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Abstract: We present some recent results on the possibility of extending the theory of varifolds to the realm
of discrete surfaces of any dimension and codimension, for which robust notions of approximate curvatures,
also allowing for singularities, canbede�ned. This frameworkhas applications todiscrete and computational
geometry, as well as to geometric variational problems in discrete settings. We �nally show some numerical
tests on point clouds that support and con�rm our theoretical �ndings.
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Introduction
One of the main issues in image processing and computer graphics is to extract geometric information from
discrete data, that are provided in the form of polygonal (or polyhedral) meshes, level sets, point clouds, CAD
models etc.Wemight classify the various discrete representations in twomain classes: structured andunstruc-
tured. For instance, polyhedral meshes can be classi�ed as structured, while point clouds are unstructured.
In general, unstructured representations are characterized by the absence of (local, partial) information of
topological surface type. This kind of discrete surfaces, like point clouds, have received a great attention in
the last decades as they arise in many di�erent contexts (medical imaging, shape modeling, object classi�-
cation).

In order to reconstruct surface features (and in particular curvatures) it is often assumed that the dis-
crete data refer to an unknown smooth surface, which needs to be �rst determined or characterized at least
implicitly. This is the case, for instance, of the so-called Moving Least Squares (MLS) technique, especially
proposed for the reconstruction of surface features from point cloud data, see [17]. More recently, some tech-
niques based on integral geometry and geometric measure theory have been proposed by various authors,
see [8, 9, 12, 13, 21, 25]. These methods are quite e�cient for reconstructing curvatures in the smooth case as
well as in presence of certain kinds of singularities, however major problems occur when more general sin-
gularities are present in the unknown surface. Moreover, convergence results are generally obtained under
very strong regularity assumptions.

In the recent work [4] (see also [6, 7]) we propose a general approach based on a suitable adaptation
of the theory of varifolds, which is based on a notion of approximate mean curvature associated with any
d-dimensional varifold (thus in particular with the so-called discrete varifolds).

Themain aim of our research is to provide the natural frameworkwhere di�erent discrete surfacemodels
can be represented and analysed, also allowing for robust convergence results for the approximate curva-
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tures. This framework is very promising in respect of the numerical approximation of geometric variational
problems, geometric �ows, topological invariants, and so on.

At the same time, our method does not require the use of discrete surfaces of some special type. Basi-
cally, it can be applied with any discrete surface type, therefore its full potentials are mostly evidenced when
we consider unstructured representations like point cloud surfaces, for which the identi�cation of natural
curvature estimators is a quite di�cult problem.

The �rst step of our method consists in de�ning the regularized �rst variation of a varifold V. This is
obtained by convolving the standard �rst variation δV (which is a distribution of order 1 acting on vector
�elds of class C1 and compact support) with a regularizing kernel ρε. By a similar regularization of the weight
measure ‖V‖ (obtained through another kernel ξε) we arrive at the notion of approximate mean curvature
vector �eld HVρ,ξ ,ε, de�ned as the ratio between the regularized �rst variation and the regularized weight
(whenever the latter is positive). This allows us to de�ne approximate mean curvature vector �elds for all
varifolds (even non-recti�able ones). The parameter ε appearing in the above kernels should be understood
as the scale at which the approximate mean curvature is evaluated. Of course, if the scale is too small, or too
large, the approximate mean curvature might be far from what we expect to be naturally associated with the
discrete varifold. The choice of ε is therefore crucially linked to some "intrinsic scale" associated with the
varifold itself.

One might wonder if this approach can somehow include other previous (maybe classical) notions of
discretemean curvature proposed for instance in the case of polyhedral surfaces. In this sense it is possible to
show that the classicalCotangent Formula, that iswidely used for de�ning themean curvature of a polyhedral
surfaceP at a vertex v, can be simply understood as the �rst variation of the associated varifold VP applied to
any Lipschitz extension of the piecewise a�ne basis function φv that takes the value 1 on v and is identically
zero outside the patch of triangles around v. In this sense, the Cotangent Formula can be understood as the
regularization of δVP by means of the �nite family of piecewise a�ne kernels {φv(x) : v is a vertex of P}.
See [4] for more details.

The approximate mean curvature de�ned as above satis�es some nice convergence properties, that are
stated in Theorems 3.3, 3.4 and 3.6. These results rely on the notion of Bounded Lipschitz distance (see Sec-
tion 1). We stress that our approximate mean curvature is of "variational nature" because it is obtained by
mollifying the �rst variation of V, therefore it can be consistently de�ned also in presence of singularities.

Finally, in a forthcomingworkwe consider aweaknotionof second fundamental formobtained as a slight
variant of the one proposed byHutchinson in [16], which has the nice feature of being easily regularized in the
same spirit as done before in the case of the mean curvature. We thus obtain approximate second fundamen-
tal forms satisfying the same convergence results cited before. This opens the way to a number of possible
applications to computational geometry, like for instance the de�nition of very general discrete geometric
�ows, as well as of general discrete equivalents of topological invariants that are related with curvatures (like
in the Gauss-Bonnet theorem).

To show the consistency and robustness of our theory, some numerical experiment are shown in the last
section, including in particular the computation of approximatemean curvatures of standard double bubbles
in 2d and 3d, as well as of approximate Gaussian curvatures of a torus.

1 Preliminaries
Let d, n ∈ N with 1 ≤ d < n. Let ρ1, ξ1 be two symmetric molli�ers on Rn, such that ρ1(x) = ρ(|x|) and
ξ1(x) = ξ (|x|) for suitable one-dimensional, even pro�le functions ρ, ξ having compact support in [−1, 1]. We
assume that ˆ

Rn
ρ1(x) dx =

ˆ
Rn
ξ1(x) dx = 1 ,

that is,
nωn

ˆ 1

0
ρ(t)tn−1 dt = nωn

ˆ 1

0
ξ (t)tn−1 dt = 1 .
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Given ε > 0 and x ∈ Rn we set

ρε(x) = ε−nρ1(x/ε) and ξε(x) = ε−nξ1(x/ε) .

We assume at least that ρ ∈ C1(R) and ξ ∈ C0(R). At some point, some extra regularity will be required on ρ
and ξ , namely that ρ ∈ W2,∞ and ξ ∈ W1,∞ (see Hypothesis 1).

We recall here a few facts about varifolds, see for instance [22] for more details. Let us start with the
general de�nition of varifold. Let Ω ⊂ Rn be an open set. A d–varifold in Ω is a non-negative Radonmeasure
on Ω × Gd,n, where Gd,n denotes the Grassmannian manifold of d-dimensional unoriented subspaces of Rn.

An important class is the one of recti�able varifolds. LetM be a countably d–recti�able set and θ be a non
negative function with θ > 0Hd–almost everywhere in M. The associated recti�able varifold V = v(M, θ) is
de�ned as V = θHd

|M ⊗ δTxM, i.e.,
ˆ
Ω×Gd,n

φ(x, T) dV(x, T) =
ˆ
M
φ(x, TxM) θ(x) dHd(x) ∀φ ∈ C0c (Ω × Gd,n ,R) ,

where TxM is the approximate tangent space at x, which existsHd–almost everywhere inM, and δTxM is the
Dirac delta at . The function θ is called the multiplicity of the recti�able varifold. If additionally θ(x) ∈ N for
Hd–almost every x ∈ M, we say that V is an integral varifold.

Theweight (ormass)measure of a varifoldV is thepositiveRadonmeasurede�nedby ‖V‖(B) = V(π−1(B))
for every B ⊂ Ω Borel, with π : Ω×Gd,n → Ω de�ned by π(x, S) = x. In particular, theweight of a d–recti�able
varifold V = v(M, θ) is the measure ‖V‖ = θHd

|M.
The following result is well-known (see for instance [1]).

Proposition 1.1 (Young-measure representation). Given a d–varifold V on Ω, there exists a family of proba-
bility measures {νx}x on Gd,n de�ned for ‖V‖-almost all x ∈ Ω, such that V = ‖V‖ ⊗ {νx}x, that is,

V(φ) =
ˆ
x∈Ω

ˆ
S∈Gd,n

φ(x, S) dνx(S) d‖V‖(x)

for all φ ∈ C0c (Ω × Gd,n).

We recall that a sequence (µi)i of Radonmeasures de�nedon a locally compactmetric space is said toweakly–
* converge to a Radon measure µ (in symbols, µi *−⇀ µ) if, for every φ ∈ C0c (Ω), µi(φ)→ µ(φ) as i →∞.

A sequence of d–varifolds (Vi)i weakly–* converges to a d–varifold V in Ω if, for all φ ∈ C0c (Ω × Gd,n),

〈Vi , φ〉 =
ˆ
Ω×Gd,n

φ(x, P) dVi(x, P) −−−→i→∞
〈V , φ〉 =

ˆ
Ω×Gd,n

φ(x, P) dV(x, P) .

We now recall the de�nition of Bounded Lipschitz distance between two Radonmeasures µ and ν de�ned
on a locally compact metric space (X, d). We set

∆1,1(µ, ν) = sup
{∣∣∣∣ˆ

X
φ dµ −

ˆ
X
φ dν

∣∣∣∣ : φ ∈ Lip1(X), ‖φ‖∞ ≤ 1} .

It is well-known that ∆1,1 de�nes a distance on the space of Radon measures on X.
The following fact is well-known (see [5, 24]).

Proposition 1.2. Let µ, (µi)i, i ∈ N, be Radon measures on a locally compact metric space (X, δ). Assume that
µ(X) + supi µi(X) < +∞ and that there exists a compact set K ⊂ X such that the supports of µ and of µi are
contained in K for all i ∈ N. Then µi *−⇀ µ if and only if ∆1,1(µi , µ)→ 0 as i →∞.

For all P ∈ Gd,n and X = (X1, . . . , Xn) ∈ C1c (Ω,Rn) we set

divPX(x) =
n∑
j=1
〈∇PXj(x), ej〉 =

n∑
j=1
〈ΠP(∇Xj(x)), ej〉
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where (e1, . . . , en) denotes the canonical basis of Rn. The de�nition of �rst variation of a varifold is due to
Allard [2]. Given a varifold V on Ω × Gd,n, its �rst variation δV is the vector–valued distribution (of order 1)
de�ned for any vector �eld X ∈ C1c (Ω,Rn) as

δV(X) =
ˆ
Ω×Gd,n

divPX(x) dV(x, P) .

It is also useful to de�ne the action of δV on a function φ ∈ C1c (Ω) as the vector

δV(φ) =
(
δV(φ e1), . . . , δV(φ en)

)
.

We say that V has a locally bounded �rst variation if, for any �xed compact set K ⊂ Ω, there exists a constant
cK > 0 such that for any vector �eld X ∈ C1c (Ω,Rn) with spt X ⊂ K one has

|δV(X)| ≤ cK sup
K
|X| .

In this case, by Riesz Theorem, there exists a vector–valued Radon measure on Ω (still denoted as δV) such
that

δV(X) =
ˆ
Ω
X · δV for every X ∈ C0c (Ω,Rn)

Thanks to Radon-Nikodym Theorem, we can decompose δV as

δV = −H‖V‖ + δVs , (1.1)

where H ∈
(
L1loc(Ω, ‖V‖)

)n and δVs is singular with respect to ‖V‖. The function H is called the generalized
mean curvature vector. By the divergence theorem, H coincides with the classical mean curvature vector if
V = v(M, 1), where M is a d-dimensional submanifold of class C2.

1.1 Discrete varifolds

Every time a varifold is de�ned by a �nite set of parameters, we shall call it discrete varifold. As anticipated
in the Introduction, we shall mainly focus on “unstructured” discrete varifolds (discrete volumetric varifolds
or point cloud varifolds, see below). Note that all de�nitions and results of Sections 2 and 3 hold in particular
for all sequences of discrete varifolds, including those of polyhedral type. Concerning the results of Section
4, the construction of approximations Vi of a recti�able varifold V, such that ∆1,1(Vi , V) is in�nitesimal, as
shown in Theorem 4.4, seems to be quite delicate in the polyhedral setting, since the tangent directions are
prescribed by the directions of the cells of the polyhedral surface, which are not necessarily converging when
the polyhedral surfaces converge to a smooth one in Hausdor� distance. Nevertheless, the construction of
such approximations is much simpler in the case of volumetric and point cloud varifolds.

Let Ω ⊂ Rn be an open set. A mesh of Ω is a countable partition K of Ω, that is, a collection of pairwise
disjoint subdomains (“cells”) of Ω such that {K ∈ K : K ∩ B ≠ ∅} is �nite for any bounded set B ⊂ Ω and

Ω =
⊔
K∈K

K .

Here, no other assumptions on the geometry of the cells K ∈ K are needed. We shall often refer to the size of
the meshK, denoted by

δ = sup
K∈K

diam K .

We come to the de�nition of discrete volumetric varifold (see [7]).

De�nition 1.3 (Discrete volumetric varifold). Let K be a mesh of Ω and let {(mK , PK)}K∈K ⊂ R+ × Gd,n. We
set

VvolK =
∑
K∈K

mK
|K|L

n
|K ⊗ δPK , where |K| = Ln(K)

and call it discrete volumetric varifold. We remark that discrete volumetric d–varifolds are typically not d–
recti�able (indeed their support is n–recti�able, while d < n).
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We can similarly de�ne point cloud varifolds.

De�nition 1.4 (Point cloud varifolds). Let {xi}i=1...N ⊂ Rn be a point cloud, weighted by the masses
{mi}i=1...N and provided with directions {Pi}i=1...N ⊂ Gd,n. We associate the collection of triplets {(xi ,mi , Pi) :
i = 1, . . . , N} with the point cloud d–varifold

Vpt =
N∑
i=1

mi δxi ⊗ δPi .

Of course, a point cloud varifold is not d-recti�able as its support is zero-dimensional.

The idea behind these “unstructured” types of discrete varifolds is that they can be used to discretize more
general varifolds. For instance, given a d–varifold V, and de�ning

mK = ‖V‖(K) and PK ∈ argmin
P∈Gd,n

ˆ
K×Gd,n

‖P − S‖ dV(x, S) ,

one obtains a volumetric approximation of V. Similarly one can construct a point cloud approximation of V.
Thepossibility of switchingbetweendiscrete volumetric varifolds andpoint cloudvarifolds, up to a controlled
error depending on the size of a given mesh, is shown in the following proposition.

Proposition 1.5 ([4]). Let Ω ⊂ Rn be an open set. Consider a meshK of Ω of size δ = sup
K∈K

diam K and a family

{xK ,mK , PK}K∈K ⊂ Rn ×R+ × Gd,n such that xK ∈ K, for all K ∈ K. De�ne the volumetric varifold VvolK and the
point cloud varifold Vpt

K
as

VvolK =
∑
K∈K

mK
|K|L

n
|K ⊗ δPK and Vpt

K
=
∑
K∈K

mKδxK ⊗ δPK .

Then, for any open set U ⊂ Ω one obtains

∆1,1U (VvolK , Vpt
K
) ≤ δmin

(
‖VvolK ‖(Uδ), ‖VptK‖(U

δ)
)

Proof. Let φ ∈ Lip1(Rn × Gd,n) such that sptφ ⊂ U, then∣∣∣∣∣
ˆ
U×Gd,n

φ dVvolK −
ˆ
U×Gd,n

φ dVpt
K

∣∣∣∣∣ =
∣∣∣∣∣∑
K∈K

mK
|K|

ˆ
K
φ(x, PK)Ln(x) −

∑
K∈K

mKφ(xK , PK)
∣∣∣∣∣

≤
∑
K∈K
U∩K≠∅

mK

 
K

∣∣φ(x, PK) − φ(xK , PK)∣∣ dLn(x)
≤
∑
K∈K
U∩K≠∅

 
K
lip(φ)︸ ︷︷ ︸
≤1

|x − xK | dLn(x) ≤ δ
∑
K∈K
U∩K≠∅

mK

= δ ‖VvolK ‖

 ⋃
U∩K≠∅

K

 = δ ‖Vpt
K
‖

 ⋃
U∩K≠∅

K


≤ δ min

(
‖VvolK ‖(Uδ), ‖VptK‖(U

δ)
)
,

which concludes the proof.

Remark 1.6. Wenote that the �rst variation of a point cloud varifold is not ameasure but only a distribution:
indeed it is obtained by directional di�erentiation of a weighted sum of Dirac deltas. On the other hand, the
�rst variation of a discrete volumetric varifold is bounded as soon as the cells inKhave a boundarywithHn−1

�nite measure (or even as soon as the cells inK have �nite perimeter), but its total variation typically blows
up as the size of the mesh goes to zero (see for instance Example 6 in [7]). Nevertheless, this bad behavior
of the �rst variation, when applied to discrete varifolds, can be somehow controlled via regularization, as
described in Section 2.
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2 Regularized First Variation
Given a sequence of varifolds (Vi)i weakly–* converging to a varifold V, a su�cient condition for V to have
locally bounded �rst variation, i.e. for δV to be a Radon measure, is

sup
i
‖δVi‖ < +∞ . (2.1)

However, the typical sequences of discrete varifolds that have been introduced in Section 1.1 may not have
uniformly bounded �rst variations, or it may even happen that the �rst variations themselves are not mea-
sures, as in the case of point cloud varifolds (see Remark 1.6). Nevertheless, δVi are distributions of order
1 converging to δV (in the sense of distributions). The idea is to compose the �rst variation operator δ with
convolutions de�ned by a sequence of regularizing kernels (ρεi )i∈N as in De�nition 2.1 below, and then to
require a uniform control on the L1-norm of δVi * ρεi .

We also point out that the parameter εi may be viewed as a “scale parameter”.
Besides some technical results, that will be used in the next sections, we prove in Theorem 2.6 a com-

pactness and recti�ability result, which relies on the assumption that δVi * ρεi is uniformly bounded in L1.
As we are going to regularize the �rst variation of a varifold V in Ω by convolution, we conveniently

extend δV to a linear and continuous form on C1c (Rn ,Rn). Let Ω ⊂ Rn be an open set and V be a d–varifold
in Ω with mass ‖V‖(Ω) < +∞. First of all, we notice that (x, S) 7→ divSX(x) is continuous and bounded, and
that V is a �nite Radon measure, thus we set

δV(X) =
ˆ
Ω×Gd,n

divSX(x) dV(x, S), ∀X ∈ C1c (Rn ,Rn). (2.2)

For more simplicity, in (2.2) the extended �rst variation is denoted as the standard �rst variation. We imme-
diately obtain

δV(X) ≤ ‖X‖C1 ‖V‖(Ω) , ∀X ∈ C1c (Rn ,Rn) ,

which means that the linear extension is continuous with respect to the C1-norm. Notice that the extended
�rst variation coincides with the standard �rst variation whenever X ∈ C1c (Ω,Rn) but may contain additional
boundary information if the support of ‖V‖ is not relatively compact in Ω.

For the reader’s convenience we recall from Section 1 that ρ denotes a non-negative kernel pro�le, such
that ρ1(x) = ρ(|x|) is of class C1, has compact support in B1(0), and satis�es

´
ρ1(x) dx = 1. Then, given ε > 0

we set ρε(x) = ε−nρ1(x/ε).

De�nition 2.1 (regularized �rst variation). Given a vector �eld X ∈ C1c (Rn ,Rn), for any ε > 0 we de�ne

δV * ρε(X) := δV(X * ρε) =
ˆ
Ω×Gd,n

divS(X * ρε)(y) dV(y, S) . (2.3)

We generically say that δV * ρε is a regularized �rst variation of V.

Of course (2.3) de�nes δV *ρε in the sense of distributions. The following, elementary proposition shows that
δV * ρε is actually represented by a smooth vector �eld with bounded L1-norm.

Proposition 2.2. Let Ω ⊂ Rn be an open set and V be a d–varifold in Ω with �nite mass ‖V‖(Ω). Then δV * ρε
is represented by the continuous vector �eld

δV * ρε(x) =
ˆ
Ω×Gd,n

∇Sρε(y − x) dV(y, S) = 1
εn+1

ˆ
Ω×Gd,n

∇Sρ1
( y − x

ε
)
dV(y, S) (2.4)

and moreover one has δV * ρε ∈ L1(Rn;Rn).
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Proof. Taking into account (2.3), for every y ∈ Rn we �nd divS(X * ρε)(y) = X *∇Sρε(y) :=
∑n

i=1 Xi * ∂Si ρε(y),
thus by Fubini-Tonelli’s theorem we get

δV * ρε(X) =
ˆ
Ω×Gd,n

(X *∇Sρε)(y) dV(y, S)

=
ˆ
Ω×Gd,n

ˆ
x∈Rn

X(x) ·∇Sρε(y − x) dLn(x) dV(y, S)

=
ˆ
x∈Rn

X(x) ·
(ˆ

Ω×Gd,n
∇Sρε(y − x) dV(y, S)

)
dLn(x) ,

which proves (2.4). The fact that δV * ρε ∈ L1(Rn;Rn) is an immediate consequence of the fact that ∇ρε is
bounded on Rn.

Remark 2.3. We stress that δV * ρε is in L1(Rn) even when δV is not locally bounded.

Remark 2.4. If the support of ‖V‖ is compactly contained in Ω then using the extended or the standard
�rst variation in the convolution δV * ρε is equivalent up to choosing ε small enough. In general, the same
equivalence holds up to restricting the distribution δV * ρε to C1c (Ωε ,Rn), where Ωε = {x ∈ Ω : dist(x, ∂Ω) >
ε}, which amounts to restricting the function δV * ρε to Ωε.

In the next proposition we show that the classical �rst variation of a varifold V is the weak–* limit of regular-
ized �rst variations of V, under the assumption that δV is a bounded measure. This will immediately follow
from the basic estimate (2.5), which is true for all varifolds.

Proposition 2.5. Let Ω ⊂ Rn be an open set and let V be a varifold in Ω with ‖V‖(Ω) < +∞. Then for any
X ∈ C1c (Rn ,Rn) we have∣∣δV * ρε(X) − δV(X)∣∣ ≤ ‖V‖(Ω ∩ ( spt X + Bε(0))) ‖ρε * X − X‖C1 −−−→ε→0

0 . (2.5)

Moreover, if V has bounded extended �rst variation then

δV * ρε *−−−⇀
ε→0

δV . (2.6)

Proof. Let X ∈ C1c (Rn ,Rn). Since δV * ρε(X) = δV(ρε * X) we obtain∣∣δV * ρε(X) − δV(X)∣∣ = ∣∣δV(ρε * X − X)∣∣ ≤ ‖V‖(Ω) ‖ρε * X − X‖C1 .

On observing that ‖ρε * X − X‖C1 −−−→ε→0
0 we get (2.5). If in addition V has bounded extended �rst variation,

then for all X ∈ C0c (Rn ,Rn) we obtain∣∣δV * ρε(X) − δV(X)∣∣ ≤ ‖δV‖ ‖ρε * X − X‖∞ −−−→ε→0
0 ,

which proves (2.6).

The next theorem is a partial generalization of Allard’s compactness theorem for recti�able varifolds. It shows
that, given a sequence (εi)i of positive numbers and a sequence of d-varifolds (Vi)i with uniformly bounded
total masses, such that δVi * ρεi satis�es a uniform boundedness assumption, there exists a subsequence of
Vi that weakly-* converges to a limit varifold V with bounded �rst variation. If in addition ‖Vi‖(Br(x)) ≥ θ0rd
for ‖V‖-almost every x and for βi ≤ r ≤ r0, with (βi)i∈N an in�nitesimal sequence, then the limit varifold V is
recti�able. We stress that Vi is required neither to have bounded �rst variation, nor to be recti�able. Notice
also the appearance of the scale parameters βi providing in�nitesimal lower bounds on the radii to be used
for approximate density estimates.
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Theorem 2.6 (compactness and recti�ability). Let Ω ⊂ Rn be an open set and (Vi)i be a sequence of d-
varifolds. Assume that there exists a positive, decreasing and in�nitesimal sequence (εi)i, such that

M := sup
i∈N

{
‖Vi‖(Ω) + ‖δVi * ρεi‖L1

}
< +∞ . (2.7)

Then there exists a subsequence (Vφ(i))i weakly–* converging in Ω to a d-varifold V with bounded �rst variation,
such that ‖V‖(Ω)+ |δV|(Ω) ≤ M.Moreover, if we further assume the existence of an in�nitesimal sequence βi ↓ 0
and θ0, r0 > 0 such that, for any βi < r < r0 and for ‖Vi‖-almost every x ∈ Ω,

‖Vi‖(Br(x)) ≥ θ0rd , (2.8)

then V is recti�able.

Proof. Since M is �nite, there exists a subsequence (Vφ(i))i weakly–* converging in Ω to a varifold V. By
Proposition 2.5, for any X ∈ C1c (Ω,Rn) we obtain∣∣δVφ(i) * ρεφ(i) (X) − δV(X)∣∣ ≤ ∣∣δVφ(i) * ρεφ(i) (X) − δVφ(i)(X)∣∣ + ∣∣δVφ(i)(X) − δV(X)∣∣

≤ ‖Vi‖(Ω)︸ ︷︷ ︸
≤C<+∞

∥∥X * ρεφ(i) − X∥∥C1 + ∣∣δVφ(i)(X) − δV(X)∣∣
−−−→
i→∞

0 .

Consequently, for any X ∈ C1c (Ω,Rn) one has
∣∣δV(X)∣∣ ≤ sup

i
‖δVi * ρεi‖L1 ‖X‖∞. We conclude that δV extends

to a continuous linear form inC0c (Ω,Rn)whosenorm is boundedby supi ‖δVi * ρεi‖L1 , thus ‖V‖(Ω)+|δV|(Ω) ≤
M.

Assuming the additional hypothesis (2.8), it is not di�cult to pass to the limit and prove the same in-
equality for ‖V‖–a.e. x and for all 0 < r < r0. We refer to Proposition 3.3 in [7] for more details on this point.
By Theorem 5.5(1) in [2] we obtain the last part of the claim.

3 Approximate Mean Curvature

3.1 De�nition and convergence

We now introduce the notion of approximate mean curvature associated with V, in a consistent way with the
notion of regularized �rst variation. We refer to Section 1 for the notations and the basic assumptions on the
kernel pro�les ρ, ξ . We also set

Cρ = d ωd
ˆ 1

0
ρ(r)rd−1 dr , Cξ = d ωd

ˆ 1

0
ξ (r)rd−1 dr . (3.1)

De�nition 3.1 (approximate mean curvature). Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω. For
every ε > 0 and x ∈ Ω, such that ‖V‖ * ξε(x) > 0, we de�ne

HVρ,ξ ,ε(x) = −
Cξ
Cρ
· δV * ρε(x)
‖V‖ * ξε(x)

, (3.2)

where Cρ and Cξ are as in (3.1). We generically say that the vector HVρ,ξ ,ε(x) is an approximate mean curvature
of V at x.

Example 3.2 (approximate mean curvature of a point cloud varifold). Let us consider a point cloud varifold
V =∑N

j=1 mjδxj ⊗ δPj . We remark that δV is not a measure. An approximate mean curvature of V is given by
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the formula

HVρ,ξ ,ε(x) = −
Cξ
Cρ
· δV * ρε(x)
‖V‖ * ξε(x)

=
Cξ
Cρε

·

∑
xj∈Bε(x)\{x}

mj ρ′
(
|xj − x|
ε

)
ΠPj

xj − x
|xj − x|∑

xj∈Bε(x)
mj ξ

(
|xj − x|
ε

) . (3.3)

The formula is well-de�ned for instance when x = xi for some i = 1, . . . , N. The choice of ε here is crucial: it
must be large enough to guarantee that the ball Bε(x) contains points of the cloud di�erent from x, but not
too large to avoid over-smoothing.

If δV is locally bounded then we recall the Radon-Nikodym-Lebesgue decomposition (1.1), which says that
δV = −H‖V‖+ δVs, where H = H(x) is the generalized mean curvature of V. Note that the approximate mean
curvature introduced in De�nition 3.1 can be equivalently de�ned as the Radon–Nikodym derivative of the
regularized �rst variation with respect to the regularized mass of V. When V is recti�able, it turns out that
formula (3.2) gives a pointwise ‖V‖–almost everywhere approximation of H(x), as proved by the following
result.

Theorem 3.3 (Convergence I). Let Ω ⊂ Rn be an open set and let V = v(M, θ) be a recti�able d–varifold with
locally bounded �rst variation in Ω. Then for ‖V‖–almost all x ∈ Ω we have

HVρ,ξ ,ε(x) −−−→ε→0
H(x) . (3.4)

Proof sketch. The proof consists of estimating the di�erence |Hρ,ξ ,ε(x) − H(x)| when x is a di�erentiability
point for δV with respect to ‖V‖ and, at the same time, the approximate tangent plane to M at x is well-
de�ned. Obviously ‖V‖-almost all x ∈ Ω satisfy these two properties. Then, by the relations

ε−d‖V‖(Bε(x)) −−−→
ε→0

ωdθ(x) ,

εn−d‖V‖ * ρε(x) −−−→
ε→0

θ(x)
ˆ
TxM

ρ(y) dHd(y) = Cρθ(x),

εn−d‖V‖ * ξε(x) −−−→
ε→0

θ(x)
ˆ
TxM

ξ (y) dHd(y) = Cξ θ(x)

and by
|δVs|(Bε(x))
‖V‖(B`(x))

−−−→
ε→0

0 ,

one can show that the above di�erence is in�nitesimal as ε → 0, thus proving (3.4). See [4] for more details.

Given a recti�able d-varifold V with locally bounded �rst variation and a sequence of generic d-varifolds (Vi)i
weakly–* converging toV, our goal is now todeterminean in�nitesimal sequenceof regularization scales (εi)i,
in dependence of an in�nitesimal sequence (di)i measuring how well the Vi’s are locally approximating V,
in order to derive an asymptotic, quantitative control of the error between the approximate mean curvatures
of Vi and V. In this spirit we obtain two convergence results, Theorem 3.4 and Theorem 3.6 that we describe
hereafter.

In Theorem 3.4 we extend the basic convergence property proved in Theorem 3.3. More speci�cally we
show the pointwise convergence of HViρ,ξ ,εi to H as i → ∞, up to an in�nitesimal o�set and for a suitable
choice of εi > 0 tending to zero as i → ∞. The presence of an o�set in the evaluation of HViρ,ξ ,εi and H (that
is, we compare HViρ,ξ ,εi (zi) with H(x), where zi is a sequence of points converging to x) is motivated by the
fact that we do not have spt ‖Vi‖ ⊂ spt ‖V‖ in general. Moreover, in typical applications one �rst constructs
the varifold Vi (which for instance could be a varifold solving some “discrete approximation” of a geometric
variational problem or PDE) and then, by possibly applying Theorem 2.6, one infers the existence of a limit
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varifold V of the sequence (Vi)i, up to extraction of a subsequence. In this sense, Vi is typically explicit while
V is not. We also provide in (3.7) an asymptotic, quantitative estimate of the gap between HViρ,ξ ,εi (zi) and
HVρ,ξ ,εi (x) (notice that for this estimate we take the εi-regularized mean curvatures for both varifolds Vi and
V) in terms of the parameters εi , di and of the o�set |x − zi|. We stress that the regularity of V that is assumed
in Theorem 3.4 is in some sense minimal (for instance the singular part δVs of the �rst variation may not be
zero). The price to pay for such a generality is a non-optimal convergence rate, which can be improved under
stronger regularity assumptions on V and by using a modi�ed notion of approximate mean curvature (see
De�nition 3.5 and Theorem 3.6).

From now on we require a few extra regularity on the pair of kernel pro�les (ρ, ξ ), according to the fol-
lowing hypothesis.

Hypothesis 1. We say that the pair of kernel pro�les (ρ, ξ ) satisfy Hypothesis 1 if ρ, ξ are as speci�ed at the
beginning of Section 1 and, moreover, ρ is of class W2,∞ while ξ is of class W1,∞.

The next result represents a quantitative improvement of Theorem 3.3, in that it provides an explicit estimate
of the error between the approximatemean curvature of amember Vi of a sequence of varifolds converging to
a limit varifold V, and the approximate mean curvature of V. The quanti�cation takes into account a suitable
estimate on the localized ∆1,1 distance between Vi and V, as well as an estimate on an o�set |x − zi|. Here
the choice of the sequence of regularization scales εi appears to be deeply linked to the previous estimates.
The proof (that we do not recall here, but we refer to [4] for all the details) is more technical than the one of
Theorem 3.3, even though some similarities appear at various points.

Theorem 3.4 (Convergence II). Let Ω ⊂ Rn be an open set and let V = v(M, θ) be a recti�able d–varifold in
Ω with bounded �rst variation. Let (ρ, ξ ) satisfy Hypothesis 1. Let (Vi)i be a sequence of d–varifolds, for which
there exist two positive, decreasing and in�nitesimal sequences (ηi)i , (di)i, such that for any ball B ⊂ Ω centered
in spt ‖V‖, one has

∆1,1B (V , Vi) ≤ dimin
(
‖V‖(Bηi ), ‖Vi‖(Bηi )

)
. (3.5)

For ‖V‖–almost any x ∈ Ω and for any sequence (zi)i tending to x, let (εi)i be a positive, decreasing and in-
�nitesimal sequence such that

di + |x − zi|
ε2i

−−−→
i→∞

0 and ηi
εi
−−−→
i→∞

0 . (3.6)

Then we have ∣∣∣HViρ,ξ ,εi (zi) − HVρ,ξ ,εi (x)∣∣∣ ≤ C‖ρ‖W2,∞
di + |x − zi|

ε2i
for i large enough, (3.7)

HViρ,ξ ,εi (zi) −−−→i→∞
H(x) . (3.8)

Below we quote a third, pointwise convergence result where an even better convergence rate shows up when
the limit varifold is (locally) a manifold M of class C2 with multiplicity = 1. First we notice that HVρ,ξ ,ε(x) is
obtained as an integration of tangential vectors, while the (classical) mean curvature ofM is a normal vector.
Thismeans that even small errors a�ecting themass distribution of the approximating varifolds Vi might lead
to non-negligible errors in the tangential components of the approximate mean curvature. A workaround
for this is, then, to project HVρ,ξ ,ε(x) onto the normal space at x. In order to properly de�ne the orthogonal
component of the mean curvature of a general varifold V, we recall Proposition 1.1:

V(φ) =
ˆ
x∈Ω

ˆ
P∈Gd,n

φ(x, P) dνx(P) d‖V‖(x), ∀φ ∈ C0c (Ω × Gd,n) .

Now we introduce the following de�nition.
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De�nition 3.5 (orthogonal approximate mean curvature). Let Ω ⊂ Rn be an open set and let V be a d–
varifold in Ω. For ‖V‖-almost every x an orthogonal approximate mean curvature of V at x is de�ned as

HV ,⊥ρ,ξ ,ε(x) =
ˆ
P∈Gd,n

ΠP⊥
(
HVρ,ξ ,ε(x)

)
dνx(P) . (3.9)

Theorem 3.6 below establishes a better convergence rate under stronger regularity assumptions on V and
su�cient accuracy in the approximation of V by Vi. For its proof we refer the reader to [4].

Theorem 3.6 (Convergence III). Let Ω ⊂ Rn be an open set, M ⊂ Ω be a d–dimensional submanifold of
class C2 without boundary, and let V = v(M, 1) be the recti�able d–varifold in Ω associated with M, with
multiplicity 1. Let us extend TyM to a C1 map T̃yM de�ned in a tubular neighbourhood of M. Let (Vi)i be a
sequence of d–varifolds in Ω. Let (ρ, ξ ) satis�es Hypothesis 1. Let x ∈ M and let (zi)i ⊂ Ω be a sequence tend-
ing to x and such that zi ∈ spt ‖Vi‖. Assume that there exist positive, decreasing and in�nitesimal sequences
(ηi)i , (d1,i)i , (d2,i)i , (εi)i, such that for any ball B ⊂ Ω centered in spt ‖V‖ and contained in a neighbourhood
of x, one has

∆1,1B (‖V‖, ‖Vi‖) ≤ d1,imin
(
‖V‖(Bηi ), ‖Vi‖(Bηi )

)
, (3.10)

and, recalling the decomposition Vi = ‖Vi‖ ⊗ νix,

sup
{y∈Bεi+|x−zi|(x)∩spt ‖Vi‖}

ˆ
S∈Gd,n

‖T̃yM − S‖ dνiy(S) ≤ d2,i . (3.11)

Then, there exists C > 0 such that∣∣∣HVi ,⊥ρ,ξ ,εi (zi) − H
V ,⊥
ρ,ξ ,εi (x)

∣∣∣ ≤ C d1,i + d2,i + |x − zi|εi
. (3.12)

Moreover, if we also assume that d1,i + d2,i + ηi + |x − zi| = o(εi) as i →∞, then

HVi ,⊥ρ,ξ ,εi (zi) −−−→i→∞
H(x) .

4 Approximating a varifold by discrete varifolds
In this section, we show that the family of discrete volumetric varifolds and the family of point cloud vari-
folds approximate well the space of recti�able varifolds in the sense of weak–* convergence, or ∆1,1 metric.
Moreover, we give a way of quantifying this approximation in terms of themesh size and themean oscillation
of tangent planes. Our construction starts with the following result.

Lemma 4.1. Let Ω ⊂ Rn be an open set and V be a d–varifold in Ω. Let (Ki)i∈N be a sequence of meshes of Ω,
and set

δi = sup
K∈Ki

diam(K) ∀ i ∈ N .

Then, there exists a sequence of discrete (point cloud or volumetric) varifolds (Vi)i such that for any open set
U ⊂ Ω,

∆1,1U (V , Vi) ≤ δi‖V‖(Uδi ) +
∑
K∈Ki

min
P∈Gd,n

ˆ
(Uδi∩K)×Gd,n

‖P − S‖ dV(x, S) . (4.1)

Proof. We de�ne Vi as either the volumetric varifold

Vi =
∑
K∈Ki

mi
K
|K|L

n ⊗ δPiK ,

or the point cloud varifold
Vi =

∑
K∈Ki

mi
KδxiK ⊗ δPiK ,
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with
mi
K = ‖V‖(K), xiK ∈ K and PiK ∈ argmin

P∈Gd,n

ˆ
K×Gd,n

‖P − S‖ dV(x, S) .

Let us now explain the proof for the case of volumetric varifolds, as it is completely analogous in the case of
point cloud varifolds. For any open set U ⊂ Ω and φ ∈ Lip1(Rn × Gd,n) with sptφ ⊂ U × Gd,n, we set

∆i(φ) =
ˆ
Ω×Gd,n

φ dVi −
ˆ
Ω×Gd,n

φ dV

and obtain

∣∣∆i(φ)∣∣ =
∣∣∣∣∣∣
∑
K∈Ki

ˆ
K∩U

φ(x, PiK)
‖V‖(K)
|K| dLn(x) −

∑
K∈Ki

ˆ
(K∩U)×Gd,n
φ(y, T) dV(y, T)

∣∣∣∣∣∣
≤
∑
K∈Ki
K∩U≠∅

 
x∈K

ˆ
(y,T)∈K×Gd,n

∣∣∣φ(x, PiK) − φ(y, T)∣∣∣︸ ︷︷ ︸
≤(|x−y|+‖PiK−T‖)

dV(y, T) dLn(x)

≤ δi
∑
K∈Ki
K∩U≠∅

‖V‖(K) +
∑
K∈Ki
K∩U≠∅

ˆ
K×Gd,n

∥∥∥PiK − T∥∥∥ dV(y, T)
≤ δi ‖V‖(Uδi ) +

∑
K∈Ki

min
P∈Gd,n

ˆ
(Uδi∩K)×Gd,n

‖P − T‖ dV(y, T) ,

which concludes the proof up to taking the supremum of ∆i(φ) over φ.

In Theorem 4.4 below we show that recti�able varifolds can be approximated by discrete varifolds. Moreover
we get explicit convergence rates under the following regularity assumption.

De�nition 4.2 (piecewise C1,β varifold). Let S be a d-recti�able set, θ be a positive Borel function on S, and
β ∈ (0, 1]. We say that the recti�able d–varifold V = v(S, θ) is piecewise C1,β if there exist R > 0, C ≥ 1 and a
closed set Σ ⊂ S such that the following properties hold:
• (Ahlfors-regularity of S) for all x ∈ S and 0 < r < R

C−1rd ≤ Hd(S ∩ B(x, r)) ≤ Crd ; (4.2)

• (Ahlfors-regularity of Σ) for all z ∈ Σ and 0 < r < R

C−1rd−1 ≤ Hd−1(Σ ∩ B(z, r)) ≤ Crd−1 ; (4.3)

• (C1,β regularity of S \ Σ) the function

τ(r) = sup{‖TyS − TzS‖ : y, z ∈ S ∩ B(x, r), x ∈ S with dist(x, Σ) > Cr}

satis�es
τ(r) ≤ C rβ ∀0 < r < R ; (4.4)

• for all 0 < r < ε < R and all z ∈ Σ

C−1rHd−1(Σ ∩ B(z, ε)) ≤ Hd(S ∩ [Σ]r ∩ B(z, ε)) ≤ C rHd−1(Σ ∩ B(z, ε)) . (4.5)

• forHd-almost all x ∈ S we have
C−1 ≤ θ(x) ≤ C . (4.6)

Remark 4.3. We note that varifolds associated with Almgren’s (M, ε, δ)-minimal sets of dimension 1 and 2
in R3 are piecewise C1,β, as a consequence of Taylor’s regularity theory [23]. See also [10, 14, 18]. Of course,
the family of recti�able varifolds in R3 that are piecewise C1,β is much larger than (M, ε, δ)-minimal sets.
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Hereafter we prove an approximation result for recti�able d–varifolds, that becomes quantitative as soon
as the varifolds are assumed to be piecewise C1,β in the sense of De�nition 4.2. In order to avoid a heavier,
localized form of De�nition 4.2 we take Ω = Rn. We also choose to provide the full proof (taken from [4]) as
this results has potential applications to geometric variational problems.

Theorem 4.4. Let (Ki)i∈N be a sequence of meshes of Rn, set δi = supK∈Ki diam(K) for all i ∈ N and assume
that δi → 0 as i → ∞. Let V = v(M, θ) be a recti�able d–varifold in Rn with ‖V‖(Rn) < +∞. Then there exists
a sequence of discrete (volumetric or point cloud) varifolds (Vi)i with the following properties:
(i) ∆1,1(Vi , V)→ 0 as i →∞;
(ii) If V is piecewise C1,β in the sense of De�nition 4.2 then there exist constants C, R > 0 such that for all balls

B with radius rB ∈ (0, R) centered on the support of ‖V‖ one has

∆1,1B (Vi , V) ≤ C
(
δβi +

δi
rB + δi

)
‖V‖(BCδi ) (4.7)

and
∆1,1(Vi , V) ≤ C

(
δβi +

δi
R

)
‖V‖(Rn) (4.8)

Proof. The proof is split into some steps.
Step 1. We show that for all i there exists Ai : Rn → L(Rn;Rn) constant in each cell K ∈ Ki, such that

ˆ
Rn×Gd,n

∥∥∥Ai(y) − ΠT∥∥∥ dV(y, T) = ˆ
y∈Rn

∥∥∥Ai(y) − ΠTyM∥∥∥ d‖V‖(y) −−−−→i→+∞
0 . (4.9)

Indeed, let us �x ε > 0. Since x 7→ ΠTxM ∈ L1(Rn , L(Rn;Rn), ‖V‖), there exists a Lipschitz map A : Rn →
L(Rn;Rn) such that ˆ

y∈Rn

∥∥A(y) − ΠTyM∥∥ d‖V‖(y) < ε .
For all i and K ∈ Ki, de�ne for x ∈ K,

Ai(x) = AiK =
1

‖V‖(K)

ˆ
K
A(y) d‖V‖(y) .

Then ˆ
y∈Rn

∥∥∥Ai(y) − ΠTyM∥∥∥ d‖V‖(y) ≤ ˆ
y∈Rn

∥∥∥Ai(y) − A(y)∥∥∥ d‖V‖(y) + ˆ
y∈Rn

∥∥A(y) − ΠTyM∥∥ d‖V‖(y)
≤ ε +

∑
K∈Ki

ˆ
y∈K

∥∥∥∥ 1
‖V‖(K)

ˆ
K
A(u) d‖V‖(u) − A(y)

∥∥∥∥ d‖V‖(y)
≤ ε +

∑
K∈Ki

1
‖V‖(K)

ˆ
y∈K

ˆ
u∈K

∥∥A(u) − A(y)∥∥ d‖V‖(u) d‖V‖(y)
≤ ε + δilip(A)‖V‖(Rn) ≤ 2ε for i large enough,

which proves (4.9).
Step 2.Here wemake the result of Step 1more precise, i.e., for all i, we prove that there exists T i : Rn → Gd,n
constant in each cell K ∈ Ki such that

ˆ
Rn×Gd,n

∥∥∥T i(y) − T∥∥∥ dV(y, T) = ˆ
y∈Rn

∥∥∥T i(y) − TyM∥∥∥ d‖V‖(y) −−−−→
i→+∞

0 . (4.10)

Indeed, let ε > 0 and, thanks to Step 1, take i large enough and Ai : Rn → L(Rn;Rn) as in (4.9), such that∑
K∈Ki

ˆ
K

∥∥∥Ai(y) − ΠTyM∥∥∥ d‖V‖(y) < ε .
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As a consequence we �nd ˆ
K

∥∥∥Ai(y) − ΠTyM∥∥∥ d‖V‖(y) = εiK with
∑
K∈Ki

εiK < ε .

In particular, for all K ∈ Ki, there exists yK ∈ K such that∥∥∥Ai(yK) − ΠTyKM∥∥∥ ≤ εiK
‖V‖(K) .

De�ne T i : Rn → Gd,n by T i(y) = TyKM for K ∈ Ki and y ∈ K, hence T i is constant in each cell K andˆ
Rn×Gd,n

∥∥∥T i(y) − T∥∥∥ dV(y, T) = ∑
K∈Ki

ˆ
K

∥∥∥ΠTyKM − ΠTyM∥∥∥ d‖V‖(y) (4.11)

≤
∑
K∈Ki

ˆ
K
‖ΠTyKM − A

i(y)︸ ︷︷ ︸
=Ai(yK )

‖ d‖V‖(y) +
ˆ
Rn×Gd,n

∥∥∥Ai(y) − ΠT∥∥∥ dV(y, T)
≤
∑
K∈Ki

ˆ
K

εiK
‖V‖(K)d‖V‖(y) + ε ≤ 2ε ,

which implies (4.10).
Step 3: proof of (i).We preliminarily show that∑

K∈Ki

min
P∈Gd,n

ˆ
K×Gd,n

‖P − T‖ dV(y, T) −−−→
i→∞

0. (4.12)

Indeed, thanks to Step 2, let T i : Rn → Gd,n be such that (4.10) holds. We have∑
K∈Ki

min
P∈Gd,n

ˆ
K×Gd,n

‖P − T‖ dV(y, T) ≤
∑
K∈Ki

ˆ
K×Gd,n

∥∥∥T iK − T∥∥∥ dV(y, T)
=
ˆ
Rn×Gd,n

∥∥∥T i(y) − T∥∥∥ dV(y, T)
−−−−→
i→+∞

0 ,

which proves (4.12). Then (i) follows by combining (4.12) with Lemma 4.1.
Step 4.Assume that V is piecewise C1,β and let R, C > 0 be as in De�nition 4.2.We shall nowprove that for any
ball B ⊂ Rn centered on the support of ‖V‖with radius rB < R/2 and for any in�nitesimal sequence ηi ≥ Cδi,
assuming also i large enough so that δi ≤ (R − 2rB)/(C + 1), there exists a decomposition Ki = K

reg
i tK

sing
i

such that
‖TxS − TyS‖ ≤ C|x − y|β , ∀ K ∈ K

reg
i , ∀ x, y ∈ K ∩ S (4.13)

and
‖V‖

(⋃
K
sing
i ∩ B

)
≤ C′ δi

rB + ηi
‖V‖(Bηi ) . (4.14)

De�neKsing
i as the set of K ∈ Ki for which Σ(Cδi) ∩ K is non-empty, and setKreg

i = Ki \Ksing
i . It is immediate

to check that (4.13) holds, thanks to (4.4). Let now B be a �xed ball of radius 0 < rB < R/2 centered at some
point x ∈ S. Take K ∈ K

sing
i and assume without loss of generality that K ∩ B is not empty, hence there

exists p ∈ K ∩ B and z ∈ Σ such that |p − z| < (C + 1)δi. Consequently, B ⊂ B(z, 2rB + (C + 1)δi). Then
K ∩ B ⊂ Σ(C+1)δi ∩ B(z, 2rB + (C + 1)δi) and thus, assuming in addition that ηi < R − rB for i large enough, we
obtain

‖V‖

 ⋃
K∈K

sing
i

K ∩ B

 ≤ ‖V‖(Σ(C+1)δi ∩ B(z, 2rB + (C + 1)δi))
≤ CHd

(
S ∩ Σ(C+1)δi ∩ B(z, 2rB + (C + 1)δi)

)
≤ C2(C + 1)δiHd−1

(
Σ ∩ B(z, 2rB + (C + 1)δi)

)
, (4.15)
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thanks to (4.5) and (4.6). On the other hand, since Cδi ≤ ηi < R − rB one has by (4.2), (4.3) and (4.6) that

‖V‖(Bηi ) ≥ C−1Hd(S ∩ Bηi ) ≥ C−2(rB + ηi)d ≥ C−2(rB + ηi)(rB + Cδi)d−1

≥ 1
2d−1C2(C + 1)

(rB + ηi)
δi

(C + 1)δi (2rB + (C + 1)δi)d−1

≥ 1
2d−1C3(C + 1)

(rB + ηi)
δi

C(C + 1)δiHd−1(Σ ∩ B(z, 2rB + (C + 1)δi))

≥ 1
2d−1C5(C + 1)

(rB + ηi)
δi

‖V‖

 ⋃
K∈Ksing

K ∩ B

 ,

which by (4.15) gives (4.14) with C′ = 2d−1C5(C + 1).
Step 5. De�ne T iK = TyKM for each cell K ∈ Ki and for some yK ∈ K. Set

Ai =
∑
K∈Ki

min
P∈Gd,n

ˆ
(B∩K)×Gd,n

‖P − T‖ dV(y, T) .

Then for every ball B of radius r > 0, and choosing ηi = Cδi, we have

Ai =
∑
K∈Ki

ˆ
K∩B
‖TyKM − TyM‖ d‖V‖(y)

=
∑

K∈K
reg
i

ˆ
K∩B
‖TyKM − TyM‖ d‖V‖(y) +

∑
K∈K

sing
i

ˆ
K∩B
‖TyKM − TyM‖ d‖V‖(y)

≤
∑

K∈K
reg
i

ˆ
K∩B

C|yK − y|β d‖V‖(y) + 2‖V‖
(⋃

K
sing
i ∩ B

)

≤ Cδβi ‖V‖(B) + 2‖V‖
(⋃

K
sing
i ∩ B

)
≤ C
(
δβi +

δi
rB + ηi

)
‖V‖(BCδi )

≤ C
(
δβi +

δi
rB + δi

)
‖V‖(BCδi ) (4.16)

(the constant C appearing in the various inequalities of (4.16) may change from line to line). Then, the local
estimate (4.7) is a consequence of Lemma 4.1 combined with (4.16).
Step 6. For the proof of the global estimate (4.8) we set r = R/2 and apply Besicovitch Covering Theorem to the
family of balls {Br(x)}x∈M, so that we globally obtain a subcovering {Bα}α∈I with overlapping bounded by a
dimensional constant ζn. We notice that I is necessarily a �nite set of indices, by the Ahlfors regularity of M.
We now set U = Rn \M and associate to the family {Bα}α∈I ∪{U} a partition of unity {ψα}α∈I ∪{ψU} of class
C∞, so that by �niteness of I there exists a constant L ≥ 1 with the property that lip(ψU) ≤ L and lip(ψα) ≤ L
for all α ∈ I. Moreover, the fact that the support ofψU is disjoint from the closure ofM implies that there exists
i0 depending only onM, such that the support of ‖Vi‖ is disjoint from that of ψU for every i ≥ i0. Then we �x
a generic test function φ ∈ C0c (Rn × Gd,n) and de�ne φα(x, S) = φ(x, S)ψα(x) and φU(x, S) = φ(x, S)ψU(x), so
thatφ(x, S) = φU(x, S)+

∑
α∈I φα(x, S). By the fact that lip(φα) ≤ lip(φ)+lip(ψα) and lip(φU) ≤ lip(φ)+lip(ψU),

by the Ahlfors regularity of M, by (4.7), and for i ≥ i0, we deduce that

|Vi(φ) − V(φ)| ≤
∑
α∈I
|Vi(φα) − V(φα)| ≤ (1 + L)

∑
α∈I

∆1,1Bα (Vi , V)

≤ C(1 + L)
∑
α∈I

(
δβi +

δi
r

)
‖V‖(BCδiα ) ≤ C(1 + L)

(
δβi +

δi
r

)∑
α∈I
‖V‖(Bα)

≤ C(1 + L)ζn
(
δβi +

δi
r

)
‖V‖(Rn) ≤ C

(
δβi +

δi
R

)
‖V‖(Rn)

where, as before, the constant C appearing in the above inequalities can change from one step to the other.
This concludes the proof of (4.8) and thus of the theorem.
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5 Weak Second Fundamental Form of a Varifold
The content of this section refers to the forthcoming paper [3].

Following Hutchinson [16], we begin by recalling a useful way of representing the second fundamental
form of a d-dimensional manifold embedded in Rn.

Let M be a smooth, d-dimensional submanifold of Rn with the standard metric. For x ∈ M, we denote
by P(x) the orthogonal projection onto the tangent space TxM; such a projection is represented by the matrix
Pij(x) with respect to the standard basis ofRn. The usual covariant derivative inRn is denoted by D. Assuming
x ∈ M �xed, and given a vector v ∈ TxRn = Rn, we let vT = P(x) v and v⊥ = v − vT .

We denote by, respectively, TM and (TM)⊥ the tangential and the normal bundle associated with M, so
that we have the splitting TM ⊕ (TM)⊥ = TRn. We also denote by Γ(TM) the space of smooth sections of
TM (the smooth tangential vector �elds) and by Γ(TM)⊥ the space of smooth sections of (TM)⊥ (the smooth
normal vector �elds).

We can now introduce the second fundamental formofM, as the bilinear and symmetricmap II : Γ(TM)×
Γ(TM)→ Γ(TM)⊥ de�ned as

II(u, v) = (Duv)⊥ .
For our purposes it is convenient to extend the second fundamental form in such a way that it can take any
pair of (tangent) vectors of Rn as input. To this end we de�ne the extended second fundamental form of M as

B(u, v) = II(uT , vT)

for all smooth vector �elds u, v de�ned on M with values in TRn. We set

Bkij = 〈B(ei , ej), ek〉 , (5.1)

where {ei : i = 1, . . . , n} is the canonical basis of Rn. By tensoriality of the covariant derivative one infers
that the coe�cient set {Bkij : i, j, k = 1, . . . , n} uniquely identi�es B.

An equivalent way of de�ning the extended second fundamental form is by computing tangential deriva-
tives of the orthogonal projection P(x) on the tangent space TxM. More precisely, let us set

Aijk(x) = 〈∇MPjk(x), ei〉 (5.2)

whenever x ∈ M and i, j, k = 1, . . . , n. It is not di�cult to check that

Aijk = Bkij + Bjik
and, reciprocally,

Bkij =
1
2
(
Aijk + Ajik − Akij

)
at every point of M.

We note for future reference the symmetry properties Aijk = Aikj and Bkij = Bkji. The symmetry of Aijk
follows from Pjk = Pkj. The symmetry of Bkij relies upon the identity (Duv)⊥ = (Dvu)⊥, a consequence of
the fact that the Levi-Civita connection is torsion-free and that the commutator [u, v] is a tangent vector �eld
whenever u and v are tangent vector �elds.

5.1 Generalized Second Fundamental Form of a varifold

Here we recall the de�nition of generalized curvature proposed by Hutchinson [16] (see also the recent refor-
mulation due to Menne [20]).

First of all we consider the easier case of a smooth manifold M with constant multiplicity. We �x a test
function φ(x, S) de�ned on Rn × Gd,n and a d-dimensional manifold M without boundary, then let P(x) be
orthogonal projection onto TxM, as before. We de�ne the tangent vector �eld

Yi(x) = φ(x, P(x)) P(x)(ei) .
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By the divergence theorem on M, we get for i = 1, . . . , n

0 =
ˆ
M
∇Mi φ + D*jkφ∇Mi Pjk︸ ︷︷ ︸

Aijk

+φ∇Mq Piq︸ ︷︷ ︸
Aqiq

.

Here we have used Einstein’s summation notation and denoted by ∇Mi the i-th component of the tangential
gradient operator, while D*jk denotes di�erentiation with respect to Sjk. This identity can be used as a de�ni-
tion of generalized curvature for a varifold. Following Hutchinson, we thus say that an integral varifold V is
a curvature varifold if there exists a family of functions {Aijk(x, S)} in L1loc(V), called generalized curvature,
such that for all φ ∈ C1c (Rn × Rn

2 ) one has

0 =
ˆ (
∇Si φ + D*jkφ Aijk + φ Aqiq

)
dV . (5.3)

The notion of curvature varifold has been later extended by Mantegazza [19] to that of curvature vari-
fold with boundary. Quite interestingly, it turns out that the boundary measure of a curvature varifold with
boundary is (d −1)–recti�able and has an integral multiplicity (this follows from a very nice argument show-
ing �rst the local orientability of the varifold, and then applying Federer-Fleming’s Integrality Theorem for
currents). Moreover, the notion of curvature varifold has been shown to be equivalent to the so-called V-weak
di�erentiability of the approximate tangent map (see the recent work by Menne [20]).

However, some important facts concerning Hutchinson’s de�nition should be pointed out in order to ex-
plain the obstacles that we encountered while trying to adapt such a notion to the general (and, in particular,
discrete) varifold setting.

First, the existence of the generalized curvature is not always guaranteed, and it is not clear from the de�-
nitionwhat kind of alternative object (measure, distribution) should be considered as its natural replacement
in more general cases.

Second, the uniqueness result proved by Hutchinson (see [16, Proposition 5.2.2]) is based on suitably
testing (5.3) with functions of the form ψ(x, S) = Sijφ(x), which gives for every i, j, k = 1, . . . n

0 =
ˆ (
∇Si φ(x) + Aijk(x, S) + φ(x)Aqiq(x, S)

)
dV . (5.4)

Moreover, as a byproduct, the proof shows that the curvature functions Aijk(x, S) depend ‖V‖-almost every-
where only on x andnot on S. This simply follows from the fact that, recalling thedecompositionV = νx⊗‖V‖,
one has νx = δP(x) for ‖V‖-almost all x thanks to the recti�ability of V. Therefore, Aijk(x, P(x)) is a curvature
function for V not depending upon the variable S.

Third, another comment about uniqueness and existence. In linear algebra it is well-known that unique-
ness implies existence. In this sense, Hutchinson’s de�nition is overdetermined in that it mixes conditions
for existence of the generalized curvature with constraints on the class of admissible varifolds. Indeed, all
curvature varifolds satisfy a very peculiar blow-up property, that is, every tangent varifold of a curvature var-
ifold V, obtained by blowing-up at each points of the support of ‖V‖, consists of a �nite sum of d-planes with
integral multiplicities. This means that only a certain kind of singularities for a curvature varifold are admit-
ted, i.e. those of crossing type. The following regularity result due to Hutchinson re�ects the above tangential
property (see [15, Theorem 3.7]).

Theorem 5.1. Let V be a curvature varifold such that the functions Aijk belong to Lploc(‖V‖) for p > d. Then V
is locally a �nite sum of graphs of multiple–valued functions of class C1,1−d/p.

For the reasons explained above, Hutchinson’s de�nition of curvature varifold cannot be easily extended to
more general varifolds, in the spirit of the regularization technique that we have proposed for the �rst vari-
ation and the mean curvature. Thus, in view of the applications we have in mind, it seems unavoidable to
further weaken the original de�nition in order to guarantee existence of the curvature functions in a distri-
butional sense.
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De�nition 5.2 (Variations of V). Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω. We de�ne for
i, j, k = 1 . . . n the following distributions of order 1:

δjkV : C1c (Ω,Rn) → R
X 7→

´
Ω×Gd,n Sjk divSX(y) dV(y, S)

(5.5)

or equivalently,
δijkV : C1c (Ω,R) → R

φ 7→
´
Ω×Gd,n Sjk∇

S
i φ dV(y, S) .

(5.6)

Since for any S ∈ Gd,n we have trace(S) = d, we obtain

trace
(
δjkV

)
jk = d δV .

For a d–varifold V associated with a C2 compact d–sub-manifold M without boundary, we have for every
φ ∈ C1(Ω)

δijkV(φ) = −
ˆ
Ω

(
Aijk(x) + Pjk(x)

∑
q
Aqiq(x)

)
φ(x) d‖V‖(x)

= −
ˆ
Ω

(
Aijk(x) +

ˆ
Gd,n

Sjk dνx(S)
∑
q
Aqiq(x)

)
φ(x) d‖V‖(x)

Moreover, if M has a boundary ∂M and η = (η1, . . . , ηn) denotes the inner normal to ∂M, it follows from the
divergence theorem that

δijkV(φ) = −
ˆ
Ω

(
Aijk(x) +

ˆ
Gd,n

Sjk dνx(S)
∑
q
Aqiq(x)

)
φ(x) d‖V‖(x) −

ˆ
∂M
φ(x)Sjkηi(x) dHd−1(x) .

In particular, δijkV is a Radon measure and the second fundamental form is contained in the part absolutely
continuous with respect to ‖V‖ while the boundary term is singular with respect to ‖V‖. This motivates the
following de�nitions.

De�nition 5.3 (Bounded variations). Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω. We say that
V has bounded variations if and only if for i, j, k = 1 . . . n, δijkV is a Radon measure. In this case there exist
βijk ∈ L1(‖V‖) and

(
δijkV

)
s Radon measures singular w.r.t. ‖V‖ such that

δijkV = −βijk ‖V‖ +
(
δijkV

)
s .

It follows from our calculations above that, in the regular case, the Aijk are connected to the Radon-Nikodym
derivative of δijkV w.r.t. ‖V‖ through the linear equations

βijk(x) = Aijk(x) +
ˆ
Gd,n

Sjk dνx(S)
∑
q
Aqiq(x) . (5.7)

Lemma 5.4. Let c be a n×n nonnegative de�nite and symmetricmatrix, and let b = (bijk) ∈ Rn
3 . Let us consider

the set of n3 equations of unknowns (aijk)i,j,k=1...n

aijk + cjk
∑
q
aqiq = bijk , for i, j, k = 1 . . . n . (5.8)

Then the unique solution of the system is

aijk = bijk − cjk[(I + c)−1 H]i , (5.9)

where H = (H1, . . . , Hn) is de�ned by Hi :=
∑

q bqiq.
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Proof sketch. The proof is split in two steps. First, one has to show that the matrix I + c is invertible (this
follows from the fact that c =

´
Gd,n S dν(S) and by an application of Jensen’s inequality). Second, by plugging

(5.9) into (5.8) and by using the matricial identity

(I + c)−1 − I + c(I + c)−1 = 0 .

An immediate consequence of Lemma 5.4 is the following proposition.

Proposition 5.5. Let Ω ⊂ Rn be an open set and let V be a d–varifold in Ω with bounded variations βijk ∈
L1(‖V‖). Then the linear system (5.7) admits a unique solution {AVijk} ⊂ L1(‖V‖) that additionally satis�es the
symmetry property AVijk = AVikj for all i, j, k = 1, . . . , n. The collection of functions AVijk is called weak curvature
of V.

From the de�nition ofweak curvature, that is incorporated in Proposition 5.5, we derive the de�nition ofweak
second fundamental form

BVijk =
1
2
(
Aijk + Ajik − Akij

)
Similarly as before, we �x three non-negative kernel pro�les ρ, ξ , η ∈ R+ → R+ of class C1, with the

properties listed below:
• for all t ≥ 1, ρ(t) = ξ (t) = η(t) = 0;
• ρ is decreasing, ρ′(0) = 0, and

´
Rn ρ(|x|) dx = 1;

• ξ (t) > 0 for all 0 < t < 1, and
´
Rn ξ (|x|) dx = 1.

Then we set ρε , ξε , ηε as usual. Given any d–varifold V = ‖V‖ ⊗ νx and ε > 0, the following quantities are
de�ned for ‖V‖–almost every x:

βV ,εijk = −
Cξ
Cρ
δijkV * ρε
‖V‖ * ξε

, (5.10)

cV ,εjk =

(´
Gd,n Sjk dν·(S)‖V‖

)
* ηε

‖V‖ * ηε
, (5.11)

AV ,εijk = βV ,εijk − c
V ,ε
jk

[
(I + cV ,ε)−1βV ,εqiq

]
, (5.12)

BV ,εijk = 1
2
(
AV ,εijk + AV ,εjik − A

V ,ε
kij

)
. (5.13)

We stress that the regularizedweak fundamental formcanbede�ned for any varifoldV, evenwhenV doesnot
have bounded variations! We state here one of the results proved in the forthcoming paper [3], as an example
showing thatwe can essentially recover similar convergence results as thoseproved for the approximatemean
curvature.

Theorem 5.6. Let Ω ⊂ Rn be an open set and let V be a recti�able d–varifold with bounded variations.
Then, for ‖V‖–almost any x ∈ Ω the quantities βV ,ε(x), cV ,ε(x),MV ,ε(x), AV ,ε(x) respectively converge to
βV (x), cV (x),MV (x), AV (x) as ε → 0.

6 Natural Kernel Pairs and Numerical Tests

6.1 Natural Kernel Pairs

Up to nowwe have considered generic pairs (ρ, ξ ) of kernel pro�les, with various regularity assumptions (see
Hypothesis 1). Onemight ask if some special choice of kernel pairs could lead to better convergence rates than
those proved in Theorems 3.4 and 3.6. Although the pairs (ρ, ρ) seem quite natural, as they allow for instance
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some algebraic simpli�cations in the formula for the ε-mean curvature for a point cloud varifold, from the
point of view of numerical convergence rates there are more appropriate choices.

We propose a criterion for selecting the pair (ρ, ξ ), that is related to what we de�ne as the natural kernel
pair property, or shortly (NKP).

De�nition 6.1 (Natural Kernel Pair). We say that (ρ, ξ ) is a natural kernel pair, or equivalently that it satis�es
the (NKP) property, if it satis�es Hypothesis 1 and

ξ (s) = − sρ
′(s)
n for all s ∈ (0, 1) . (6.1)

Even though it is not clear whether the (NKP) property might produce better convergence rates in the previ-
ously mentioned theorems, we have an experimental validation of its e�ectiveness. Indeed, all the tests that
we have performed have shown increased convergence rates, even in presence of noise. We now sketch the
heuristic argument leading to De�nition 6.1.

Given 1 ≤ d < n and ρ, ξ as in Hypothesis 1 we set

Cρ,ξ =
´ 1
0 ρ(t) t

d−1 dt´ 1
0 ξ (t) td−1 dt

= CρCξ
.

We �x a d–dimensional submanifold M ⊂ Rn of class C3 and de�ne the associated varifold V = v(M, 1).
Then we perform a Taylor expansion of the di�erence HVρ,ξ ,ε(x) − H(x) at a point x ∈ M (here H(x) denotes
the classical mean curvature ofM at x). By focusing on the expression of the constant term of this expansion,
which must be 0 because of Theorem 3.3, one can see after some computations that it is proportional to

ˆ 1

0

(
sρ′(s) + d Cρ,ξ ξ (s)

)
sd−1 ds ,

see [4]. On one hand, this integral is 0 for any kernel pair (ρ, ξ ), as shown through an integration by parts
coupled with the de�nition of the constant Cρ,ξ . On the other hand one might want to strengthen the nullity
of the integral by additionally requiring the nullity of the integrand. This precisely amounts to require (6.1)
and thus leads to De�nition 6.1.

6.2 Numerical Tests

In this section we provide numerical computations of the approximate mean curvature of various 2D and
3D point clouds. In particular, we illustrate numerically its dependence on the regularization kernel, the
regularization parameter ε, and the sampling resolution. Our purpose is not a thorough comparison with
the many numerical approaches for computing the mean curvature of point clouds, triangulated meshes, or
digital objects, this will be done in a subsequent paper for obvious length reasons.

Given a point cloud varifold VN =∑N
j=1 mjδxj ⊗ δPj , its orthogonal approximate mean curvature is given

by

HVN ,⊥ρ,ξ ,ε (xj0 ) =
ˆ
P∈Gd,n

ΠP⊥HVNρ,ξ ,ε(xj0 ) dνxj0 (P)

= −
Cξ
Cρ
·

N∑
j=1

1{|xj−xj0 |<ε}mjρ′
(
|xj − x|
ε

)
ΠP⊥j0

(ΠPj (xj − xj0 )
|xj − xj0 |

)
N∑
j=1

1{|xj−xj0 |<ε}mjεξ
(
|xj − xj0 |

ε

) . (6.2)

We focus on the orthogonal approximate mean curvature, for it is at a given resolution more robust with
respect to inhomogeneous local distribution of points than the approximate mean curvature, and as it can

Brought to you by | Universidad de Granada
Authenticated

Download Date | 4/5/18 1:54 PM



48 | Blanche Buet, Gian Paolo Leonardi, and Simon Masnou

even be seen directly on simple examples. Take indeed a sampling {xj}N1 of the planar line segment [−1, 1] ×
{0}with more points having a negative �rst coordinate, and let Pj = P = {y = 0}. Assume that there exists j0
such that xj0 = (0, 0). Then the sum of all vectors ΠPj (xj−xj0 )

|xj−xj0 |
is nonzero, whereas its projection onto P⊥ is zero,

which is consistent with the (mean) curvature of the continuous segment at the origin.
The formula above involves densitiesmj, the computation of which for a given point cloud being a ques-

tion we have not focused on up to now, despite it is an important issue. Nevertheless, if we assume that
mj = m(1+ o(1)) whenever xj belongs to the ball Bε and for some constantm possibly depending on Bε, then
we can cancel mj from formula (6.2) up to a small error. This justi�es the following formula approximating
the value of HVN ,⊥ρ,ξ ,ε (xj0 ):

HVN ,⊥ρ,ξ ,ε (xj0 ) '
Cξ
Cρ
·

−
N∑
j=1

1{|xj−xj0 |<ε}ρ
′
(
|xj − x|
ε

)
ΠP⊥j0

(ΠPj (xj − xj0 )
|xj − xj0 |

)
N∑
j=1

1{|xj−xj0 |<ε}εξ
(
|xj − xj0 |

ε

) . (6.3)

The advantages of Formula (6.3) are numerous: it is very easy to compute, it does not require a prior
approximation of local length or area, it does not depend on any orientation of the point cloud (because the
formula is grounded on varifolds which have no orientation) and as we shall see right now, it behaves well
from a numerical perspective.

In the next subsection, we study how this formula behaves on 2D point cloud varifolds built from para-
metric curves, for di�erent choices of radial kernels and various sampling resolutions. The last subsection is
devoted to 3D point clouds.

6.2.1 Test shapes, sample point cloud varifolds, and kernel pro�les

In [4] we have tested the numerical behavior of formula (6.3) for di�erent choices of 2D parametric shapes,
kernel pro�les ρ, ξ , number N of points in the cloud, and values of the parameter ε used to de�ne the kernels
ρε and ξε. Here we only present a selection of those tests. We denote as Nneigh the average number of points
in a ball of radius ε centered at a point of the cloud. The chosen, 2D parametric test shapes are (see Figure 1):

(a) A "�ower" parametrized by r(θ) = 0.5(1 + 0.5 sin(6θ + π
2 ));

(b) An "eight" parametrized by x(t) = 0.5 sin(t) (cos t + 1), y(t) = 0.5 sin(t) (cos t − 1), t ∈ (0, 2π).

We test formula (6.3) with some pro�les ρ, ξ de�ned on [0, 1]:
• the “tent” kernel pair (ρtent , ρtent), with ρtent(r) = (1 − r);
• the “natural tent” pair (ρtent , ξtent), with ξtent(r) = − 1n rρ′tent(r) = r;
• the “exp” kernel pair (ρexp, ρexp), with ρexp(r) = exp

(
− 1
1−r2

)
;

• the “natural exp” pair (ρexp , ξexp), with ξexp(r) = − 1n rρ′exp(r).
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Figure 1: some 2D parametric test shapes

Notice that ρexp , ξexp satisfy Hypothesis 1; on the contrary, ρtent is only in W1,∞ and ξtent is not even contin-
uous.

To de�ne point clouds from samples of these parametric test shapes, we use two approaches:
• either we compute the exact tangent line T(t) ∈ G1,2 at the N points {0, h, 2h, . . . , (N − 1)h} for h = 2π

N ,
and we set

VN =
N∑
j=1

mjδ(x(jh),y(jh)) ⊗ δT(jh) , (6.4)

• or we compute by linear regression a tangent line Tapp ∈ G1,2 at each sample point and we set

VN =
N∑
j=1

mjδ(x(jh),y(jh)) ⊗ δTapp(jh) . (6.5)

For all shapes under study, the exact vector curvatureH(t) can be computed explicitly and evaluated at jh, j =
0 . . . N − 1. To quantify the accuracy of approximation (6.3), we use the following relative average error

Erel = 1
N

N∑
j=1

|HVNρ,ξ ,ε(xj) − H(jh)|
‖H‖∞

, (6.6)

where xj = (x(jh), y(jh)).

6.2.2 Numerical illustration of orthogonal approximate mean curvature

We �rst test formula (6.3) on the �ower with exact normals. We represent in Figure 2 the curvature vectors
computed for N = 105 points and ε = 0.001 with the natural kernel pair (ρexp , ξexp). Arrows indicate the
vectors and colors indicate their norms. Remark that the sample points are obtained from a uniform sampling
in parameter space (polar angle), therefore sample points are not regularly spaced on the �ower. Still, these
spatial variations are negligible and (6.3) provides a good approximation of the continuous mean curvature,
as we already know from Theorem 3.6, and as it will be illustrated numerically in the next section.

6.2.3 Convergence rate

In this section, we compute and represent the evolution with respect to the number of points N of the relative
average error Erel = 1

N
∑N

j=1
|HNε (xj)−H(tj)|

‖H‖∞ for the orthogonal approximate mean curvature vector (6.3) of point
cloud varifolds sampled from the parametric �ower. We compare the convergence rate of this error for the
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Figure 2: Orthogonal approximate curvature vectors along the discretized flower. Arrows indicate the curvature vectors and
colors indicate their norms.

above choices of kernels pairs; more speci�cally we compute the convergence error for the varifold de�ned in
(6.4) both in the case where T(jh) is the exact tangent and in the case where Tapp is computed by regression
in an R–neighbourhood, with R = ε/2 (this situation is labelled as "regression" in all �gures).

Theorem 3.6 guarantees the convergence under suitable assumptions of the orthogonal approximate
mean curvature HVi ,⊥ρ,ξ ,εi , and even provides a convergence rate. First, it is not very di�cult to check that in
the case where the point clouds are uniform samplings of a smooth curve, then the parameters di,1 and ηi
of (3.10) are of order 1

N . As we already pointed out, our sampling is not globally uniform, but locally almost
uniform and we expect the same order for di,1 and ηi. As for di,2 in (3.11), if the tangents are exact, then di,2
is also of order 1

N , otherwise, it depends essentially on the radius of the ball used to perform the regression.
Here we set R = ε/2, which is not a priori optimal. If we want to estimate the mean curvature at some point
x of the curve, then we will apply formula (6.3) to the closest point in the point cloud, which is at distance of
order 1

N to x (this corresponds to what is denoted |zi − x| in Theorem 3.6). To summarize, according to these
considerations together with Theorem 3.6, we expect to observe convergence under the assumption

1
Nε → 0 ,

with a convergence rate of order 1
Nε + ε, at least in the case where the tangents are exact. We start with

studying two di�erent cases: �rst with 1
Nε = N−1/4, where we expect convergence with rate at least N−1/4, and

then with 1
Nε = 0.01, for which Theorem 3.6 is not su�cient to guarantee that convergence holds. In both

cases, we focus on 1
Nε which is the leading term.

We use a log-log scale to represent the resulting relative average error (6.6) as a function of the number
of sample points N for ε = 100

N (Figure 3(a)) and ε =
(10
N
)3/4 (Figure 3(b)). We remark that the number Nneigh of

points in a neighborhood Bε(x) is proportional to εN, which takes the values 100 and 103/4N1/4, respectively,
for the above choices of ε. Interestingly, the experiments show a good convergence rate when choosing a nat-
ural kernel pair, even in the cases when 1

Nε is constant (thus when it does not converge to 0!). Furthermore,
the convergence using natural kernel pairs and approximate tangents computed by regression is even faster
thanwhen using exact tangents and the tent kernel. We recall that the tent kernel does not satisfy Hypothesis
1 since it is only Lipschitz, nevertheless the corresponding natural pair (ρtent , ξtent) shows the same conver-
gence properties as the smooth natural pair (ρexp , ξexp). This suggests that the (NKP) property is even more
e�ective than the smoothness of the kernel pro�les. Finally, when the tangents are not exact the convergence
is slower. This is consistent with the fact that parameter di,2 in (3.11) depends on the radius R of the ball used
to compute the regression tangent line (we recall that R = ε/2) which represents an additional parameter to
be possibly optimized.
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Figure 3: Average error (log-log scale) for the orthogonal approximate mean curvature of the subsampled parametric flower, for
increasing values of N, and with either ε = 100

N (left) or ε =
( 10
N
)3/4 (right). The number of points in the neighborhood used for

estimating the curvature is constant for the left experiment, and scales as 10N1/4 for the right experiment.

6.2.4 The approximate mean curvature near singularities

Here we illustrate the speci�c features of the approximate mean curvatures HVε,ρ,ξ and HV ,⊥ε,ρ,ξ near singular-
ities. Consistently with the properties of the classical generalized mean curvature of varifolds, HVε,ρ,ξ and
HV ,⊥ε,ρ,ξ both preserve the zero mean curvature of straight crossings, as con�rmed by the experiment on the
"eight" (see Figure 4). In this case using HV ,⊥ε,ρ,ξ does not a�ect the reconstruction of the zero curvature at the
crossing point, while it has the advantage of being more consistent at regular points.
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-0.6
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0.6

3.13862e-05

3.38168

6.76333

Figure 4: Curvature vector and intensity computed with the natural kernel pair (ρexp , ξexp) on the eight sampled with N =
10000 points and with ε = 100/N = 0.01, with exact tangents. For visualization purposes we only show 5% of the points
in the cloud.
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More generally, our model is able to deal correctly with singular con�gurations whose canonically asso-
ciated varifold has a �rst variation δV which is absolutely continuous with respect to ‖V‖. To illustrate this,
we show the results of some tests performed on a union of two circles with equal radius and on a standard
double bubble in the plane.

First, we compare the behavior of HVε,ρ,ξ and HV⊥ε,ρ,ξ in a neighborhood of an intersection point of the two
circles (see Figure 5). From the point of view of pointwise almost everywhere convergence, both approximate
curvatures behave equivalently well, since the error in the reconstruction of the curvature is localized in an ε-
neighborhood of the crossing point. On one hand, due to the linearity of the �rst variation δV, the expected
curvature H of the union C1 ∪ C2 of the two circles at the crossing point p is the average of the curvatures
H1 and H2 of, respectively, C1 and C2 at p. Indeed δV = H1 dH1

|C1
+ H2 dH1

|C2
, whence one deduces that

H(p) = H1(p)+H2(p)
2 and if p is an intersection point of the two circles, |H(p)| =

√
3 ≈ 1.73 which is consistent

with the numerical value obtained at p (see Figure 5 (b)). On the other hand, the crossing point is negligi-
ble with respect to ‖V‖ and therefore the pointwise value of H(p) is not relevant in the continuous setting.
Nevertheless, in the discrete setting there is a signi�cant di�erence between the two proposed de�nitions of
approximate mean curvature. More precisely, the one provided by HVε,ρ,ξ enforces a continuous mean curva-
ture even at the crossing point, where one obtains the expected average value H(p) = H1(p)+H2(p)

2 , see Figure 5
(b), whereas continuity cannot hold for HV ,⊥ε,ρ,ξ , as one can see in Figure 5 (c).
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Figure 5: Curvature vector and intensity computed with the natural kernel pair (ρexp , ξexp) on two intersecting circles sampled
with N = 10000 points and with ε = 100/N = 0.01, without projection onto the normal in (a) and (b) and with projection on (c).
Tangents are exact.
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Figure 6: Curvature vectors and intensities computed with the natural kernel pair (ρexp , ξexp) on a standard double bubble
(radii 1 and 0.6) sampled with N = 800 points and with ε = 0.15, without projection onto the normal in (b) and with additional
averaging of the curvature at scale 2ε in (c). Tangents are computed by regression.

(a) (b)

(c)

Figure 7: Curvature vectors and their intensities computed with the natural kernel pair (ρexp , ξexp) on sampled 3D–double bub-
bles (show in full and partial views). In Figure a), the bubble has external caps with radii 0.7 and 1, is sampled with N = 34378
points, and the computations are made with ε ≈ 0.111. The curvature vectors (with minus sign for the sake of readability) are
shown only for the points which are closest to the singular circle. In b) and c), the double bubble has externals caps with same
radius 1, is sampled with 33275 points, and ε ≈ 0.131. All curvature vectors (with minus sign) are shown in c). To improve the
visualization, points are shown with larger size in b) and c).

Second, we consider a standard double bubble in 2 dimensions (see Figure 6(a) and [11] for details on
double bubbles), whose radii of the external boundary arcs are, respectively, 1 and 0.6. The corresponding
point cloud varifold V is obtained by a uniform sampling of 800 points taken on the three arcs of the bubble,
each endowedwith a unitmass and tangent computed by regression. Again, we choose (ρexp , ξexp) as natural
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(a)

(b) Zoom in on dragon’s tail (c) Zoom in on dragon’s head

Figure 8: Intensities of the approximate mean curvature of a dragon point cloud (435 545 points, diameter= 1) with ε = 0.007.
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(a) approximate mean curvature (b) approximate Gaussian curvature

Figure 9

kernel pair, and ε = 0.15. Figure 6(b) shows the curvature vectors and intensities of HVε,ρ,ξ (up to a �xed
renormalization that is applied for a better visualization). In order to get rid of the oscillation of the curvature
near the singularities (as it occurred in the previous test, see again Figure 5) we have also applied a simple
averaging of the reconstructed curvature at the scale 2ε, which gives the nicer result shown in Figure 6(c).
We remark that the curvature vector de�ned on points that are very close to the theoretical singularity is
consistent with the one obtained by direct computation on the (continuous) standard double bubble. More
precisely, we obtain a numerical value of (0.107, −0.809) for the mean curvature near the singularity shown
in Figure 6, to be comparedwith the expected value (0, −0.839), hencewith a relative error of 13%. If we redo
the same experiment but with twice the number of points, that is N = 1600 and ε = 0.075, we get a relative
error of 7%.

Further pictures showing approximate mean curvatures of standard double bubbles in 3D and of a “clas-
sical” point-cloud dragon are presented in Figures 7 and 8. Then, we conclude with Figure 9 showing the
approximate mean and Gaussian curvatures of a torus.
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