously, when h is the identity function,
the WLEE proposed by Kuchibhotla and Basu (2018a) is obtained.

This strategy looks particularly promising when the dimension of Y is
large, while the dimension of h(Y) is small, since the evaluation of the Pear-
son residuals would require only a non parametric density estimate in few
dimensions. In particular, the interest lies in those situations in which the dis-
tribution of h(Y’) is univariate. An appealing situation stems from the use of
pivots such that m(y;0) = m(y). This is the approach that will be pursued in
the development of weighted likelihood estimates of multivariate location and
scatter.

In general, the use of transformations h(Y") also turns to be useful and
lead to improved kernel density estimates when the support of Y is bounded,
e.g. the support is the non negative real line. Actually, in those cases, the
kernel procedure should be adapted to account for the bounded support of
the distribution. Then, appropriate transformations can be used so that the
support of h(Y) is the whole real line. These issues will be discussed below.
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3.1 Weighted likelihood estimation based on robust distances

Here, we develop weighted likelihood estimation of the parameters of the mul-
tivariate normal model by using the aforementioned idea of calculating weights
on transformed data. In order to define a set of weights whose computation
does not need the evaluation of a multivariate kernel density estimate and does
not suffer from problems due to large dimensionality, we suggest to focus on
the transformation

& =d*y,0)=(y—p)' 2 (y—pn,

that defines the squared Mahalanobis distance. At the multivariate normal
model, the squared Mahalanobis distance satisfies

PY,0) ~x2, 0=

at the true parameter values. The main feature of this approach is that M (y; 6)
does not depend on 0, whereas the transformed values do.

The weighting scheme will be based on Pearson residuals aiming at mea-
suring the degree of agreement between a univariate kernel density estimate
based on the vector of squared distances d*> = d*(y;6) and their underlying
X% distribution at the assumed multivariate normal model, that are defined as
follows

2., o\ f n(sz )
0n(d3; 0, Fy) mxg(d?) 1. (7)

Here, fn(df) = f, (d?(y;;0)) is a non parametric kernel density estimate based
on the set {cﬁ7 ... ,d%} and m,e2 is the density function of a ng variate. This
strategy will lead, in most situations, to downweight those observations that
exhibit a large distance from the robust fit.

The behavior of the Pearson residual function in (7) and the resulting
weight function are exemplified in Figure 1. The true underlying model for
the squared distances is assumed to be an e-contaminated model of the form
f(x) = (1 — €)xZ(x) + exi(x,c), where the perturbing component is a non-
central X% distribution with non centrality parameter c. This is equivalent to
assume that the model in (2) is a mean shift model where H(y) is a N(y; 7, X))
and ¢ = 0.5(p — T)T(p — 7) (Cerioli et al, 2013). Here we set p =2,¢=5,¢e =
0.05. Large squared distances are likely to occur under the contaminating
component and are expected to be downweighted at the x3 distribution. The
left panel displays the Pearson residual function (7), that takes large values at
large distances and, hence, detect a region where outlying distances are likely
to occur. The weight function based on the Hellinger distance RAF is given in
the right panel and clearly decreases at large distances. The vertical dashed
line in the third panel gives the 0.975-level quantile of the 3 distribution: this
is the quantile commonly used to declare a large distance and detect outliers
in robust multivariate estimation.
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o(d?, p, m(d?)) w(d?, p, m(d?))

04

weight

0.2

0.0
I

Fig. 1 Pearson Residual function (left panel). Weight function (right panel) based on the
Hellinger distance RAF.

As stated in the Introduction, we are mainly interested in the multivariate
normal model, but the same approach can be used for any elliptically sym-
metric family of distributions by using the distribution of d?(y; u, X) at the
specified model. For instance, at the Student ¢, model, the distribution of
squared distances is a scaled Fisher distribution.

The WLE of multivariate location and scatter (/LZA’) is obtained as a
weighted mean and weighted covariance matrix with data dependent weights.
It is a common practice to consider an unbiased weighted likelihood estimates
of the covariance matrix, that can be defined as

5 Sor (i — ) (ys — o) Ty _ Doy WP
u = n N ’ Y= l-==—
YD iy Wi (

where w; = w(0,(d?,0,F,)), 0 = (i, ), di = d(ys, 1, 2), i = 1,2,...,n.
Here, unbiasedness is meant in analogy with the multivariate normal model
since when all the weights are equal to one, then (n—1) appears in the denom-
inator. Actually, this is the approach currently implemented in the R function
cov.wt to get an unbiased estimate of scatter. It is worth to mention that the
WLE of scatter does not require any consistency adjustment.

The computation of (i, i‘u) yields an iterative procedure, as illustrated
in Algorithm 1. At each iteration, based on the current values (f, f]u) ro-
bust distances are obtained. Then, their non parametric density estimate is
fitted based on the chosen kernel and Pearson residuals and weights are up-
dated. Algorithm 1 shares the main features of the iterative procedure devel-
oped to obtain weighted likelihood estimates in linear regression (Agostinelli
and Markatou, 1998) and generalized linear models (Alqallaf and Agostinelli,
2016). Actually, at each iteration squared distances and their non-parametric
density estimate are updated, whereas the model is held fixed.
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Algorithm 1 WLE based on the Mahalanobis distance

Initialize (4, %)
Calculate squared distances

CZ? = dQ(yiu £ 21,&)
Evaluate a nonparametric density estimate

n

f(dd) =n"1> k(3 d3h)  i=1,...,n
j=1

Compute Pearson residuals

o F(d2

Compute weights

7 =

Sn(d2, 1, Zu, Br) + 1

Update (i, ﬁ‘u)

Algorithm 1 may be initialized by drawing a large number of random sub-
sets of fixed dimension (p + 1). The sample mean and covariance matrix are
evaluated over each subsample and used as starting values (Markatou et al,
1998). A deterministic solution to set initial values can be also implemented,
stemming from that described in Hubert et al (2012). The fixed-point Al-
gorithm 1 may generate multiple roots because of its dependence upon the
different starting values. According to the results stated in Agostinelli (2006),
we implemented a strategy that select the solution leading the lowest fitted
probability

Pr [5(&2;92(;”) < —0.95} . (8)
6

An alternative strategy would consist in minimizing the approximate dispar-
ity (3), meant as an approximate objective function. It is worth to note that
Pearson residuals involved in (8) and (3) have to be evaluated at the fitted pa-
rameter value based on the original multivariate data for purely selection pur-
poses. Actually, the sum of the weights provides a guidance for root selection,
as well: when > | 1; ~ 1 than the WLE is close to the MLE, whereas when
Z?:l w; is too small, than the corresponding WLE is a degenerate solution,
indicating that it only represents a small subset of the data. The reliability of
the suggested root selection criteria has been illustrated on a real data exam-
ple considered in Subsection 7.2. The results are given in the Supplementary
material.
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3.2 Computational issues

The kernel density estimate 1, (d?) is expected to allocate all its probability
mass over [0, +00) because of the non-negativeness of the d?. On the contrary,
it would be biased at the boundary (Karunamuni and Alberts, 2005) and the
comparison between the squared distances and the Xf, model unfair. In the
development of Algorithm 1, four methods are suggested to come through
this issue. The first three are designed to obtain an unbiased at the boundary
kernel density estimate, whereas the fourth is based on the distribution of
log-transformed squared distances, moving the problem over the whole real
line.

1. The reflection technique (Silverman, 1986) is based on data augmentation
by adding the reflections of all the points in the boundary. Then, it is
possible to implement any method originally designed for the whole real
line. A reflection kernel can be defines as follows

1 —t 1 +t
Kyt h) = Tk (yh )+hk: (yh >

where k(-) is a symmetric and differentiable probability density: the reflec-
tion of a normal density leads to a folded normal kernel.

2. A kernel density estimate over (0,00) can be also obtained by first log-
transforming the squared distances, fitting a non parametric density esti-
mate over the whole real line, i.e. 7, (log d?), and then back-transforming
the fitted density to (0,00), i.e. 1, (d?) = d%mn(elogdz), (Bowman and
Azzalini, 1997). In this paper, we make use of the code available from the
R-package sm.

3. The Gamma kernel (Chen, 2000)
k(y;t,h) =I'(t;y/h+1,h)

along with its version obtained by swopping the role of y and ¢ (Jones and
Henderson, 2007), where I'(t; a, b) denotes the probability density function
of a Gamma variate with shape parameter a and scale parameter b evalu-
ated at the point £. This is an appealing alternative that does not involve
any transformation.

4. Log-transformed squared distances are distributed according to a log X;%
model whose probability density function is

p(x;p) =

exp B(px - exp(x))] , z€R.

1
20/2I (p/2)
Then, Pearson residuals and weights can be evaluated on this new scale
by comparing the fitted kernel density based on log-transformed squared
distances with the log X% distribution. Notice that this approach is fully
compatible with our new general approach in the sense that the transfor-
mation h(y) = log(d?(y; 0)) is used here.
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The choice of the kernel is not crucial with regard to the properties of the
method, both in terms of efficiency loss at the model and robustness, as con-
firmed by numerical studies. On the contrary, the smoothing parameter h
indexing the kernel function k(-;-) plays an important role in regulating the
robustness/efficiency trade-off of the weighted likelihood methodology. Large
values of h lead to Pearson residuals all close to zero and weights all close to
one and, hence, large efficiency, since the kernel density estimate is stochasti-
cally close to the postulated model. On the other hand, small values of A make
the kernel density estimate more sensitive to the occurrence of outliers and the
Pearson residuals become large for those data points that are in disagreement
with the model. In other words, in finite samples more smoothing will lead to
higher efficiency but larger bias under contamination.

The selection of h can be tuned by monitoring the empirical downweighting
level (1 — @) as h varies, with @ = n™' Y"1  ;, as already suggested by
Markatou et al (1998). The idea is that (1 — @) gives a rough idea of the
rate of contamination. This approach has been used in Greco (2017). As a toy
example, the left panel of Figure 2 displays a perturbed sample of n = 1000
bivariate points: 700 are generated from a N(0,I3) model, whereas 300 come
from a N(3,I3) distribution. We fit a bivariate normal model to the data at
hand by using the proposed WLE, based on a reflection kernel and Symmetric
chi-square RAF. Tolerance ellipses of level 0.95 have been over-imposed, that
correspond to two different values of the smoothing parameter h (ellipses are
based on a x3 distribution). The larger h clearly leads to a biased fit. The right
panel gives (1 — @) as h varies. An abrupt change is visible before h = 0.005,
that indicates the transition from a robust to a non robust fit. This adaptive
procedure is reinforced in light of the nice features of the monitoring approach
outlined in Cerioli et al (2017) and applied to the multivariate WLE framework
in Agostinelli and Greco (2017). In particular, in the latter paper the WLE
analyses are also monitored by looking at the behavior of individual robust
distances as h varies.

We end this section on computational issues by remarking that we set all
kn,; values equal to one. Actually, trimming was not necessary indeed.

4 Asymptotic properties

Asymptotic properties of the proposed weighted likelihood estimators are stud-
ied following the approach in Kuchibhotla and Basu (2018a,b). Let us consider
the following estimating equation

Il AGY) T
T”(g)_ﬁz;”’ 5y +1 =0
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Fig. 2 Simulated data: fitted 95% tolerance ellipse based on the WLE (left) and empirical
downweighting level for varying h (right). Outliers are denoted by triangles.

where k; = 1p, is a trimming function, D, = {y : f(y) > Yn}, and 9§, d,, are
as defined in Section 3. Let ¥,,(8) be the proposed WLEE

7, (6) = izmn,i%sm;e) =0

where now i, ; = 14, and A, = {y : f(y) > 7,/2}. Under the set of assump-
tions (C) stated in Section ?? of the Supplementary Material we have that
T,,(0) — ¥, (0) = 0,(n~1/?) (see Theorem ??) and that (see Corollary ??)

AG(y)+1 D
nl/2 (@n(g) _ / Ws(y,@)g(y) dy) = N(0,V(0))

where V(0) = Var, [A'(6(Y))s(Y;6)] as defined in assumption (C9). Using this
previous result and the uniform convergence of the derivatives of the estimating
function ¥, (6) (see Section ?? for details) we have that there exists a zero of
v, (0), 6,,, which converges almost surely to 0 and

n2(0, —07) B N(0, B~ (05)V(0;)B~(0;)) -

with B(f) defined in assumption (C9), see Section ?7? for details. Under the
true model g(y) = q(y; 6o), then it is easy to see that B=*(85)V (05) B~ (6y)
reduced to the inverse of the expected Fisher Information I(6p) and the WLE is
asymptotically first order efficient (see Corollay ??). These results also provide
the Influence Function of the proposed estimator (see Theorem ?7? and Corollay
??). In particular, it coincides with that of the maximum likelihood estimator
under the true model.



Weighted likelihood estimation of multivariate location and scatter 15

5 Outlier detection

The availability of robust estimates of location and scatter (f, ﬁ’) allows to
activate some procedures designed to identify multivariate outliers. Actually,
outliers in the sample are revealed by their large distances d(y; f, ﬁ’u) from the
robust fit. The use of robust estimates in place of the sample vector mean and
covariance matrix avoids masking and swamping effects in outlier detection:
there is masking whenever an outlier is not detected, swamping when a genuine
observation is flagged as an outlier.

The problem of outlier detection consists in testing the n null hypotheses
that each data point is a realization of a multivariate normal distribution,
ie. Ho; : y; ~ Np(p, X). The detection rule will depend on the (asymptotic)
distribution of the squared robust distances. A common approach to define
cut-off values to flag outliers is based on the xg distribution to approximate
the distribution of squared robust distances. A more accurate distributional
result in finite samples may be used after the computation of the reweighted
MCD estimator (Cerioli, 2010), but not in the case of M-type estimation. A
rule of thumb is based on the 0.975 or 0.99-level quantile of the reference
distribution. The outliers detection process could also be designed to take into
account multiplicity arguments in the simultaneous testing of all the n data
points, that is by considering the size of the test of the intersection hypothesis
N;Hy;. For instance, cut-off values can be based on a (1 — aunqit)-level quantile
such that the simultaneous testing of all the data points corresponds to a global
nominal level o, with c,u; = 1 — (1 — a)/™ (Cerioli, 2010). An alternative
strategy is obtained by controlling the overall level of the simultaneous testing
procedure by the False Discovery Rate (Cerioli and Farcomeni, 2011).

The asymptotic distribution of squared robust distances at the postulated
multivariate normal model based on the WLE is still X,%» because of its consis-
tency. However, we argue that in finite samples their null distribution can be
better approximated by using a result that resembles the classical one concern-
ing the Mahalanobis distance evaluated at the unbiased MLE (Gnanadesikan
and Kettenring, 1972), that is

2
d* (Y3, 1, 2y) ~ %Beta (g, né)l) . (9)
The reader is pointed to Ververidis and Kotropoulos (2008) to revise the classi-
cal proof based on the unbiased MLE. Our claim stems from the consideration
that the weights are expected to tend to unity under the assumed model. The
same result does not hold for M-type estimation since Huber and Tukey’s
bisquare weights do not share the asymptotic behavior of the weights in (6)
at the postulated model. A close result has been established in the case of the
reweighted MCD (Cerioli, 2010). The use of the scaled Beta distribution (9)
in the process of outlier detection will result in smaller thresholds than those
based on the x2.
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6 Numerical studies

In this section we investigate the finite sample behavior of the newly proposed
WLE of multivariate location and scatter and its performance for the goal of
outlier detection through some numerical studies.

We first consider the accuracy of the multivariate WLE. The strategies
outlined in Section 3 to compute Pearson residuals and the corresponding
weights are all considered: folded normal kernel (WLEa), log and back trans-
form (WLEb), log transform with log x2 (WLEc), gamma kernel (WLEd). The
multivariate WLE has been also compared with the deterministic reweighted
MCD (with 50% breakdown point and based on six initial solutions (Hubert
et al, 2012)) and the S-estimator (with Rocke type weights and an asymptotic
rejection point set equal to the running contamination rate, that has been de-
signed to work properly for large dimensions), evaluated by using the functions
from the R package rrcov. The WLE also runs on the deterministic algorithm
set for the MCD.

Several combinations of (n,p) have been taken into account. Data have
been generated according to the model (2), that is genuine data are sampled
from a multivariate normal distribution with uncorrelated components and
unit variance, i.e X = I,, whereas a percentage € of outliers comes from a dif-
ferent perturbing stochastic mechanism. We consider the following scenarios:

— point mass contamination, H(y) = @,(y; ka, d1;), 6 = 0.01;
— location shift model, H(y) = &,(y; ka,I,), leading to clustered outliers;
— inflated scale model, H(y) = @,(y;0, kI,), leading to radial outliers,

with £k = 1,2,3,..., K. The case kK = 0 corresponds to the uncontaminated
setting. When p < 10, contamination is designed to affect all dimensions,
a=(1,1,..., 1)T7 wheres when p > 10, outliers only contaminate the first five
dimensions @ = (1,1,1,1,1,0,...,0)". We show results corresponding to a
contamination level € = 20% and two data configurations: in the first n = 100
and p = 10, in the second n = 500 and p = 50. The Hellinger RAF has been
used for the scenario with point mass contamination, whereas the Symmet-
ric Chi-square RAF has been used for the location shift model and the GKL
(1 = 0.9) RAF in the case of radial outliers. The same smoothing parameter
has been used for each value of k, calibrated so that, on average, the empirical
downweigting level was always in the range [0.65 — 0.75]. The numerical stud-
ies are based on 1000 Monte Carlo trials. All Figures and Tables concerning
the numerical studies have been moved to Section 77 of the Supplementary
Material for reason of space.
The following performance measures were considered:

Loflall

9. log traci}Eu)

3. logy, cond(%,)

4|0, =1l =12, 0p

5' HEuth? jvh: 1727"~7p7j #h
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6. computational time (in seconds on a 3,4 GHz Intel Core i5).

They are expected to be as close as possible to zero.

Figures ?? and 77 display the average performance measures for n =
100,p = 10 and n = 500,p = 50, respectively, under point mass contami-
nation. The WLE provides very accurate results and an appealing behavior in
that it compares remarkably well with the S-estimator and the MCD, what-
ever the chosen weighting scheme. In the first case, the WLE outperforms both
the MCD and the S-estimator, in particular at a = 1,2, 3. It is worth noting
that the S-estimator is still badly affected by the point mass contamination
at a = 3. In the second case, the WLE still performs satisfactory: in all the
panels its performance measures exhibit the desired pattern even if at larger
distances than the MCD. On the contrary, the S-estimator seems to fail. The
behavior of the WLE under the location shift model is illustrated in Figures 7?
and ??7. When n = 100,p = 10, the WLE performs not dissimilarly from the
S-estimator and the MCD. As well as before, the S-estimator does not show
robust features for n = 500, p = 50, whereas the WLE behaves in a fashion
similar to the MCD for all values of k£ but at k£ = 4. Figures 7?7 and 77 gives the
results in the case of radial outliers. The WLE still compares satisfactory both
with the S-estimator and the MCD when n = 100, p = 10 and its behavior is
particularly appealing when n = 500, p = 50, when also the MCD shows some
lack of accuracy in estimating the elements of the covariance matrix. The fact
that the WLE performs remarkably better than the S-estimator is a notice-
able result, in that both of them fall in the general category of soft-trimming
estimators, as stated in the Introduction.

A redescending pattern is observed very often. In the case of overlapping
between the genuine multivariate normal model and the contaminating com-
ponent H(y), i.e. when outliers are not located at large distances, the robust
methods all provide less accurate estimates since they are not completely able
to identify outliers as such. On the contrary, at larger distances outliers are
downweighted correctly. The redescending patterns of all the considered per-
formance measures give evidence to the fact that the WLE exhibits an outlier
stability property, in that as the distance of the outliers from the bulk of the
genuine data increases, than the estimator behaves as if outliers were simply
deleted from the sample at hand.

The sixth panels in all figures show the computational time. One needs to
keep in mind that the comparison with the MCD and S- estimators is unfair,
since the WLE is still based on an unoptimized R code, that will be soon
available from the R package wle. Actually, computational time for the WLE
remains in a feasible range, even when p = 50. It seems that the use of folded
normal kernel leads to save computational time w.r.t. the other kernels but all
of them provides very similar performances.

We now explore the finite sample behavior of of the outlier detection rules
based on the robust distances stemming from the proposed multivariate WLE.
First, we want to investigate the swamping error under the correct model. Here,
the rate of swamping is a measure of the level a;,q4 of the individual testing
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procedure about Hy; : y; ~ N(0,I,),s = 1,2,...,n. A gamma kernel and
Hellinger RAF have been used. The entries in Table 7?7 give the swamping error
for n = 50, 100, p=>5, 10 and several choices of the smoothing parameter h, both
according to the X;Q; and scaled Beta distribution in (9), for nominal levels
a = 0.010,0.025. The last column gives the average empirical downweighting
level. The results seem to confirm that the scaled Beta distribution provides an
accurate approximation to the distribution of robust distances at the correct
model in finite samples. Actually, the approximation improves as h increases
and the weights all tend to unity.

Then, it is of interest to investigate both swamping and masking effects
under contamination. The masking error corresponds to the type-II error of
the test. Here, we assume that outliers are generated according to the location
shift model. The reader is pointed to the paper by Cerioli et al (2013) for some
regularity conditions on the perturbing component H(y), that are necessary
to control the level of the testing procedure. Actually, in the case of severe
overlapping, the test is expected to show large masking effects. Both swamping
and masking errors are given in Tables 7?7 and 7?7 for ¢ = 0.10 and in Tables
7?7 and 7?7 for € = 0.20, according to different level of separations indexed
by k = 2,2.5,3, different h values, a Symmetric-Chi-square RAF and n =
50, 100. Cut-off points have been set equal to the (1 — @;nq) = 0.975 and
(1 = putt) = 1 — 0.975'/" level quantile of the reference distribution. The
inspection of Tables 7?7 and 7?7 says that the actual level of the test is still
acceptable, even with p = 10, both for the individual and intersection null
hypothesis. On the contrary, in the presence of overlapping between the two
components in (2), masking may be relevant, as we observe for k = 2 and
p = 5 in Table ?? and Table ??7. When outliers are located far from the
genuine part of the data, the power of the testing procedure increases in a
desirable fashion. We also notice that the procedure becomes more powerful
with growing dimensionality. A similar phenomenon is described in Cerioli
et al (2013). By looking at the entires in Tables ?? and ??, we note that
by increasing the contamination rate both swamping and masking errors are
larger than before. In particular, when n = 50,p = 10 the testing procedures
are too liberal leading to large rates of false discoveries, whereas the size of
the tests are again acceptable with n = 100. In a similar fashion, masking
can still be non negligible also at & = 2.5. Only when n = 100,p = 10 the
blessing of dimensionality makes the tests more powerful. We also give the
empirical downweighting level corresponding to each scenario for the given
h value. We note that (1 — w) slightly increases as outliers are far apart.
The empirical downweighting level exhibits more stability for p = 10. As «a
increases, h should become larger to keep (1 — @) constant. As well, h need to
be tuned with both n and p. Furthermore, we can appreciate how the selection
of the smoothing parameter affects the two errors: swamping decreases with
increasing h, whereas the opposite is true for masking, that is the more robust
the procedure, the larger is the type-I error and the smaller is the type-II
error. Actually, the numerical studies suggest that the smoothing parameter
is to be set by monitoring the WLE analyses as h varies, but also by taking
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into account different choices for the RAF, in order to improve the accuracy
of both the fitting and the outlier detection procedure.

7 Real data examples

In this section we provide some real data examples concerning multivariate es-
timation of location and scatter, outlier detection, principal component analy-
sis and discriminant analysis. The proposed weighted likelihood methodology
is also compared with the WLE based on a multivariate kernel density esti-
mate, in order to highlight its advantages, and other popular robust multivari-
ate tools, to better assess its reliability. In all the examples, the multivariate
normal model is considered as the central model, i.e. the model for the bulk of
the data, and this assumption is expected to be tenable for the data at hand.
Actually, we are interested in providing a simple description of the overall
shape of the p-dimensional data through the vector mean, scatter and related
ellipsoids, that is a an important aspect in many multivariate techniques.

7.1 StarsCYG data

The StarsCYG data give the effective temperature at the surface and the light
intensity, both on a log scale, of 47 stars in the star cluster CYG OB1. Five
stars are clear outliers: the points 11, 20, 30, 34 correspond to giant stars
that do not lie on the main sequence and the point 7 also does not share
the correlation structure of the remaining 43 stars. Figure 3 displays 0.975-
level tolerance ellipses stemming from the proposed WLE, the WLE based on
a bivariate kernel density estimate (WLEmulti), the reweighted MCD (with
50% breakdown point), the MM-estimator (with 50% breakdown point and
95% shape efficiency) and the MLE. All the methods we outlined to compute
the weights for the WLE gave very similar results and hence, only the one
based on log and back transform of distances is shown. A Hellinger RAF has
been used. The weighted likelihood contours are based on the distributional
approximation given in (9), whereas that stemming from the reweighted MCD
is based on the result given in Cerioli (2010) (for those data in the non trimmed
set) and that derived from the MM-estimator is based on the x3 distribution.
The tolerance ellipse stemming from maximum likelihood is also based on
the scaled Beta distribution. The fitted robust ellipses do not exhibit any
significant difference and are all able to catch the correlation structure in the
main sequence of stars: the multivariate WLE gives a correlation of 0.701, the
proposed WLE gives 0.681, the MCD gives 0.655 and the MM gives 0.691. On
the contrary, the MLE leads to inflated variability and negative correlation.
The newly proposed WLE behaves not dissimilarly from the WLE based on
the bivariate kernel. The left panel of Figure 4 displays the monitoring of
Yo w; as the smoothing parameter h varies. Here, h has been selected so
that 1 —w = 0.15. It is worth to note that a different h is selected for each
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Fig. 8 StarsCYG data: fitted 97.5% tolerance ellipse based on the WLE, WLEmulti,
reweighted MCD and MM-estimator.

weighting scheme. Moreover, it is worth to remark that the sum of the weights
remains stable for growing h. This behavior proves the robustness of the WLE
that does not deteriorate by increasing h. The right panel of Figure 4 gives the
final weights corresponding to the WLE. All the outliers are given a weight
that is almost null, wheres the genuine observations receive a weight that is
equal or very close to one but observation 14, whose weight is about 0.48.

7.2 Auto data

The Auto data give information on technical and insurance characteristics of
n = 195 cars collected in 1985 by the Insurance Institute for Highway Safety,
for a total of p = 15 variables. The car are of two types: running on a gasoline
or diesel engine. The are only 20 cars running on diesel that may be identified
as outliers w.r.t. the others. In particular, the cars equipped with a diesel
engine exhibit larger values of compression-ratio than those with a gasoline
engine. Several outliers of different nature may also arise corresponding, for
instance, to cars with peculiar technical features or deserving specific insurance
conditions (Farcomeni and Greco, 2016). In the following we assume that the
p-variate Normal model provides a simple but valid model for the data at
hand.
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First, we show the limitations of the original WLE based on a multivariate
kernel and the advantages of the proposed methodology. Let us consider a
subset of n = 100 cars, composed by eighty cars running on gasoline sampled
at random from the original set and all the twenty cars with a diesel engine. We
also take into account only p = 5 variables, compression-ratio being among
them. Figure 5 shows the empirical downweigting level corresponding to the
multivariate-kernel based WLE (left panel), implemented in the R function
wle.norm.multi from the wle package, and the proposed multivariate WLE
(right panel), based on a gamma kernel and the Hellinger RAF, as h varies. By
looking at the left panel, we observe an abrupt change at h = 0.53. Actually,
a robust solution is obtained only for 0.42 < h < 0.53. In this range, the sum
of the weights is always below 0.4, which means that the robust solution has
been found at the cost of an excess of downweighting. For smaller h values the
algorithm is not able to find a solution, whereas for larger values the solution is
not robust. On the contrary, the proposed multivariate WLE leads to a robust
fit for any value of h and at the cost of a smaller empirical downweigting
level. Actually, the excess of downweighting characterizing the old fashioned
WLE leads to an intolerable rate of swamping, as illustrated in Figure 6,
that displays robust distances from both techniques, and too narrow tolerance
ellipses, as given in Figure 7 for a couple of bivariate marginals. Here cut-off
values and tolerance ellipses correspond to the 0.975 quantile of the scaled
Beta distribution in (9). The dashed line in Figure 6 gives the cut-off value at
the 1 — pmure = (0.975)(/™) level quantile, to take into account multiplicity.
In general, the multivariate kernel based WLE does not lead to any solution
for large p (w.r.t. n) and when a robust solution is available, it only happens
at the cost of excessive downweighting, that implies intolerable swamping. In
the case of the auto data, the old fashioned WLE does not lead to a robust
solution for p > 10, when using the first p variables.
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(left) and the proposed WLE (right) based on a gamma kernel and the Hellinger distance.
Cars running on a diesel engine are denoted by a +. The solid line gives the 0.975-level cut-off
value, the dashed line gives (1 — 7)-level cut-off value to take into account multiplicity.

Let us consider the all data, now. Figure 8 gives the robust distances corre-
sponding to each car stemming from the proposed WLE, with Hellinger RAF
and gamma kernel. The fitted model corresponds to h = 0.05 and 1 —w ~ 70%.
It is worth to remark that by increasing h the empirical downweighting level
remains stable and the robustness of the procedure does not vanish. The group
of cars running on diesel is clearly characterized by the largest distances and
is well separated from the remaining cars. The inspection of the left panel
of Figure 8 also unveils some other outlying cars that may exhibit peculiar
characteristics. The group of cars running on diesel and the other outliers are
clearly spotted by the QQ-plot in the left panel. The different nature of the
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Fig. 8 Auto data: robust distances based on WLE (left) and scaled Beta QQ-plot. Cars
running on a diesel engine are denoted by a +. The solid line gives the 0.975-level cut-off
value, the dashed line gives (1 — 7)-level cut-off value to take into account multiplicity.

several outliers that we have identified can be investigated further by exploring
the distance-distance plot in Figure 9. The robust distances based on the WLE
are compared with the classical distances based on the MLE. An important
feature of such plot is that the cut-off values are determined according to the
same scaled Beta distribution, hence being the same on both axes. It is worth
noting that the group of cars running on a diesel engine would not have been
detected by looking at the classical distances based on the MLE. The results
driven by the use of the MCD, S and MM estimators are very similar.
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(1 — v)-level cut-off value to take into account multiplicity.

7.3 Principal Component Analysis

Principal Component Analysis (PCA) is undoubtedly the most popular tech-
nique for dimension reduction. The data are projected onto a lower dimensional
sub-space so that they are as spread out as possible. This feature allows to
express the covariance structure of the data by means of a small number of
new variables (the principal components). These new variables are obtained
as linear combination of the original set of variables and are orthogonal each
other. The coefficients of the linear combinations are given by the eigenvectors
of the covariance matrix and each component accounts for an amount of total
variability proportional to the corresponding eigenvalue. PCA is clearly sensi-
tive to the occurrence of outliers, that, in particular, may inflate the variability
accounted for by the first components hence leading to wrongly rotated load-
ings. One approach to robust PCA is based on the eigen-decomposition of a
robust estimate of covariance. Here, we employ the WLE to perform a robust
PCA on the Auto data. The same example has been discussed in Farcomeni
and Greco (2016). Let us consider the first k¥ = 3 components. The percentage
of explained variance from standard PCA is 76.5% whereas the robust analysis
gives a smaller value of 73.6%. In order to better explain the deleterious effect
of outliers on standard PCA and the effectiveness of our weighted approach,
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Figure 10 displays the pairwise score-plots based on the first three components.
The group of cars running on diesel is clearly spotted by the robust compo-
nents in the left panels, whereas this does not happens in the right panel. A
typical effect due to the presence of outliers can be seen in the last panel: the
second and third component from standard PCA still show a linear trend and
only the effect of the outlying cars leads to a null correlation.

Robust PCA is an effective tool in outlier detection when the dimension-
ality is not of a manageable size. The usual tool is an outlier map, displayed
in Figure 11, that is obtained by plotting for each data point its score and
orthogonal distance: the group of outlying cars is clearly separated from the
rest but also other outlying points are visible. Guidelines to find the cut-off
values are given in Hubert et al (2005).

We only mention here, that the WLE of multivariate location and scatter
could be used in the technique developed by Greco and Farcomeni (2016) to
obtain sparse and robust PCA.

7.4 Discriminant Analysis

Discriminant analysis is concerned with the problem of assigning data to one
of several groups. The observations within each group are assumed to arise
from a multivariate normal distribution. In linear discriminant analysis (LDA)
it is assumed homogeneity of the covariance matrices, whereas in quadratic
discriminant analysis (QDA) the groups are allowed to have different scatters.
Let m;,j = 1,2,...,k denote the prior probabilities. The linear discriminant
rule classifies observations by maximizing

N 1 RN
log ;= 5.d*(y. fij» L)
and the quadratic discriminant rule classifies observations by maximizing
. 1, . = 1 -
log tj — 5d™(y, f1j, X5) — 5 log | 2]

A ni . . . “qey e .
where T; = =7 Is an estimate of prior probabilities to be used when prior
j=1"

information is not available, fi; is an estimate of the group vector mean, ﬁ’p is
a pooled estimate of the common scatter and, ﬁ’j is an estimate of the group
scatter matrix. Actually, an appealing approach to define a discriminant func-
tion that is not prone to contamination in the data is based on robust estimates
of location and common covariance matrix (Hubert and Van Driessen, 2004; He
and Fung, 2000). Here, we apply weighted likelihood to perform robust LDA
and QDA. In particular, we consider two different strategies to obtain a robust
pooled estimate of the covariance matrix, in a fashion similar to what happens
when using the MCD estimator (Todorov and Pires, 2007). By paralleling the
standard technique, the first estimate (WLEA) is obtained by averaging the
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Table 1 Diabetes data: misclassification rates for different rules based on all the data and
on leave-one-out cross validation.

ALL CV

MLE 0.131 0.131

WLEA 0.124 0.131

LDA WLEB 0.076 0.103
MCDA 0.124 0.131

MCDB 0.083 0.117

MLE 0.076 0.110

QDA WLE 0.076 0.103
MCD 0.083 0.103

unbiased estimates from each group as follows:

k - n;

A _ > =1 %% Y R

P R W= Zwii
Zj:l VWi i=1

The second estimate (WLEB) can be obtained after the following steps. First
center the data from each group by a robust estimate of location fijo; one could
use the L1 (spatial) median, for instance. Then, evaluate the WLE (fi,, ﬁ’f )
from all the centered data and update the group vector means as ﬂf = fljo+ilp-
The latter approach needs only one robust estimate of covariance rather than
one for each group as in the former one. Nevertheless, an alternative, even if
slightly more demanding, still consists in running Algorithm 1 for each group
and centering the data by using the WLE of location from each of them in the
first step.

Let us apply weighted LDA and QDA to the Diabetes data. These data
consists of three measurement of plasma, glucose, insuline and sspg, made
on 145 non-obese adult patients classified into three groups: normal subjects,
chemical diabetes and overt diabetes. The weights are based on the Hellinger
RAF and the kernel density stemming from log and back transform. The data,
along with the fitted groups according to LDA based on WLEB and QDA stem-
ming from group-wise WLEs, are displayed in Figure 12. The fitted groups ap-
pears as 0.975-level tolerance ellipses. It is worth noting the differences among
the two techniques concerning, in particular, the peculiar nature of the overt
diabetes group. Actually, the nature of correlation between glucose and sspg
and insuline and sspg in the third group is different from what happens
in the other two groups. The entries in Table 1 give the estimates of the
misclassification rate based on all the data (ALL) and on leave-one-out cross
validation (CV) based on the WLE, MLE and MCD, for LDA and QDA. The
use of robust estimates of multivariate location and scatter improves classifi-
cation accuracy over the standard approach based on the MLE and the WLE
performs satisfactory compared to the MCD. In particular, both LDA based
on WLEB and QDA stemming from the group-wise WLEs lead to the same
results.
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Weighted Likelihood Standard
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Fig. 10 Auto data: pairwise score-plots based on the first three components, robust (left)
and standard (right). Cars running on a diesel engine are denoted by a +.
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Fig. 11 Auto data: outlier map based on WLE with £ = 3 components. Cars running on a
diesel engine are denoted by a +.
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Fig. 12 Diabetes data: pairwise scatter-plots with 0.975-level tolerance ellipses over-
imposed for each group, driven by LDA based on WLEB and QDA based on group-wise
WLEs.



