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Abstract. Real-time human chest imaging exploiting electrical impedance tomography (EIT) 
data is addressed in this work. Robust estimations of the lungs conductivity, directly related to 
their air/liquid content, are obtained by formulating the arising inverse problem within the 
learning-by-examples (LBE) framework. The partial least squares (PLS) algorithm is exploited 
to reduce the dimensionality of the feature space, while an adaptive sampling strategy is 
exploited to build an optimal training set of input/output pairs used to build a computationally 
efficient surrogate model of the inverse operator. Selected numerical results are shown to 
assess the effectiveness and the potentialities of the proposed LBE strategy. 

1.  Introduction 
Electrical impedance tomography (EIT) is a promising alternative to computed tomography (CT) and 
X-ray radiography in many medical non-invasive diagnosis applications including breast cancer 
detection and heart/brain/lungs activity monitoring [1]-[6]. Differently from both standard 
investigation technologies, EIT provides lower resolution images of the investigated domain but it 
doesn't expose the patient to ionizing radiation. Moreover, it allows a continuous low-cost and easy-
deployable monitoring, which is fundamental in some clinical scenarios such as, for example, the 
monitoring of the air content of the lungs in patients under mechanical ventilation in intensive-care 
units. Within this applicative context, low-frequency currents are induced in the chest through pairs of 
electrodes attached to the patient skin. The conductivity distribution within the inspected domain 
(strongly related to the air/liquid content of the lungs) determines the resulting voltages measured at 
other pairs of electrodes, allowing to retrieve - through suitable processing - a cross-sectional image of 
the human thorax [1]-[6].  

The poor signal-to-noise ratio as well as the limited number of independent measurements lead to a 
severely non-linear and ill-posed inverse problem, for which suitable reconstruction algorithms and 
regularization schemes have to be carefully developed and/or customized. As an example, Tikhonov-
based [5] or sparseness-based [6]-[10] regularizations can be successfully exploited to address the 
solution of the inverse EIT problem. Alternatively, learning-by-examples (LBE) methods can be 
regarded as computationally-efficient approaches to achieve real-time guesses of the imaged domain 
without exploiting iterative (costly) evaluations of the forward operator [11]-[19].  

LBE strategies are based on a two-step procedure aimed at (a) generating a suitable set of 
input/output (I/O) examples in order to train a surrogate model during the off-line phase and (b) 
exploiting such a trained model to make fast and accurate predictions during the on-line phase starting 
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from previously-unseen data [11]. Within this context, this work presents a novel LBE strategy for the 
real-time estimation the conductivity of the human lungs from EIT measurements. The developed 
inversion technique exploits the innovative integration of the partial least squares (PLS) feature 
extraction technique with an adaptive sampling scheme aimed at generating an optimal (i.e., highly-
informative and reduced-size) training set [13], which is in turn used to train an augmented radial basis 
function (A-RBF) predictor [20]. 

2.  Mathematical formulation 
Let us consider a two-dimensional bounded investigation domain D representing a cross-section of the 
human thorax (Fig. 1). The conductivity distribution within D,  yx, , is assumed to be purely real 
(resistive) and piecewise constant depending on the organ/tissue (i.e., lungs, muscle, fat, and hearth - 
Fig. 1).  
 

 
Figure 1. Geometry of the 2D human thorax model and EIT acquisition system. 

 
The adjacent electrode pair measurement strategy [2] is considered to collect EIT data exploiting a 

set of L electrodes uniformly displaced over the external boundary of D (Fig. 1).  Accordingly, a low-
frequency current (i.e., 100f kHz) is successively applied to each pair of electrodes, the resulting 

voltages being measured over all remaining  3L  adjacent pairs of electrodes (Fig. 1). The total 
number of independent measurements is thus equal to [1] 

 
2

3


LL
M  (1) 

A standard finite element method (FEM) is used to numerically treat the forward problem, by sub-
dividing D into N triangular mesh cells [2]. Accordingly, the set of measured voltages corresponding 
to a given conductivity distribution within D,   Nnyx nn ,...,1;,  σ , is computed exploiting the 
low-frequency approximation through the Poisson equation [2], resulting in 

 σV   (2) 

where  MmVm ,...,1; V  and .  represents the forward 2D EIT-FEM operator. 
The goal of the inverse problem is to estimate the conductivity value inside the regions occupied by 

the left (   Lyx  , ) and right (   Ryx  , ) lungs, which is directly proportional to the their 
air/liquid content, by assuming that the conductivity of the neighboring regions (i.e., fat, muscle, and 
heart - Fig. 1) is fixed and a-priori known. In other words, a suitable inversion scheme must be 
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adopted in order to estimate the unknown vector  RL  ,Ω  starting from the corresponding set of 
EIT voltages, i.e., solving the following implicit-form expression  

 VΩ 1~~   (3) 

where the hat "" indicates that inverse operator .1  can be only approximated since it is 
unknown. To solve the inverse problem (3) an innovative inversion strategy is proposed in the 
framework of the learning-by-examples (LBE) theory [11]. Thanks to such a technique, the 
information about the two lungs embedded inside EIT measurements can be effectively compressed 
into a very small-dimensional features space, which is in turn adaptively sampled by an iterative 
sampling scheme in order to accurately model the I/O relationship with a limited set of training 
samples/observations. The solution of (3) is obtained through the following procedural steps. 
1. Initialization. In order to adaptively sampling the two-dimensional space identified by Ω , the first 

step is to generate an initial set of I/O pairs. Towards this end, the Latin hypercube sampling (LHS) 
strategy is applied to randomly sample the input space and generate 0SS   configurations (within 
predefined variation ranges) 

  0,...,1  ;, Sss
R

s
L

s  Ω . (4) 

For each input sample, the forward EIT-FEM problem is solved in order to compute the 
corresponding EIT data, i.e.,  

    0,...,1  ;,...,1; SsMmV ss
m

s  ΩV . (5) 

Both input samples and corresponding outputs are then used to fill two matrices, i.e.,  
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2. Feature Extraction. Instead of directly exploiting the M-dimensional measured voltages for solving 
the inverse problem, the information about 0σ  embedded within 0V  is compressed into a small set 

of MJ   features through the partial least squares (PLS) algorithm. Thanks to such an approach, 
it is possible to (i) mitigate the curse of dimensionality [11] when solving the inverse problem, 

since a lower number of training samples will be necessary for an accurate modeling of .1 , and 
(ii) filter a large amount of noise normally affecting EIT measurements. Accordingly, the SIMPLS 
algorithm [13] is exploited to compute from 0σ  and 0V  the PLS weight matrix W  allowing to 
compute the extracted features matrix  
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through a linear combination of the original measured features, i.e.,  

WVT 00  . (8) 

Each row of 0T  contains the J extracted features associated to a given input  RL  ,  

configuration, and can be used in substitution to the corresponding (M-dimensional) row of 0V . 

The initial training set is then formed with the generated 0S  I/O pairs as follows  

     00 ,...,1;,;,...,1; SsJjT s
R

s
L

s
j  Ψ  (9) 
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3. Adaptive Sampling. Once the PLS matrix W has been determined, it is possible to map additional 
EIT measurements into the J-dimensional space of extracted features. The generation of new 
training samples is done by adaptively sampling the Ω  space, such that a uniform coverage of the 
extracted features space is obtained [13]. At each iteration of such an adaptive scheme, a set of C  

candidates,  c
R

c
L  , ,  Cc ,...,1 , is generated via LHS sampling. The goal is to select the 

candidate *Ω  that exhibits the largest minimum Euclidean distance in the extracted features space 
to all previously collected S training samples (being 0SS   at the first iteration), i.e., 
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In order to avoid the evaluation of the extracted features associated to each candidate, which would 
require the repeated solution of the forward EIT-FEM problem (with a significant waste of 
computational resources), a fast linear interpolator is exploited on the existing training samples to 

predict c
jT , Jj ,....,1 , Cc ,...,1  [13]. Then, once *Ω  has been identified through (10), the 

actual PLS features associated to such sample are determined by computing (now only once) the 

associated EIT voltages, i.e.,    **** ,,...,1; RLm MmV V , and transforming them through 

the matrix W (i.e.,   WVT *** ,...,1;  JjT j ). The training set is then updated by adding the 

selected I/O pair   

 **
1 ;ΩTΨΨ  SS  (11)

and the process is iterated until a predefined stopping criterion is met (e.g., when a maximum 
number of forward solver evaluations, maxS , is reached). 

4. Prediction. Once the training set has been adaptively generated, it can be used to build a prediction 
model which will be able to estimate the lungs conductivities starting from previously-unseen EIT 
measurements. In this work, the augmented radial basis function (A-RBF) technique [20] is used to 
build such a model given its numerical efficiency and the need to calibrate only a single parameter, 
i.e., the width of the RBF kernel function,  . During the on-line test phase, each new test EIT 
measurement is first converted through W to the corresponding set of J extracted features, and then 
given as input to the trained A-RBF model to estimate the corresponding lungs conductivities. 

3.  Numerical validation 
In order to verify the effectiveness of the proposed LBE inversion strategy for real-time EIT lungs 

monitoring, a set of numerical experiments is carried out considering 16L  electrodes surrounding 
D, resulting into 104M  independent voltage measurements. The human thorax is sub-divided into 

3130N  triangular mesh cells, while the conductivity of the heart, fat, and muscle are set according  

to  the  low-frequency  tissue properties  table  of  the  IT'IS  Foundation  [21] to 11081.3  S/m,  
21073.5  S/m, and 11055.3  S/m, respectively (Fig. 1). To build the training set, the left and right 

lungs conductivities are varied within the range    12 1005.8,1018.4,  RL  S/m. The initial 

training set consists of 250 S  LHS-generated samples, while 2J  is the number of PLS-extracted 
features (carefully set after a preliminary calibration process). To test the robustness of the inversions 
against noise, an additive white Gaussian noise is considered to corrupt EIT measurements with 
different signal-to-noise-ratios (SNRs).  

To provide a pictorial view of the achievable estimation accuracy, Figure 2 shows the scatter plot 
of the actual versus predicted conductivity for the left [Figs. 2(a),2(c)] and right [Figs. 2(b),2(d)] lungs 
when training the A-RBF with 225max  SS  training samples and testing it over 1000K  LHS-
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generated noisy EIT test measurements at 40SNR dB [Figs. 2(a)-2(b)] and 20SNR dB [Figs. 2(c)-
2(d)]. 

 
 Left Lung Right Lung 
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Figure 2. Numerical Assessment ( 104M , 2J , 225S ) - Actual vs. predicted (a)(c) left and 
(b)(d) right lung conductivity when processing noisy data at (a)(b) 40SNR dB and (c)(d) 

20SNR dB. 
 
As it can be observed, a very high prediction accuracy is yielded at both levels of noise, with 

accurate guesses of the left and right conductivities within the considered variation ranges.  
 

Left Lung Right Lung 

  
(a) (b) 

Figure 3. Numerical Assessment ( 104M , 2J , 225S ) - Behaviour of the prediction error 
versus the number of training samples for (a) left and (b) left lung conductivity estimation. 
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To have a wider overview of the achievable prediction performances, Figure 3 shows the behaviour 
of the prediction error versus the number of training samples, S, used to train the A-RBF. The reported 
error is defined as the fraction of unexplained variance (FVU), computed as follows 

 
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


K

k
avk

K

k
kk
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2~




 (12)

where k  and k~  are the actual and predicted conductivity for the k-th test sample, and 





K

k
kav K 1

1   is the average conductivity within the test samples. It is worth observing that the error 

rapidly drops as new training samples are adaptively added to the initial ones (Fig. 3). Moreover, the 
error turns out to be always  1FVU  whatever the SNR and the training size, meaning that the A-RBF 
is capable of providing better estimations with respect to the most naive predictor (which would output 
for each test sample the average conductivity value, thus yielding  1FVU ). As for what concerns 
the required computational times for the inversion, the PLS algorithm extracts the J features from a 

new measurement within fraction of seconds ( sec10 2 PLSt ), while the A-RBF is able to output a 

prediction of the lungs conductivities in about sec10 1  RBFAt . Accordingly, it is possible to 
confirm that the whole inversion process is almost performed in real-time as soon as new EIT data is 
available from the acquisition system. 

4.  Conclusions 
The computationally-efficient inversion of EIT data for monitoring the air content in human lungs has 
been addressed through an innovative LBE inversion strategy. Thanks to the PLS feature extraction a 
significant compression of the informative features can be obtained, allowing both a reduction of the 
necessary training samples to accurately model the I/O relation and an effective noise filtering during 
the on-line test phase. It should be remarked that the proposed methodology is not aimed at retrieving 
a full image of the conductivity distribution within the chest (as done in classical imaging), but rather 
at estimating the value of some monitored parameters of clinical relevance. Of course, these latter are 
not necessarily limited to the lungs conductivities, since the proposed approach is very flexible and 
customizable to the needs of the specific application. Selected numerical results have been presented 
to assess the effectiveness of the proposed strategy, as well as to confirm its capability of performing 
almost instantaneous inversions. Future works will be devoted at extending the capabilities of the LBE 
method to estimate other parameters of interest within the human thorax form EIT data, as well as to 
consider a fully-3D modeling of the forward problem. Moreover, further studies will be devoted at 
studying the robustness of the linearity assumption made by the PLS algorithm, as well as to validate 
the approach against real EIT data. 
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