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SHORT NOTES

Phlorizin released by apple root debris is related to apple replant 
disease
Lidia NiCOLa1,*, Urska VrHOVsEk1, EVELyN sOiNi1, HEribErt iNsaM2 and iLaria PErtOt1

1 Research and Innovation Center, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy
2 Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria

Summary. Autotoxic compounds are likely to be among the causes of apple replant disease, but their secretion is 
low during plant life. Using targeted metabolomics, the changes in soil phenolic profile were analyzed after the 
addition of apple roots, and their potential autotoxicity was assessed on apple seedlings. The addition of apple 
roots severely damaged the plants, attributed to autotoxic action of the phenolic compound phlorizin. Prolonged 
residence time of the roots in the soil before planting reduced their negative action, probably due to the degrada-
tion of phlorizin.
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Introduction
Apple replant disease (ARD) is a complex syn-

drome arising from the repeated replanting of ap-
ple trees in the same soil; the main symptom is re-
duced plant growth, particularly root biomass. This 
syndrome is related to biotic factors (i.e. increased 
concentrations of pathogenic fungi, decrease in plant 
growth promoting bacteria) and, possibly, abiotic 
factors in soil, although the precise etiology is still 
unclear (Mazzola and Manici, 2012). One of the pos-
sible biotic causes of ARD is autotoxicity, in which 
the phenolic compounds released by roots may play 
an important role (Huang et al., 2013). The roots of ap-
ple trees can release several different phenolic com-
pounds and some of them (phlorizin, p-hydroxyben-
zoic acid, p-hydroxy hydrocinnamic acid, phloroglu-
cinol) were found in liquid cultures  (Börner, 1959). 
However, root exudation of these substances is quite 
low during the lifespan of apple plants (Hofmann et 
al., 2009). On the other hand, phenolic compounds 

released from decomposing apple leaves and roots 
(1% in soil) may reach high concentrations, as dem-
onstrated by Politycka and Adamska (2003). In the 
present study, we increased the quantity of root ma-
terial added to soil by up to 20% of its volume.

In-field studies investigating the causes of ARD 
are of extremely difficult interpretation, because of 
the high number of factors that could be involved. 
We therefore studied the phenomenon with an arti-
ficial setup under controlled conditions, where only 
the factor ‘effect of roots on new plants’ varied. Sam-
pling was performed at 0, 3 and 7 months at the most 
active temperature (20°C), to specifically identify 
and quantify the phenolic compounds released dur-
ing the decay of apple roots, using Ultra High Per-
formance Liquid Chromatography (UHPLC) cou-
pled to a mass spectrometer. Furthermore, we tested 
root autotoxic potential on apple seedlings in soil.

Materials and methods
Experimental design and plant growth measures

Healthy roots (<3 mm diam) were collected from 
explanted apple trees (rootstock M26) in the Tren-
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tino-South Tyrol region (Italy) on 26 January 2015. 
They were ground and mixed (1:5, v:v) with sieved 
soil (loam; pH 7.7; 52 g kg-1 of organic matter) tak-
en from an uncultivated area (treatment R3). The 
soil was divided into two portions that were used 
to repeat the experiment twice in the same condi-
tions. Sieved soil without any addition of ground 
roots served as an untreated control (treatment C3). 
After gentle watering (20 mL kg-1 of soil), both soils 
(R3 and C3) were kept under controlled conditions 
(20°C) in the greenhouse for 90 d. The same protocol 
was repeated three months later (4 May 2015) us-
ing the soil collected in January, which was kept in 
natural conditions in the meantime, and a soil mixed 
with root debris (treatment R0) and an untreated 
control soil (C0) were obtained. Apple seedlings, 
grown in peat from seeds of the cv. Fuji in peat, were 
transplanted at the age of 90 d into the four treated 
soils (R0, C0, R3, C3), with three soil samples being 
collected from each soil treatment for analysis of 
phenolic compounds before transplanting (time T1). 
The soil samples were also checked for absence of 
the three main apple tree pathogens, Armillaria spp., 
Phytophthora cactorum and Rosellinia necatrix, using 
diagnostic PCRs, according, respectively, Lochman 
et al. (2004), Bhat and Browne (2010) and Pasini et 
al. (2016). Fifteen replicates (pots) per soil treatment, 
having one seedling each, were held at 20 ± 0.5°C in 
a greenhouse. After 120 d, the chlorophyll content of 
the apple seedling leaves was measured (SPAD502, 
Spectrum Technologies) and the fresh weights of 
whole plants and roots were assessed. At the same 
time, three soil samples per treatment were taken 
from the pots and subjected to phenolic compound 
analysis (time T2). During the experiment the plant-
lets did not show any symptoms ascribable to root 
infections of microbial pathogens.

Analysis of phenolic compounds

Samples were extracted as described in Vrhovsek 
et al. (2012). After evaporation of methanolic frac-
tions, samples were applied to a preconditioned 
ENV+ Isolute C18 SPE column. Preconditioning was 
performed by purging the column with 10 mL of 
methanol and 20 mL of water. After loading a sample 
onto the column, it was washed with 10 mL of wa-
ter. Polyphenols, retained in the column, were eluted 
with 20 mL of methanol. Solvent was evaporated us-
ing a rotavapor and the residues were dissolved in 

500 μL of a methanol/water mixture (2:1). Samples 
were injected before and after concentration using 
SPE. Phenolic compounds were analyzed accord-
ing to Vrhovsek et al. (2012), with a method that al-
lows the detection of a total of 135 different phenolic 
compounds. Briefly, UHPLC (Waters Acquity UPLC 
- Milford) coupled to a mass spectrometer (Waters 
Xevo TQMS - Milford) was used. Separation of the 
compounds was achieved on a Waters Acquity HSS 
T3 column 1.8 μm, 100 mm × 2.1 mm (Milford), kept 
at 40°C. Mobile phase A was water containing 0.1% 
formic acid; mobile phase B was acetonitrile con-
taining 0.1% formic acid. The chemicals used for the 
analysis were purchased from Sigma Aldrich.

Statistical analyses

Statistical analyses was performed with PAST, 
version 2.17 (Hammer et al., 2001) and Statistica 9 
software (StatSoft). An F-test was used to demon-
strate non-significant differences between the two 
repetitions of the experiment (P>0.05) and data on 
plant growth were pooled. Since the distribution of 
data was not normal, statistically significant differ-
ences between treatments (P<0.05) were assessed 
with the Kruskal-Wallis test with Mann Whitney 
pairwise comparisons (Bonferroni corrected). Dur-
ing analysis of the phenolic compounds, values be-
low the Limit Of Detection (LOD) were substituted 
with LOD/√2 (Verbovšek, 2011). Once homogene-
ity of variance assessed with Levene’s test (P>0.05) 
was satisfied, non-metric multidimensional scaling 
(NMDS), one-way analysis of similarities (ANO-
SIM), similarity percentage analysis (SIMPER) and 
the Wilcoxon test were employed to assess the differ-
ence in composition in the phenolic profile of soils. 
Pearson’s correlation was calculated to determine 
the relationship between the concentrations of phe-
nolic compounds and plant weights.

Results and discussion
Diagnostic PCRs (Armillaria spp., Phytophthora 

cactorum, Rosellinia necatrix) did not amplified any 
products, therefore we excluded the presence of ap-
ple root pathogens in the soil treated with roots. The 
soil treatments affected seedling growth. In particu-
lar, seedlings planted in soil immediately after mix-
ing with root debris (treatment R0) showed lower 
chlorophyll content and total seedling weight com-
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pared with all other treatments (Table 1, Kruskal-
Wallis and Mann Whitney pairwise test, P<0.05). 
The mean root weight in the R0 treatment was only 
significantly less than R3 and C3 treatments. The 
addition of apple roots to soil just before planting 
therefore significantly impaired the health of the 
seedlings, showing marked autotoxic effects on the 
plants and not just on their root systems.

Our results indicate that this autotoxic effect of 
roots on new plants was visible in the soil, and not 
only in water cultures (Börner, 1959). In contrast, 
Politycka and Adamska (2003) found a stimulating 
or slightly inhibiting effect of apple roots on radical 
growth of cucumber, results that could be due to the 
use of a different plant species and/or lower concen-
trations of apple roots in the soil. The artificial ex-
perimental set up allowed us to separate the effect 
of roots on new plants, without confounding effects 
from other factors.

Fourteen phenolic compounds were detected in 
soil samples at time T1 (preplanting). The concentra-
tions of these compounds were generally low, with 
the exception of phlorizin, phloretin and narigenin 
(Table 2). An NMDS (stress = 0.078, R2 axis 1 = 0.992, 
axis 2 = 0.085) on Euclidean distances of the dataset 
indicated that data points representing the samples 
from R0 soil clustered together, separated from the 
other cluster, which comprised samples from the 
R3, C0 and C3 treatments (Figure 1A). A one-way 
ANOSIM with Bonferroni-corrected pairwise com-
parisons, confirmed the difference between the phe-
nolic profile of R0 samples and all the other samples 
(P<0.05). 

The concentration of four phenolic compounds, 
p-coumaric acid, quercetin-3-rhamnoside, phloretin 
and phlorizin, significantly increased in R0 treatment 

soils, compared to C0 (Wilcoxon test, P<0.05). These 
compounds are all considered to be allelochemicals in 
apple and in other plants (Huang et al. 2013;  Inderjit 
and Dakshini, 1995). In the R0 treatment, the concen-
trations of all these compounds, but not p-coumaric 
acid, were also significantly greater than those in R3, 
meaning that after 3 months of roots in the soil, these 
substances had degraded. A significant negative cor-
relation was found between the sum of the concen-
trations of the single phenolic compounds measured 
at T1 and total plant weight (Pearson correlation r = 
-0.89, P<0.05), so a high concentration of polyphenols 
at planting corresponded to diminished plant growth. 
In order to detect which phenolic compounds were 
most responsible for the difference in R0 soils, SIM-
PER was used. This indicated phlorizin as the phenol-
ic compound contributing to more than 90% of inter-
group dissimilarity between R0 and the other treat-
ments, and phloretin as the second most important 
compound (approximately 5%). In the R0 samples, 
phlorizin and phloretin reached average concentra-
tions, respectively, of 77.4 (± 8.0) and 3.7 (± 0.9) μg g-1, 
while in the other samples phorizin concentrations 
were < 0.1 μg g-1 and phloretin < 0.06 μg g-1.

We therefore confirm the trend for polyphenol 
concentrations observed by Politycka and Adam-
ska (2003), although they measured total phenolic 
content, which also comprises other high molecu-
lar weight polyphenols, such as proanthocyanidins. 
Phlorizin and phloretin are the main flavonoids pro-
duced by apple plants and are usually stored in bark 
and roots (Gosch et al., 2010). These polyphenols in-
hibit root and shoot growth in water culture (Börner, 
1959), and phlorizin can specifically inhibit the res-
piratory rate and enzyme activities of the tricarbox-
ylic acid cycle in apple roots (Wang et al., 2012; Yin et 

Table 1. Means (± standard errors) of measurements for apple seedlings after 4 months growth in soils amended with 
old apple roots at different times and in control soils. Letters in each column indicate statisically significant differences 
(P<0.05). R3 = soil with roots amended 3 months before planting; C3 = control soil of the R3 treatment; R0 = soil with roots 
amended just before planting; C0 = control soil of the R0 treatment. 

Treatment Whole plant fresh weight (g) Root fresh weight (g) Chlorophyll content (SPAD)

R3 5.53 ± 0.34  a 3.29 ± 0.26 a 33.9 ± 0.8 a

C3 6.70 ± 0.52  a 3.69 ± 0.31  a 38.0 ± 0.9 b

R0 3.19 ± 0.16  b 2.21 ± 0.14  b 24.5 ± 1.2 c

C0 5.90 ± 0.54  a 2.93 ± 0.24  ab 38.6 ± 1.1 b
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Table 2. Mean concentrations (μg g-1, ± standard errors) of the phenolic compounds in soil at planting time (T1), measured 
with UHPLC and mass spectrometery. R3 = soil with roots amended 3 months before planting; C3 = control soil of the R3 
treatment; R0 = soil with roots amended just before planting; C0 = control soil of the R0 treatment.

Phenolic compound R3 C3 R0 C0

Anthranilic acid 0.0015 ± 0.010 0.0009 ± 0.0004 0.0040 ± 0.0024 0.0023 ± 0.0014

4-Aminobenzoic acid 0.0004 ± 0.002 0.0002 ± 0.0000 0.0003 ± 0.0001 0.0002 ± 0.0000

P-hydroxybenzoic acid 0.0086 ± 0.0037 0.0160 ± 0.0074 0.0235 ± 0.0096 0.0053 ± 0.0027

Cinnamic acid 0.0736 ± 0.0616 0.0734 ± 0.0726 0.0957 ± 0.0796 0.0173 ± 0.0170

Vanillin 0.0048 ± 0.0005 0.0040 ± 0.0004 0.0056 ± 0.0005 0.0050 ± 0.0002

Vanillic acid 0.0008 ± 0.0002 0.0009 ± 0.0001 0.0010 ± 0.0002 0.0009 ± 0.0002

2,6-Dioh-benzoic acid 0.0217 ± 0.0114 0.0109 ± 0.0021 0.0551 ± 0.0416 0.0436 ± 0.0348

P-coumaric acid 0.0479 ± 0.0334 0.0496 ± 0.0465 0.0916 ± 0.0553 0.0211 ± 0.0185

Caffeic acid 0.0010 ± 0.001 0.0058 ±0.0023 0.0036 ± 0.0011 0.0034 ± 0.0016

Ferulic acid 0.0707 ± 0.0433 0.0392 ± 0.0381 0.1339 ± 0.0852 0.1092 ± 0.1081

Phloretin 0.0107 ± 0.080 0.0024 ± 0.0016 3.6734 ± 0.8509 0.0104 ± 0.0091

Phlorizin 0.0707 ± 0.0000 0.0707 ± 0.0000 77.4076 ± 8.0480 0.0707 ± 0.0000

Naringenin 0.1536 ± 0.1275 0.0230 ± 0.0195 0.1752 ± 0.1153 0.1683 ± 0.1648

Quercetin-3-rhamnoside 0.0124 ± 0.0059 0.0243 ± 0.0097 0.1562 ± 0.0786 0.0119 ± 0.0084
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Figure 1. Non Metric Multidimensional Scaling (NMDS) based on Euclidean distances of soil samples amended with old 
apple roots at different times and control soils. R3 = soil with roots amended 3 months before planting; C3 = control soil 
of the R3 treatment; R0 = soil with roots amended just before planting; C0 = control soil of the R0 treatment. Each point 
represents the phenolic profile of one sample. a) at planting time (T1); b) after 4 months of seedlings growth (T2).
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al., 2016). The concentration of phlorizin and phlore-
tin in R3 treatment soils was comparable with that in 
control soils, indicating that the 3 months when the 
ground roots remained in the soil were sufficient to 
allow degradation of these compounds.

These results suggest that in orchards the con-
centration of phlorizin in soil should be measured 
before replanting to assess the level of autotoxicity, 
using this compound as an indicator of soil health. 
We ascertained that concentrations of 77 μg g-1 in soil 
were detrimental for apple seedlings. Leaving sever-
al months between explanting and replanting is also 
recommended, especially because the degradation of 
phenolic compounds is much slower in winter, when 
the soil temperatures are low (Politycka and Adam-
ska, 2003), and the release of phenolic compounds 
from intact roots could be gradual.

Eleven phenolic compounds were detected in 
soils from sampling at time T2. Again in this case, 
the concentrations were low (Table 3). As compared 
to T1, a lower number of benzoic acid derivatives 
was found. At this time, the NMDS on Euclidean 
distances (stress = 0.01, R2 axis 1 = 0.99, axis 2 = 0.1) 
did not show any clustering of the samples (Figure 
1B), a fact that was confirmed by one-way ANOSIM, 
which found no significant differences in the phe-
nolic profile in the different treatments (P>0.05). The 

only phenolic compound that significantly increased 
in all soil treatments at T2 as compared to T1 was 
vanillic acid (Wilcoxon test, P<0.05), suggesting pos-
sible exudation from seedling roots, as happens in 
other plant species (Kong et al., 2006). Four months 
after planting the seedlings, the concentrations of 
phlorizin and phloretin in R0 soils, which were very 
high in T1, dropped significantly (Wilcoxon test, 
P<0.05), although weights of seedlings planted in 
this soil were reduced. This suggests that the initial 
stress caused by high concentration of phlorizin can 
impair plant health for long periods, as the plants re-
mained stunted even when the concentration of the 
compound decreased significantly.

In conclusion, this study confirmed that the pres-
ence of apple root debris in soil can significantly im-
pair the growth of apple seedlings, and that this neg-
ative effect disappears when phenolic compounds 
(mainly phlorizin and phloretin) have degraded. 
If the seedlings are planted just after the addition 
of roots, the initial negative impact on subsequent 
growth persists over time, despite the reduction in 
concentrations of phenolic compounds. Assessment 
of phlorizin could therefore be the basis for devel-
oping an indicator of ARD risk in orchard soils, or 
to determine the appropriate time for replanting to 
avoid ARD.

Table 3. Mean concentrations (μg g-1; ± standard errors) of phenolic compounds  in soil after 4 months of seedlings growth 
(T2), measured with UHPLC and mass spectrometery. R3 = soil with roots amended three months before planting; C3 = 
control soil of the R3 treatment; R0 = soil with roots amended just before planting; C0 = control soil of the R0 treatment.

Phenolic compound R3 C3 R0 C0

P-hydroxybenzoic acid 0.0206 ± 0.0018 0.0265 ± 0.0063 0.0271 ± 0.0054 0.0275 ± 00.67

Vanillin 0.0032 ± 0.0005 0.0027 ± 0.0004 0.0040 ± 0.0007 0.0026 ± 0.0004

Vanillic acid 0.0222 ±0.0025 0.0266 ± 0.0024 0.0296 ± 0.0043 0.0316 ± 0.0058

Syringaldehyde 0.0012 ±0.0003 0.0009 ± 0.0002 0.0008 ± 0.0002 0.0009 ± 0.0002

Esculin 0.0004 ±0.0000 0.0007 ± 0.0003 0.0018 ± 0.0010 0.0004 ± 0.0000

P-coumaric acid 0.0028 ±0.0008 0.0020 ± 0.0003 0.0041 ± 0.0005 0.0033 ± 0.0005

Ferulic acid 0.0020 ±0.0005 0.0012 ± 0.0001 0.0023 ± 0.0005 0.0012 ± 0.0002

Phloretin 0.0054 ±0.0020 0.0042 ± 0.0029 0.0105 ± 0.0023 0.0064 ± 0.0029

Phlorizin 1.2200 ± 0.3982 1.1454 ± 0.3057 1.4584 ±0.6136 2.0692 ± 0.9222

Taxifolin 0.0073 ± 0.0029 0.0069 ± 0.0025 0.0081 ±0.0030 0.0073 ± 0.0030

Dihydrokaempferol 0.0049 ± 0.0008 0.0040 ± 0.0003 0.0057 ± 0.0021 0.0141 ± 0.0062
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