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Leukemia is a complex heterogeneous disease often driven by the expression of oncogenic fusion proteins with
different molecular and biochemical properties. Whereas several fusion proteins induce leukemogenesis by ac-
tivating Hox gene expression (Hox-activating fusions), others impinge on different pathways that do not involve
the activation of Hox genes (non–Hox-activating fusions). It has been postulated that one of the main oncogenic
properties of the HOXA9 transcription factor is its ability to control the expression of the p16/p19 tumor sup-
pressor locus (Cdkn2a), thereby compensating Polycomb-mediated repression, which is dispensable for leukemias
induced by Hox-activating fusions. We show, by genetically depleting the H2A ubiquitin ligase subunits of the
Polycomb repressive complex 1 (PRC1), Ring1a and Ring1b, that Hoxa9 activation cannot repress Cdkn2a expression
in the absence of PRC1 and its dependent deposition of H2AK119 monoubiquitination (H2AK119Ub). This demon-
strates the essential role of PRC1 activity in supporting the oncogenic potential of Hox-activating fusion proteins. By
combining genetic tools with genome-wide location and transcription analyses, we further show that PRC1
activity is required for the leukemogenic potential of both Hox-activating and non–Hox-activating fusions,
thus preventing the differentiation of leukemic cells independently of the expression of the Cdkn2a locus. Overall,
our results genetically demonstrate that PRC1 activity and the deposition of H2AK119Ub are critical factors that
maintain the undifferentiated identity of cancer cells, positively sustaining the progression of different types
of leukemia.
INTRODUCTION
Leukemia is a heterogeneous tumor type sustained by the presence of
cancer stem cells (1) and characterized by diverse genetic lesions and
rearrangements (2, 3). Acute and chronic myeloid leukemia are fre-
quently characterized by the expression of aberrant oncogenic fusion
proteins that are essential to initiate and maintain malignant transfor-
mation (4, 5). Gene loci encoding for chromatin remodelers (also referred
to as epigenetic factors) are often involved in chromosomal transloca-
tions, suggesting a crucial role for these proteins in different types of
leukemic transformations (6). In addition, several chromatin modifiers
have been found extensively involved in the development of different
types of hematopoietic disorders and leukemia (7). For these reasons,
potential druggable targets have been proposed for specific types of
leukemia, and therapeutic approaches that target different mecha-
nisms of epigenetic regulation are currently under investigation for
the treatment of these tumors (6). These include the inhibition of the
histone lysine (K) demethylases LSD1 or JMJD3 for treating acute
myeloid or lymphoid leukemia, respectively (8, 9), and the inhibition
of the Polycomb repressive complex 2 (PRC2), which acts as the spe-
cific histone H3K27 methyltransferase (10, 11), for treating leukemia
driven by the MLL-AF9 oncogenic fusion protein.

Polycomb group (PcG) proteins are present in two different tran-
scriptional repressive complexes: the aforementioned PRC2 and PRC1,
which mediates histone H2AK119 monoubiquitination (H2AK119Ub)
(12, 13). PRC2 has been described as having both tumor suppressor
and oncogenic functions, depending on cellular context. In mice, genetic
inactivation of PRC2 activity induces myelodysplastic syndrome and
T cell acute lymphoid leukemia (14, 15). Whereas it has been estab-
lished that inactivation or pharmacological inhibition of EZH2/EZH1
(the catalytic subunit of PRC2) and Eed (an essential component of
the PRC2 core complex) compromises MLL-AF9 leukemic growth
through a multifactorial mechanism not entirely dependent on the
Cdkn2a locus (16), the roles of PRC1 activity and H2AK119Ub depo-
sition in the leukemic processes have not yet been fully elucidated.

PRC1 was recently shown to have a degree of variation in its sub-
complexes. In all of them, the essential E3 ligases, Ring1a and Ring1b
components, which both contribute to the deposition of H2AK119Ub,
interact with biochemically distinct subunits whose properties and se-
lective functions still remain to be addressed (17). Whereas the so-
called canonical PRC1 depends on the activity of PRC2, the other
PRC1 variants, generally referred to as noncanonical PRC1 complexes,
do not (18). BMI1, a critical component for canonical PRC1 activity
(19), was identified as a Myc-cooperative oncogene in lymphomagen-
esis and has already been implicated in leukemia pathogenesis (20, 21).
BMI1 can interact with PLZF-RARa and modulates its oncogenic
activity through the transcriptional repression of the well-known
tumor-suppressive locus Cdkn2a (also known as Ink4a/Arf) (22). More
recently, Bmi1 was found to be indispensable for PML-RARa–
dependent leukemia but dispensable for MLL-AF9–driven leuke-
mogenesis (20). The MLL-AF9 oncogenic properties involve the
specific activation of the transcription factor HOXA9 (4), which
directly mediates the transcriptional repression of the Cdkn2a locus,
favoring the leukemic transformation independently of Bmi1 and ca-
nonical PRC1 repression (20). Although the proven main function of
Bmi1 in leukemia is to transcriptionally repress the Cdkn2a locus, the
overall roles of PRC1 activity and H2AK119Ub deposition and their
relationship with Cdkn2a transcriptional repression in leukemic cells
remain to be addressed.
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By using genetic andmolecular approaches, we have now character-
ized, both ex vivo and in vivo, the overall role of PRC1 activity in leuke-
mogenesis, driven by different oncogenic proteins.We show that PRC1
activity and H2AK119Ub are required to repress Cdkn2a expression
and sustain the growth of leukemic cells independently of any ability
of fusion proteins to activate Hoxa9 expression or of ectopic HOXA9-
driven transformation. We further show that PRC1 activity is essential
for the development and maintenance of different types of leukemia
by sustaining the undifferentiated state of tumor cells independently
of Cdkn2a expression. Overall, our data place PRC1 activity and
H2AK119Ub deposition as critical events in the different types of
leukemogenesis.
RESULTS
PRC1 activity is essential for leukemogenesis independently
of oncogenic Hoxa9 activation
To elucidate the roles of the PRC1 activity and the ensuing whole dep-
osition of H2AK119Ub in the self-renewal of hematopoietic cells and
during the development of leukemia, we isolated lineage-negative (Lin−)
cells from the bone marrow of C57BL/6 mice with a constitutive Ring1a
knockout (KO) allele (Ring1a−/−) and a Cre-dependent conditional
Ring1b KO allele (Ring1bf/f; cKO) in the presence of a constitutive
CreERT2 expression from the Rosa 26 locus (R26CreERT2). Because Ring1a
deficiency is fully compensated by Ring1b expression, we will refer to
this model from now on as Ring1a/b cKO. The purified Lin− cells were
transduced with retroviruses that express the MLL-AF9, HOXA9, or
PML-RARa human leukemic oncogenes. In all three cases, we observed
the acquisition of a transformed phenotype, which was determined by
measuring the immortal growth of the transduced cells in liquid cul-
tures (Fig. 1A), analyzing the maintenance of an undifferentiated mor-
phology upon expression of the three different oncogenes (Fig. 1B and
fig. S1A), and determining the maintenance of the self-renewing ca-
pacity upon serial replating of three-dimensional (3D) methylcellulose
Lin− cell cultures (Fig. 1C). Thus, we used these models to characterize
the role of PRC1 activity in the leukemic transformation induced by
different oncogenic signals. To do this, we induced full inactivation of
Ring1a/b by adding 500 nM 4-hydroxytamoxifen (4-OHT) to the cul-
turemedium.This4-OHTconcentrationwas sufficient to induce thealmost
complete loss ofRing1b expression and the global loss ofH2AK119Ubdep-
osition (fig. S1, B andC) anddid not showany toxicity effects onR26CreERT2

Lin− control cells (fig. S1, D to G). The loss of PRC1 activity induced a
rapid arrest of leukemic cell growth independently of the oncogenic
stimulus in both liquid cultures (Fig. 1A and fig. S1D) and methylcel-
lulose colony formation assays (Fig. 1C and fig. S1E). The normal Lin−

cells and the leukemic blasts acquired a clear differentiatedmorphology
in all cases (Fig. 1B and fig. S1, A and F). The loss of PRC1 activity spe-
cifically prevented the growth of leukemic cells without affecting the ex-
pression of the transduced oncogenes (Fig. 1D). Expression analyses in
the same cells demonstrated that, whereas Ring1b was efficiently inac-
tivated under all conditions (Fig. 1E), the loss of PRC1 transcriptional
repression clearly activated Cdkn2a expression independently of the
type of oncogenic signal involved (Fig. 1E). This result was further con-
firmed at the protein level, showing that the efficient loss of Ring1b ex-
pression correlated with a global loss of H2AK119Ub deposition and
with a strong accumulation of p16 levels (Fig. 1F). Consistent with pre-
vious reports (23), leukemic transformation induced by the MLL-AF9
fusion protein or by the human form ofHOXA9 correlated with a strong
activation of endogenous Hoxa9 (Fig. 1G), which, in part, can repress
Rossi et al., Sci. Adv. 2016;2 : e1600972 7 October 2016
p16 expression (fig. S1H). However, neither physiological (MLL-AF9)
nor ectopic activation of HOXA9 are sufficient tomaintain p16 and p19
repression in the absence of PRC1 activity (Fig. 1, E and G). Together,
these results demonstrate thatHoxa9 expression is not sufficient to com-
pensate the lack of H2AK119Ub deposition induced by the complete
loss of PRC1 activity for the maintenance of Cdkn2a transcriptional
silencing during leukemogenesis.

PRC1 activity sustains leukemogenesis independently of
Cdkn2a repression
These results suggest that Cdkn2a activation could have an important
role in arresting the growth of leukemic cells. However, we and others
(24, 25) have previously reported that PcG proteins can control the
growth of normal and tumor cells through Cdkn2a-independent mech-
anisms. To address this issue, we crossed R26CreERT2 Ring1a−/− Ring1bf/f

mice with a constitutive Cdkn2a KO allele [Cdkn2a−/− (26)], from which
we isolated Lin− cells with undetectable expression levels of both p16 and
p19 (Fig. 2, A and B). The purified cells were transduced and subjected
to the same phenotypic analyses performed on R26CreERT2 Ring1a/b cKO
Lin− cells (Fig. 2, C to E). Here, the inactivation of Cdkn2a was suffi-
cient to confer an immortal growth and an undifferentiated phenotype
on the nontransduced Lin− cells, consistent with the tumor-suppressive
properties of p16 and p19 (Fig. 2, C to E, and fig. S2A).

However, the expression of all oncogenic proteins, particularly
MLL-AF9 and HOXA9, conferred a significant growth advantage in
both liquid and 3D cultures (Fig. 2, C and E). The efficient inactivation
of Ring1b expression (Fig. 2, B and F) induced a marked arrest of leu-
kemic cell growth (Fig. 2, C and E) coupled with the acquisition of a
differentiated morphology (Fig. 2D and fig. S2A), independently of the
oncogenic stimulus.

Also in this case, Hoxa9 expression was specifically activated in
MLL-AF9– and HOXA9-transformed cells (Fig. 2G), without
affecting the PRC1 loss-of-function phenotype and suggesting that
Hoxa9 oncogenic properties do not involveCdkn2a repression. Overall,
these results demonstrate that PRC1 activity and H2AK119Ub deposi-
tion are required to sustain leukemic growth independently of Cdkn2a
repression.

PRC1 activity and H2AK119Ub maintain the undifferentiated
state of leukemic cells
To characterize the direct molecular effects controlled by PRC1 activity
in leukemic cells, we performed chromatin immunoprecipitation–
sequencing (ChIP-seq) analyses for H2AK119Ub in Cdkn2a−/− Lin−

cells nontransduced or transduced with MLL-AF9, HOXA9, or
PML-RARa. The specificity of the H2AK119Ub signal was confirmed
by the ChIP-qPCR approach in Ring1a/b-proficient or Ring1a/b-
deficient mouse embryonic stem (ES) cells (fig. S3A) and by checking
established H2AK119Ub-positive and H2AK119Ub-negative regions
on Cdkn2a+/+ or Cdkn2a−/− Lin− cells (fig. S3, B and C). The analysis
of the H2AK119Ub genome-wide deposition displayed a largely over-
lapping profile upon the expression of each different oncogenic protein
(Fig. 3A, fig. S3D, and table S1), suggesting that PRC1 activity modifies
the same genomic loci independently of the transformation mechanism
of Lin− cells. Consistent with the repressive role of H2AK119Ub, RNA
sequencing (RNA-seq) analysis performedon the samecells 72hours after
4-OHT–induced Ring1a/b inactivation revealed a larger number of genes
that were transcriptionally activated (up-regulated) compared to the
genes that were silenced (down-regulated) by PRC1 loss of function
(Fig. 3B, fig. S3E, and table S2).
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Fig. 1. PRC1 activity is required for leukemic cell growth independently of oncogenicHoxa9 activation. (A) Growth curves of R26CreERT2 Ring1a−/− Ring1bf/f Lin− cells purified
from bonemarrow and transformed by transduction with lentiviruses expressing the indicated human oncogenic proteins. Full PRC1 inactivation was induced by 4-OHT treatment.
Ethanol (EtOH) was used as treatment control. Nontransduced cells were used as nontransformed control (NT). (B) May-Grünwald-Giemsa staining of cells obtained from the exper-
iment presented in (A) at 72 hours after 4-OHT treatment, which shows a differentiated morphology in the absence of PRC1 activity. (C) Methylcellulose colony assays starting from
5000 plated cells, the samepresented in (A) at the first and third passages. Quantifications of the number of colonies obtained per plate are presented in the right panels. CFU, colony-
forming unit. (D) Green fluorescent protein (GFP) expression in the HOXA9-transformed Lin− cells, demonstrating that the loss of PRC1 activity does not induce a silencing of the
transduced oncogene expression construct. (E) Relative expression levels of Ring1b, p16, and p19 determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR)
analyses in the Lin− cells shown in (A) and (B), demonstrating both the loss of Ring1b expression upon 72 hours of 4-OHT treatment and the transcriptional activation of theCdkn2a locus
products. Gene expression is normalized to Rpo levels. (F) Western blot analyses with the indicated antibodies on proteins extracted from R26CreERT2 Ring1a−/− Ring1bf/f Lin− cells treated
with 4-OHT for 72 hours, showing the loss of Ring1b expression andH2AK119Ubdeposition and the concurrent accumulation of p16 protein levels. EtOHwas used as treatment control.
Vinculin is presented as loading control. (G) Relative expression levels of Hoxa9 determined by qRT-PCR analyses in the R26CreERT2 Ring1a−/− Ring1bf/f Lin− cells expressing the indicated
oncogenic proteins and treated for 72 hours with 4-OHT or EtOH (treatment control). Gene expression is normalized to Rpo levels and to the Hoxa9 levels in nontransduced cells (NT).
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Fig. 2. PRC1 activity is required for leukemic cell growth independently of p16 and p19 expression. (A) Relative expression levels of p16 and p19 determined by qRT-
PCR analyses in the Cdkn2a-proficient and Cdkn2a-deficient Lin− cells treated for 72 hourswith 4-OHT or EtOH (treatment control). Gene expression is normalized to Rpo levels.
(B)Western blot analyseswith the indicated antibodies onproteins extracted from R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/f Lin− cells treatedwith 4-OHT for 72 hours, demonstrating
the loss of Ring1b expression, lack of H2AK119Ubdeposition, and absence of p16 expression. EtOHwas used as treatment control. Vinculin is presented as loading control. (C) Growth
curves ofR26CreERT2 Cdkn2a−/−Ring1a−/−Ring1bf/f Lin− cells purified frombonemarrowand transformedby transductionwith lentiviruses expressing the indicatedoncogenic proteins.
Full PRC1 inactivation in the absence of p16 and p19 transcriptional activation (Cdkn2a−/−) was inducedby 4-OHT treatment. EtOHwas used as treatment control. Nontransduced cells
were used as nontransformed control. (D) May-Grünwald-Giemsa staining of the cells obtained from the experiment presented in (C) at 72 hours after 4-OHT treatment. (E) Methyl-
cellulose colony assays starting from5000plated cells, the samepresented in (C) at the first and thirdpassages, displayed the transformedphenotype acquireduponexpressionof the
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panels. (F) Relative expression levels of Ring1b determined by qRT-PCR analyses in the Lin− cells shown in (C) and (D), showing efficient loss of Ring1b expression upon 72 hours of
4-OHT treatment. Gene expression is normalized to Rpo levels. (G) Relative expression levels of Hoxa9 determined by qRT-PCR analyses in the R26CreERT2 Cdkn2a−/− Ring1a−/−

Ring1bf/f Lin− cells expressing the indicated oncogenic proteins and treated for 72 hours with 4-OHT or EtOH (treatment control). Gene expression is normalized to Rpo levels and
used as a nontransformed control on the nontransduced cells.
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Fig. 3. Conservedgenomic association of PRC1 activity in different leukemic cells. (A) Cumulative H2AK119Ub ChIP-seq signals among all enriched loci in the R26CreERT2

Cdkn2a−/− Ring1a−/− Ring1bf/f nontreated Lin− cells expressing the indicated oncogenic proteins show that H2AK119Ub accumulated to the same genomic loci upon transformation
with different oncogenes. Rows are sorted by decreasing normalized intensity centered in the ±40-kb window surrounding the H2AK119Ub peaks. (B) Composite volcano plot
showing the significantly differentially regulated genes 72 hours after 4-OHTor EtOH (treatment control) treatment in the R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/f Lin− cells expressing
the indicated oncogenic proteins. WT, wild type. (C) Percentage of H2AK119Ub-enriched promoters undergoing transcriptional activation (fold change≥ 4) after loss of PRC1 activity.
Expression was determined by RNA-seq analysis in the R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/f Lin− cells expressing the indicated oncogenic proteins at 72 hours after the 4-OHT
treatment. EtOH was used as control treatment. Red bars represent the percentage of H2AK119Ub-positive promoters (PRC1 direct targets); yellow bars represent the H2AK119Ub-
negative promoters (PRC1 indirect targets). TSS, transcription start site. (D) P values of the significantly enriched pathways identified by gene ontology interrogation for the activated
genes presented in (C). Left panels represent the functional pathways enriched among the PRC1 direct targets; right panels represent the functional pathways enriched among the
PRC1 indirect targets.
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The combination of RNA-seq and ChIP-seq analyses revealed that
a significant number of H2AK119Ub decorated promoters underwent
direct transcriptional activation (>30%; red bars in Fig. 3C). Despite
the conserved profile of H2AK119Ub deposition among the different
leukemic cells (Fig. 3A), the proportion of activated direct targets varied
among samples (Fig. 3C), suggesting that the different oncogenic
signals or differentiation statuses of the leukemic cells could diversely
affect PRC1 direct target reactivation. With gene ontology analysis, it
also emerged that under all conditions, the loss of PRC1 directly affects
the expression of a set of genes with developmental and differentiation
functions, whereas the activation of pathways involved inhematopoietic
differentiation in Ring1a/Ring1b double-KO cells is the result of a sec-
ondary effect of the primary deregulation (Fig. 3D).

The common differentially regulated genes between the different
leukemic cells, which displayed a larger number of up-regulated genes
(fig. S3, F and G), showed a general enrichment for ontology annota-
tions that are related to the acquisition of a differentiated phenotype (fig.
S3H). Overall, these results reveal that the loss of PRC1 transcriptional
control triggers differentiation into multiple hematopoietic lineages.

To further confirm that PRC1 activity is required to sustain the un-
differentiated phenotype of leukemic cells, we performed fluorescence-
activated cell sorting (FACS) staining using markers that characterize
different lineages of hematopoietic differentiation. Consistent with the
differentiation block of leukemic cells in the myeloid precursor, cells
transformed with MLL-AF9, HOXA9, or PML-RARa showed high
levels of macrophage (Mac1) and granulocyte (Gr1) markers (fig. S4)
and low levels of markers for different hematopoietic lineages, such
as megakaryocytes (CD61), erythrocytes (Ter119), B cells (B220), and
T cells (CD3e) (Fig. 4). In agreement with the RNA-seq results, Ring1a/b
inactivation induced the activation of several differentiation markers in
all types of leukemic cells (Fig. 4 and fig. S4), suggesting that PRC1 ac-
tivitymay sustain leukemic transformation by preventing the activation
of differentiation programs.

Loss of PRC1 induces MLL-AF9 leukemic cell growth arrest
and transdifferentiation independently of HOXA9 and
p53 activation
These results suggest that the global PRC1 activity and the deposition of
H2AK119Ubplay critical roles inmaintaining the undifferentiated state
of different leukemic cells. However, these data only demonstrate the
requirement of PRC1 activity in the early onset of leukemic transfor-
mation without addressing its role in primary tumors. To also address
this point, we focused our attention onMLL-AF9 because of the essen-
tial role ofHoxa9 activation in the development of this type of leukemia
(23). Thus, we generated primary leukemia in vivo by inoculating
R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/f Lin− cells transduced with
MLL-AF9 into immunocompromised recipientmice (fig. S5A). The oc-
currence of advanced primary leukemia was confirmed by hematoxylin
and eosin (H&E) staining of spleen and liver sections isolated from
leukemicmice that showed diffuse, cell-dense infiltrations and disrup-
tion of the architecture of both organs (fig. S5B, top panels) and by
May-Grünwald-Giemsa staining that highlighted the presence of un-
differentiated blasts in the peripheral blood samples (fig. S5B, bottom
panels). We isolated primary leukemia cells from both the spleen and
the bonemarrow of these mice and confirmed their transformed phe-
notype by indefinite growth in methylcellulose 3D replating assays
(Fig. 5A and fig. S5C). Consistent with the essential role of PRC1 in
sustaining leukemia development, the depletion of Ring1a/b activity
in primary leukemia cells derived from either the spleen or the bone
Rossi et al., Sci. Adv. 2016;2 : e1600972 7 October 2016
marrow severely impaired their growth and self-renewing capacity
(Fig. 5A and fig. S5C).

To gain further insights into the apparent loss of cell identity ob-
served in the Lin− in vitro model, we decided to characterize the tran-
scriptional program controlled by PRC1 in the MLL-AF9 primary
leukemia cells. In accordance with our previous results (Fig. 3), loss of
global PRC1 activity (fig. S5D) resulted in a larger number of up-regulated
genes (363 up-regulated versus 27 down-regulated genes; Fig. 5B and
table S3). The comparison of the transcriptional deregulation between
the preleukemic MLL-AF9– and leukemic MLL-AF9–expressing cells
showed highly similar expression profiles with more than 55% of genes
commonly deregulated under both conditions (Fig. 5C). Moreover, the
RNA-seq and ChIP-seq analyses revealed that 35% of these up-regulated
genes are PRC1 direct targets (Fig. 5D, red bar), enriched in ontology
pathways related to tissue development (Fig. 5E, bottompanel), whereas
the up-regulated genes harboring H2AK119Ub-negative promoters are
associated with the immune response (Fig. 5, D and E, top panel, and
tables S3 and S4).

Western blot analyses for total and phosphorylated p53 in theMLL-
AF9 primary leukemic cells 72 hours after EtOH or 4-OHT addition
revealed that the loss of PRC1 activity does not activate the p53 pathway
(Fig. 5F), further supporting a role for PRC1 in maintaining the un-
differentiated state of leukemic cells.

Moreover, because the loss of PRC1 function inMLL-AF9 leukemic
cells also resulted in a reduced expression of endogenous Hoxa9 (Figs.
1G and 2G), we tested whether HOXA9 overexpression in MLL-AF9
primary leukemia cells was sufficient to rescue this phenotype.
Consistent with the requirement of PRC1 to sustain leukemic growth
induced byHOXA9 expression alone (Figs. 1 and 2), the ectopic expres-
sion of HOXA9 in MLL-AF9 leukemic cells was not sufficient to revert
PRC1 essentiality (fig. S5E), further confirming that the PRC1 role in
the leukemic cells is Hoxa9- and Cdkn2a-independent.

PRC1 was recently shown to modulate PRC2 activity on chromatin
through direct recognition of the H2AK119Ub mark, which globally
sustains H3K27me3 deposition in ES cells (27–29). To test whether
the global loss of PRC1 affects PRC2 activity even in leukemic cells,
we assayed the deposition of H3K27me3 in MLL-AF9 leukemic cells
uponRing1a/Ring1bdouble KO.Unlike ES cells, the loss ofH2AK119Ub
deposition did not affect the ability of PRC2 tomethylateH3K27 in bulk
(Fig. 5G). To rule out the possibility of a redistribution of H3K27me3,
we also performed ChIP-seq analyses for H3K27me3 in the same cells
upon inactivation of PRC1 activity (Fig. 5H, fig. S5F, and table S4).
This confirmed that PRC1-dependent H2AK119Ub does not control
PRC2 activity inMLL-AF9 primary leukemia cells, underlining the spe-
cific role of PRC1 in sustaining leukemic transformation.

Finally, to address the controversial role of Bmi1 in relation toMLL-
AF9 transformation (20, 21) by taking into consideration, for the first
time, the impact of the catalytic activity of PRC1, we down-regulated its
expression through constitutive short hairpin RNA (shRNA). To do so,
we first tested a panel of individual shRNA molecules that specifically
target Bmi1 inmouse embryonic fibroblasts (fig. S6, A andB), and the two
most effective shRNAs were then transduced in MLL-AF9–transformed
leukemic cells. Loss of Bmi1 expression had a minor effect on MLL-AF9
leukemic cell growth in liquid culture, with respect to the global loss of
PRC1 activity (fig. S6C). This result was further confirmed by serial re-
plating of Bmi1 knockdown cells in methylcellulose (fig. S6D).
Consistent with this, the loss of Bmi1 was not counterselected (fig.
S6E) and did not affect the global deposition of H2AK119Ub, suggest-
ing redundant functions among different forms of PRC1 (fig. S6F) in
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theMLL-AF9 leukemic cells. Overall, the strong correlation between the
loss of H2AK119Ub and the cell defects observed in the MLL-AF9
primary leukemia cells (Fig. 5) supports a model by which loss of
H2AK119Ub blocks the growth of cells and induces their transdifferen-
tiation in a p16/p19- and p53-independent manner.

PRC1 activity is required to maintain primary leukemia
independently of Cdkn2a
Whereas transplantation of primaryMLL-AF9 leukemic cells in immu-
nocompromised [nonobese diabetic/severe combined immunodeficient
(NOD/SCID)] or immunocompetent (C57BL/6) recipient mice rapidly
induced secondary leukemias, the loss of PRC1 activity, driven by a
single intraperitoneal injection of tamoxifen, significantly delayed the
occurrence of leukemia, considerably increasing the life span of themice
(Fig. 6, A and B).Weekly tamoxifen injections improve the survival rate
of themice (Fig. 6B), suggesting that the leukemic cells that kill themice
could be PRC1-proficient escapee cells.
Rossi et al., Sci. Adv. 2016;2 : e1600972 7 October 2016
H&E staining of spleen and liver tissues collected at day 6 or 30 after
injection shows a milder leukemic phenotype in the tamoxifen-treated
mice (Fig. 6, C and D). Immunohistochemical analyses show the rapid
impairment of the active H2AK119Ub deposition (which is a conse-
quence of the acute inactivation of PRC1 activity) in infiltrated leukemic
cells, as compared to control tissues 6 days after tamoxifen treatment
(Fig. 6, E and F). On the contrary, 30 days after the tamoxifen injections,
the infiltrated leukemic cells displayed a positive H2AK119Ub staining
(Fig. 6, E and F), which demonstrates that the H2AK119Ub-negative
cells were strongly counterselected compared to the cells with unexcised
Ring1b allele. Together, these results demonstrate that PRC1 activity is
essential not only for the development of leukemia but also for main-
taining a leukemic phenotype in vivo.

DISCUSSION
All available data that related PRC1 with the oncogenic activity of leu-
kemic fusionproteins focusedon the roles of different specific components
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spleenof amouse that haddevelopedaprimaryMLL-AF9 leukemia after intravenous inoculationof theMLL-AF9–transducedR26CreERT2 Cdkn2a−/−Ring1a−/−Ring1bf/f Lin− cells. Loss of
PRC1 activity was induced by 4-OHT treatment at each methylcellulose passage. Quantifications of the colony number per plate are presented in the bottom panel. (B) Composite
volcano plot showing the significantly differentially regulated genes 72 hours after 4-OHT treatment of the R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/fMLL-AF9 primary leukemia cells.
EtOHwas used as control treatment. (C) Overlaps between the up-regulated genes [fold change (FC) ≥ 4] in the MLL-AF9 preleukemic cells andMLL-AF9 leukemic cells upon loss of
PRC1 activity. (D) Percentage of H2AK119Ub-enriched promoters undergoing transcriptional activation (fold change ≥ 4) after loss of PRC1 activity. Expression was determined by
RNA-seq analysis in the indicated cells after 72 hours from the 4-OHT treatment. EtOH was used as control treatment. Red bars represent the percentage of H2AK119Ub-positive
promoters (PRC1 direct targets); yellow bars represent the H2AK119Ub-negative promoters (PRC1 indirect targets). (E) P values of the significantly enriched pathways identified by
gene ontology interrogation among the activated genes presented in (D). Top panel represents the functional pathways enriched among the PRC1 indirect targets; bottom panel
represents the functional pathwaysenrichedamong thePRC1direct targets. (F)Westernblot analyses for total p53 (p53tot) andp53phosphorylated (p53P) in theR26CreERT2 Cdkn2a−/−

Ring1a−/− Ring1bf/f MLL-AF9 primary leukemia cells 72 hours after EtOH or 4-OHT addition, showing that the loss of PRC1 activity does not activate the p53 pathway. Ultraviolet-
irradiated R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/fMLL-AF9 primary leukemia cells were used as p53/p53P-positive control (UV). b-Tubulin is presented as loading control. (G)Western
blot analysis for H3K27me3 showing that its global deposition is not affected by the loss of H2AK119Ub in theR26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/fMLL-AF9 primary leukemia cells
72 hours after EtOH or 4-OHT addition. Vinculin is presented as loading control. (H) Heatmap representing the normalizedH3K27me3ChIP-seq intensities ±10 kb around the summit
of H3K27me3-positive promoters identified in R26CreERT2 Cdkn2a−/− Ring1a−/− Ring1bf/f MLL-AF9 primary leukemia cells 72 hours after EtOH or 4-OHT addition.
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of the canonical PRC1 complex, such as Bmi1 (20, 21) and Cbx (30)
proteins, without analyzing the overall requirement of PRC1-dependent
H2AK119Ub deposition in leukemic cells. Our study highlights, for the
first time, the critical roles of the PRC1 activity and the global deposition
of H2AK119Ub in controlling the undifferentiated state of different
types of leukemic cells.

Here, we have shown that the full loss of all PRC1 activities in
Lin− cells severely impairs leukemic cell growth and self-renewal ca-
pacity, independently of the oncogenic stimulus. Moreover, the in-
activation of Ring1a/b E3 ubiquitin ligases results in the complete
lack of H2AK119Ub deposition and the transcriptional activation of
the Cdkn2a locus in all types of leukemic cells, without any sign of
compensation mediated by Hoxa9 activation, as previously reported
for specific Bmi1 loss of function (20). Our results extend the previous
observations that identified the ability of oncogenes to activate Hox
genes, especially Hoxa9, as a molecular determinant for the dependen-
cy of tumor growth on PRC1 activity. This discrepancy places PcG and
H2AK119Ub as critical determinants for p16 and p19 silencing in all
tumor contexts and further suggests that the overall Ring1a/b activity
will likely have broader functions in normal hematopoiesis and in leu-
kemic transformation than previously supposed.

In addition to Cdkn2a regulation, our results also show that MLL-
AF9 or direct HOXA9 expression transformed Cdkn2a-null Lin− cells,
conferring a ~100-fold increased proliferation rate on immortal cells in
liquid cultures. This strongly suggests that both oncogenes transform
normal Lin− cells through additional mechanisms. Moreover, we estab-
lished that PRC1 activity is not just required tomaintainCdkn2a repres-
sion upon different oncogenic insults, but it is also essential for the
leukemic cell growth, in a mechanism that is independent of p16 and
p19 expression, which is consistent with our previous findings in differ-
ent model systems (24, 31). The evaluation of the response of a primary
MLL-AF9 Cdkn2a−/− leukemia to the complete loss of Ring1a/Ring1b
activity also demonstrates the fundamental role of PRC1 in the mainte-
nance of established leukemia. Furthermore, these data show that neither
Cdkn2a repression nor p53 activation is involved in Ring1a/b-dependent
control of the leukemic transformation.

By mapping the genome-wide deposition of H2AK119Ub, we
established that the genomic loci directly controlled by PRC1 activity
are conserved to a high degree in the different leukemic cells. This
means that different oncogene stimulations do not perturb the mecha-
nisms that determine PRC1 recruitment to its genomic targets or that
regulate its enzymatic activity. Notably, even if the PRC1 targets in Lin−

cells are similar independently of the leukemogenic proteins expressed,
their reactivation upon the loss of H2AK119Ub deposition seems to be
strongly influenced by the oncogenic triggering mechanism. Knowing
that the epigenetic regulation of gene expression is a sophisticated pro-
cess that involves several regulators, different epigenetic settings may
influence the activation or repression patterns of the PRC1 target genes.
This result is consistent with previous literature showing that only a
minor fraction of PcG targets can be derepressed by loss of function
(32), stressing the relevance of the cellular context for downstream
effects, which is also in agreement with the dual role of oncogenes
and tumor suppressors in different types of cancers.

Our transcriptional analyses show that PRC1 repressive activity is
required to prevent the activation of direct and indirect lineage differ-
entiation programs, which ensure the cellular identity of leukemic
cells. The direct effect of PRC1 activity is strictly linked with the sup-
pression of developmental programs and differentiation-triggering
genes, whereas the activation of markers of hematopoietic differentiation
Rossi et al., Sci. Adv. 2016;2 : e1600972 7 October 2016
and inflammatory response resulted from an indirect consequence of
this primary deregulation. However, it is worth noting that Ring1a/b
also plays a similar role in normal Lin− cells, suggesting that PRC1
activity counteracts differentiation stimuli to preserve the undiffer-
entiated, high-proliferative state of hematopoietic progenitors. This
observation further highlights the dominant “gatekeeper” properties
of PRC1 over the activity of different oncogenic stimuli.

All types of leukemic cells start to transdifferentiate, expressing all
the hematopoietic differentiation markers as soon as the Ring1a/b ac-
tivities are abrogated. This observation is in accordance with the well-
established role of PRC1 in maintaining the correct lineage identity
(31, 33) of the cells and strongly supports our hypothesis about its role
in sustaining leukemic transformation by preventing the activation of
hematopoietic differentiation programs. Because epigenetic factors rep-
resent the master regulators of “lineage switching” observed within
acute leukemic patients, defined as the capacity of changing cell fate
without altering the genotype (34, 35), anomalous PcG activity may de-
regulate stem cell plasticity by derepressing lineage-specific genes,
allowing the onset and progression of leukemia.

In our cellular context, the loss of H2AK119Ub deposition does
not affect the levels and the chromatin localization of H3K27me3, sug-
gesting that PRC2 recruitment and activity in primary MLL-AF9
Cdkn2a−/− leukemia cells are not influenced by the PRC1 enzymatic
activity, as observed in other cellular systems (27–29). This emphasizes
the dominant role of PRC1 in the maintenance of the Lin− cell–specific
transcription program.

In primary MLL-AF9 Cdkn2a−/− leukemia cells, knocking down
Bmi1, a central player for the canonical PRC1 complex activity (19),
did not affect the bulk deposition of H2AK119Ub and only mildly im-
paired the proliferative capacity. This possibly depends on the residual
expression of Bmi1 protein, which could be sufficient to support leu-
kemogenesis, as well as on its compensation in the canonical PRC1
complex by Mel18. In contrast, the loss of Ring1a/b not only fully ab-
rogates H2AK119Ub deposition but also severely impairs the growth
of the cells and their self-renewal capacity. This corroborates the cen-
tral role of H2AK119Ub deposition in the leukemogenesis process,
highlighting a large degree of functional redundancies among the dif-
ferent PRC1 subcomplexes.

On the one hand, our results suggest that PRC1 activity could be
targeted to treat different types of leukemia; on the other hand, these
findings highlight the essential function of PRC1 activity in the self-
renewal of normal hematopoietic Lin− cells. Therefore, our findings
underscore the need to develop strategies to directly target Ring1a/b
activity as well as the need to dissect, in molecular detail, the mecha-
nisms by which different PRC1 complexes would contribute to normal
hematopoiesis and to leukemia development.
MATERIALS AND METHODS
Growth curves and methylcellulose assays
Lin− cells were cultured in Dulbecco’s modified Eagle’s medium (Lonza)
supplemented with 10% fetal bovine serum for mouse myeloid colony-
forming cells (scFBS, STEMCELL Technologies), stem cell factor
(100 ng/ml) (PeproTech), recombinant interleukin-3 (IL-3) (20 ng/ml)
(PeproTech), and IL-6 (20 ng/ml) (PeproTech).

Growth curves were performed by plating 1 × 105 Lin− cells per
well in a 24-well plate for each day of the growth curve in the pres-
ence of 500 nM 4-OHT (Sigma). EtOH (Panreac) was used as a vector
control.
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For the methylcellulose assay, 5 × 103 cells were plated in a 35-mm
dish and mixed with 1.2 ml of MethoCult GF M3434 (STEMCELL
Technologies) in the presence of 500 nM 4-OHT (Sigma). EtOH
(Panreac) was used as a vector control. Colonies were scored after
7 days of culture and replated every 7 days. Pictures of colonies were
taken using the EVOS FL microscope.

Transplantation
Five-week-old NOD/SCID (Charles River) mice were injected intra-
venously with 1 × 106 MLL-AF9–transduced Lin− cells harvested from
the thirdmethylcellulose assay. Ten-week-oldNOD/SCID (8mice) and
C57BL/6 (17 mice) were injected intravenously with 1 × 106 MLL-AF9
primary leukemic blasts. Tamoxifen treatment was performed by two
intraperitoneal injectionswith 2mg of tamoxifen at days 12 and 14 after
leukemic cell transplant, and every 7 days after that. Identical volumes
of oil were injected into the control cohort of mice.

Additional methods
A detailed description of the mouse models, the retroviral vectors, Lin−

purification, transduction and morphological evaluation, real-time
qPCRs, Western blots, flow cytometry, and ChIP-seq and RNA-seq
sample preparation is available in the Supplementary Materials.

Data set accession
The RNA-seq and ChIP-seq data are deposited at the Gene Expres-
sion Omnibus (GEO) database under accession no. GSE67552.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/10/e1600972/DC1
Supplementary Materials and Methods
fig. S1. Loss of PRC1 induces a differentiated phenotype in Lin− transformed cells.
fig. S2. Loss of PRC1 induces a differentiated phenotype independently of Cdkn2a expression.
fig. S3. Specificity check of H2AK119Ub signal.
fig. S4. Loss of PRC1 activity induces leukemic cell differentiation.
fig. S5. Loss of PRC1 activity negatively affects the growth of primary leukemia both in vitro
and in vivo.
fig. S6. Bmi1 knockdown does not recapitulate the Ring1a/b-deficient phenotype.
table S1. ChIP-seq results in Lin− and leukemic cells.
table S2. Genome-wide expression in wild-type, PRC1 Lin−, and leukemic cells.
table S3. Genome-wide expression in primary MLL-AF9 leukemic cells.
table S4. ChIP-seq results in primary MLL-AF9 leukemic cells.
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