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1. Introduction

Let us fix a bounded open set Ω ⊂ Rn, with n ≥ 2. Given a Borel
set F ⊂ Rn we denote by |F | its Lebesgue measure (from now on,
the volume of F ) and by P (F ) its perimeter (see section 3 for the
definition of the perimeter functional). Then we define the Cheeger
constant of Ω as

h(Ω) := inf

{
P (F )

|F |
: F ⊂ Ω, |F | > 0

}
. (1)

Any set E ⊂ Ω such that P (E)
|E| = h(Ω) is called a Cheeger set of Ω.

We shall generically refer to the Cheeger problem, as far as the com-
putation or estimation of h(Ω), or the characterization of Cheeger
sets of Ω, are concerned. As we will see later on, the Cheeger prob-
lem is deeply connected to other variational problems, ranging from
eigenvalue estimates to capillarity models, and even to image seg-
mentation techniques.

The purpose of this note is twofold. First, in order to provide
some motivations to the reader, we shall briefly review three rele-
vant problems that show a close connection to the Cheeger problem.
Second, after some essential definitions and basic results we give an
account of known facts about the Cheeger problem, as well as of some
more recent results obtained by A. Pratelli and the author in [27].
Some key examples are presented in the final section. We also address



the interested reader to [5, 6, 7, 10, 11, 21, 20, 33], where further ap-
plications, developments and extensions of the Cheeger problem are
considered.

2. Some motivations

In this section we synthetically describe three variational problems
that are closely connected with the Cheeger problem.

2.1. Estimating the smallest eigenvalue of the Laplacian

The historical motivation of the Cheeger problem is an isoperimetric-
type inequality that was first proved by J. Cheeger in [13] in the
context of compact, n-dimensional Riemannian manifolds without
boundary. As a consequence, one obtains the validity of a Poincaré
inequality with optimal constant uniformly bounded from below by
a geometric constant. Let λ2(M) be the least non-zero eigenvalue of
the Laplace-Beltrami operator on M , then Cheeger proved that

λ2(M) ≥ inf
A⊂⊂M

P (A)2

4 min{V (A), V (M \A)}2
, (2)

where V (A) and P (A) denote, respectively, the Riemannian volume
and perimeter of A. Here we skip the discussion of the problem on
Riemannian manifolds and consider the analogous problem for the
p-Laplacian (1 ≤ p < ∞) with Dirichlet boundary conditions, with
M replaced by a bounded open set Ω ⊂ Rn. To be more specific,
we assume that Ω coincides with its essential interior, i.e., that it
contains all points x ∈ Rn for which there exists r > 0 such that
|B(x, r)\Ω| = 0. Under this assumption, all (slightly) different defini-
tions of the Cheeger constant, that have been proposed or considered
in previous works, actually agree. We thus exclude from our analysis
domains (like, for instance, a planar open disc minus a diameter)
which from the point of view of the Lebesgue measure (and of the
perimeter) are not distinguishable from their essential interiors. By
approximation (see Theorem 3.7) it will then be possible to deduce
estimates that are valid for more general domains (and for the more
“classical” definition of Cheeger constant, i.e. the minimization of

the ratio P (F )
|F | among relatively compact subdomains F ⊂⊂ Ω).

Let λp(Ω) denote the smallest “eigenvalue” of the p-Laplacian
with Dirichlet boundary conditions, for 1 ≤ p <∞:

λp(Ω) := inf
u∈W 1,p

0 (Ω)

‖∇u‖pp
‖u‖pp

.
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Arguing as in Cheeger’s paper (see [26, 22]) one can easily show that

λp(Ω) ≥ h(Ω)p

pp
, (3)

where h(Ω) is defined in (1). The proof of (3) goes as follows: take

u ∈ W 1,p
0 (Ω) with a positive Sobolev norm, and set q = p

p−1 . By

noting that p/q = p− 1 and thanks to Hölder’s inequality, one finds∫
|∇u|p∫
|u|p

≥

(∫
|u|p−1|∇u|

)p
(∫
|u|p

)p =

(∫
|∇|u|p|

)p
pp
(∫
|u|p

)p . (4)

Setting f = |u|p, by coarea formula (see [4]) one gets∫
|∇f | =

∫ +∞

0

P ({f > t})
|{f > t}|

· |{f > t}| dt ≥ h(Ω) ·
∫ +∞

0

|{f > t}| dt

= h(Ω) ·
∫
f , (5)

then by (5) one deduces that(∫
|∇|u|p|

)
(∫
|u|p

) =

∫
|∇f |∫
f

≥ h(Ω) .

Therefore, (3) follows from this last inequality combined with (4).

Remark 2.1. We note that, as p→ 1, the left-hand side of (3) tends
to λ1(Ω) while the right-hand side tends to h(Ω). Moreover, we have

λ1(Ω) = h(Ω) , (6)

which means that (3) becomes sharp as p→ 1. Proving (6) amounts
to show that λ1(Ω) ≤ h(Ω), as the other inequality directly follows

from (3). To this aim, one can exploit (5) on a function f ∈W 1,1
0 (Ω)

that suitably approximates the characteristic function of a set of

finite perimeter F ⊂ Ω, for which P (F )
|F | ' h(Ω). To this aim, it is

not restrictive to assume that F is relatively compact in Ω and that
∂F is smooth, hence f can be defined as a standard regularization of

χF , in such a way that 0 ≤ f ≤ 1, |F | '
∫
f and P (F ) '

∫
|∇f |.

In conclusion one obtains∫
|∇f | ' P (F )

|F |

∫
f ' h(Ω)

∫
f ,

which implies (6).
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2.2. Existence of graphs with prescribed mean curvature

Let Ω ⊂ Rn be a bounded open domain with Lipschitz boundary.
The prescribed mean curvature equation is a nonlinear elliptic partial
differential equation of the form

div

(
∇u√

1 + |∇u|2

)
= H(x) , (7)

where H is a given function on Ω. For the moment we do not specify
any further property of H and u. It is well-known that the left-hand
side of (7) represents the scalar mean curvature of the graph t = u(x),
up to a division by n − 1. The prescribed mean curvature equation
arises as the Euler-Lagrange equation of the functional

J [u] =

∫
Ω

√
1 + |∇u(x)|2 dx+

∫
Ω

H(x)u(x) dx (8)

+

∫
∂Ω

|u(y)− ϕ(y)| dHn−1(y)

where Hn−1 denotes the Hausdorff (n − 1)-dimensional measure in
Rn and ϕ ∈ L1(∂Ω) is a boundary datum. The minimization of (8)
corresponds to the physical problem of finding the stable equilib-
rium configurations for a fluid-gas interface in a cylindrical tube of
cross-section Ω, subject to surface tension, bulk forces, and boundary
conditions. In [19] (see also [18]) some conditions for the existence
and uniqueness of solutions to (7) (even without specifying boundary
conditions) are found. In particular, we have the following result:

Theorem 2.2 ([19]). Let Ω be a bounded Lipschitz domain, and let
H ∈ Lip(Ω). Then, the equation (7) admits at least a solution u ∈
C2(Ω) if and only if ∣∣∣∣∫

A

H(x) dx

∣∣∣∣ < P (A) (9)

for all A ⊂ Ω with 0 < |A| < |Ω|. If, in addition,
∣∣∫

Ω
H(x)

∣∣ = P (Ω),
then the solution u to (7) is unique up to additive constants and has
a “vertical contact” at ∂Ω.

The proof of Theorem 2.2 uses a straightforward application of
the divergence theorem for the “only if” part, while becomes more
technical in the “if” part. The case |

∫
Ω
H(x)| < P (Ω) is easier and

can be handled by showing the existence of smooth minimizers of the
functional J [u] defined in (8). The critical case |

∫
Ω
H(x)| = P (Ω) is

more subtle and requires the notion of generalized solution of (7) in
the sense of Miranda [28]. We refer to [19] for more details.
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In order to better exploit the link between the existence of solu-
tions to (7) and the Cheeger problem, we focus on the case H(x) = H
constant. We also assume without loss of generality that H ≥ 0.
Then, Theorem 2.2 implies that a solution u ∈ C2(Ω) to the con-
stant mean curvature equation

div

(
∇u(x)√

1 + |∇u(x)|2

)
= H (10)

exists if and only if H ≤ h(Ω) and no proper subset A of Ω is Cheeger
in Ω. In this sense, the Cheeger constant provides a threshold for the
prescribed mean curvature, in order that a solution to (10) may exist.
A particularly interesting situation occurs in the limit case H = h(Ω)
and when Ω is uniquely self-Cheeger, in the sense that Ω is Cheeger
in itself and no other proper subset of Ω is Cheeger in Ω. Indeed,
in this case one gains not only existence but also uniqueness (up to
a vertical translation) of the solution to (10). This much more rigid
situation corresponds to the case of a graph with constant mean cur-
vature H = h(Ω), that meets the boundary of the cylinder Ω×R in
a tangential way (thus, the gradient ∇u(x) blows up as x tends to
∂Ω) and whose geometrical shape is, therefore, uniquely determined
up to a translation. The physical interest for these optimal shapes
becomes immediately apparent: indeed, they represent the equilib-
rium configurations of the capillary free-surfaces formed by perfectly
wetting fluids inside a cylindrical container of cross-section Ω under
zero gravity conditions.

2.3. Stable shapes for Total Variation minimization

In [31] (see also the analysis performed in [12]) a variational method,
now called ROF model, was proposed for the regularization of noisy
images. Let g ∈ L2(R2) be a given image to be regularized. The
idea is to preserve the essential contours and textures of the objects
depicted in the image, while removing noise. To this aim, one can
solve the following variational problem:

min
u∈L2(Rn)∩BV (Rn)

∫
Rn
|Du|+ 1

2λ

∫
Rn
|u− g|2 , (11)

where |Du| is the total variation measure associated with the distri-
butional gradient of u, and λ is a positive parameter. We notice that
the functional defined in (11) is strictly convex, and it is not difficult
to prove existence (and uniqueness!) of a solution. One could then be
tempted to write the following Euler-Lagrange equation associated
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with (11):

λ div

(
Du

|Du|

)
= u− g . (12)

However this is far from being correct, since one expects that some
“staircasing effects” occurs in the solution, and therefore that its gra-
dient vanishes on regions of positive Lebesgue measure. The correct
way of writing the Euler-Lagrange equation can thus be found by
means of convex analysis. We recall that the total variation of Du is
the convex functional defined by

|Du|(Rn) =

∫
Rn
|Du| := sup

{∫
udiv ξ : ξ ∈ C1

c (Rn;Rn), |g| ≤ 1

}
.

We shall also set J [u] = |Du|(Rn). Being J [u] convex, we can consider
its subdifferential at u ∈ L2(Rn):

∂J [u] = {v ∈ L2(Rn) : J [u+w] ≥ J [u]+〈v, w〉 for all w ∈ L2(Rn)} .

Then, the Euler-Lagrange relation derived from the minimality of u
with respect to problem (11) is 0 ∈ ∂J [u] + u−g

λ or, equivalently,

g − u
λ
∈ ∂J [u] . (13)

It is possible to show that the subdifferential ∂J [u] consists of the
divergences of vector fields that “calibrate” the distributional gra-
dient Du. More precisely, one can rewrite the Euler-Lagrange inclu-
sion (13) in the following, equivalent form: there exists a vector field
ξu ∈ L∞(Rn) such that |ξu| ≤ 1, div ξu ∈ L2(Rn), Du = ξu|Du| and

div ξu =
u− g
λ

. (14)

Let us assume from now on that g = χΩ is the characteristic function
of some bounded Lipschitz domain Ω. The goal is to characterize the
domains Ω for which the solution u of (11) with g = χΩ is a “scaled
copy of g”, i.e. of the form u = µχΩ, with µ ≥ 0. This means that
the regularization produced by the ROF model (11) determines, in
this case, a change of the contrast, but not of the shape of the initial
image g = χΩ.

Following [2], we say that a Lipschitz domain Ω is calibrable if
P (Ω) < ∞ and if there exists a vector field ξ ∈ L∞(Rn;Rn) such
that |ξ| ≤ 1, ξ = νΩ Hn−1-almost everywhere on ∂Ω, and

−div ξ =
P (Ω)

|Ω|
χΩ

in the distributional sense. This notion of calibrability is already
present in the context of existence and uniqueness problems for
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graphs with prescribed mean curvature (see [19]). By using (14) one
can derive the following result (see [2, 3]):

Theorem 2.3. The function uλ =
(

1− P (Ω)
|Ω| λ

)+

χΩ is the unique

minimizer of (11) with g = χΩ if and only if Ω is calibrable.

Proof. First we consider the case λ < |Ω|
P (Ω) , so that

uλ =

(
1− P (Ω)

|Ω|
λ

)
χΩ .

Then we can easily check that uλ is the unique minimizer of (11) if
and only if there exists a vector field ξ ∈ K satisfying DχΩ = ξ|DχΩ|
and such that (14) holds for g = χΩ, which means that

−div ξ =
P (Ω)

|Ω|
χΩ ,

that is, Ω is calibrable. Concerning the case λ ≥ |Ω|
P (Ω) , we observe

that (14) is satisfied when u = 0, g = χΩ and

ξu = ξ0 =
|Ω|

λP (Ω)
ξ ,

where ξ denotes a calibrating vector field for Ω. Note that |ξ0| ≤ 1
in this case, thus div ξ0 ∈ ∂J [0]. �

One can appreciate the close connection between ROF mini-
mization and the Cheeger problem, through this notion of calibra-
bility. To clarify this point, let us first recall the notion of mean-
convexity. We say that an open set Ω ⊂ Rn with finite perimeter
is mean-convex if for any Borel set F ⊂ Rn such that Ω ⊂ F we
have P (Ω) ≤ P (F ). In other words, Ω minimizes the perimeter with
respect to outer variations. Since the orthogonal projection onto a
convex set is a 1-Lipschitz map, by the area formula one can easily
infer that (bounded) convex sets are also mean-convex (the converse
being not true in general). The following proposition holds.

Proposition 2.4. Let Ω be a Lipschitz domain.

(i) if Ω is calibrable, then it is also mean-convex and self-Cheeger;
(ii) if Ω is convex and self-Cheeger, then it is calibrable.

The proof of claim (ii) of Proposition 2.4 can be found in [2].
Here we only describe how to prove (i). Let A ⊂ Ω be a relatively
compact subdomain with smooth boundary, then by the divergence
theorem applied to the calibrating vector field ξ we get

P (Ω)

|Ω|
|A| = −

∫
A

div ξ = −
∫
∂A

ξ · νA ≤ P (A) ,

7



whence P (Ω)
|Ω| ≤

P (A)
|A| . Since we can fix a sequence of relatively com-

pact subdomains Ωh converging to Ω both in measure and in perime-

ter, we also conclude that h(Ω) = P (Ω)
|Ω| , that is, Ω is self-Cheeger.

To prove that Ω minimizes the perimeter with respect to outer vari-
ations, we fix a bounded open set F with Lipschitz boundary and
strictly containing Ω, then we apply the divergence theorem to the
calibrating vector field ξ on F \ Ω:

0 =

∫
F\Ω

div ξ =

∫
∂F

ξ · νF dHn−1 −
∫
∂Ω

ξ · νF dHn−1

≤ P (F )− P (Ω) ,

which implies that Ω is mean-convex.

3. Some general results on the Cheeger problem

After recalling some basic facts about sets of finite perimeter, we
shall present some general (and mostly known) results on the Cheeger
problem for domains in Rn. We shall also recall some more specific
results valid for planar domains, that will be needed in Section 4.

For a given x ∈ Rn and r > 0, we set Br(x) = {y ∈ Rn :
|y − x| < r}, where |v| is the Euclidean norm of the vector v ∈ Rn.
Given A ⊂ Rn we denote by χA its characteristic function. With
a slight abuse of notation, we write |A| for the Lebesgue (outer)
measure of A. We then set ωn = |B1(0)|. We define the perimeter of
a Borel set E as

P (E) = sup

{∫
E

div g : g ∈ C1
c (Rn;Rn), |g| ≤ 1

}
.

When P (E) < +∞, we say that E has finite perimeter (in Rn). In
this case, P (E) coincides with the total variation of the distributional
gradient of the characteristic function of E:

P (E) = |DχE |(Rn) ,

which more generally allows us to define the relative perimeter

P (E;A) := |DχE |(A)

for any Borel set A ⊂ Rn. By Radon-Nikodym Theorem we can
find a Borel Rn-valued function νE such that |νE | = 1 |DχE |-almost
everywhere and

DχE = −νE |DχE | .
One can interpret νE as a generalized exterior normal to the bound-
ary of E. In order to clarify this concept, we recall the definition of re-
duced boundary ∂∗E. We say that x ∈ ∂∗E if 0 < |E∩B(x, r)| < ωnr

n

8



for all r > 0 and

∃ νE(x) := − lim
r→0+

DχE(Br(x))

|DχE |(Br(x))
, |νE(x)| = 1 .

Then we quote a classical result by De Giorgi [14]:

Theorem 3.1 (De Giorgi). Let E be a set of finite perimeter, then

(i) ∂∗E is countably Hn−1-rectifiable in the sense of Federer [17];
(ii) for any x ∈ ∂∗E, χt(E−x) → χHνE(x)

in L1
loc(Rn) as t → +∞,

where Hν denotes the half-space through 0 whose exterior nor-
mal is ν;

(iii) for any Borel set A, P (E;A) = Hn−1(A ∩ ∂∗E);
(iv)

∫
E

div g =
∫
∂∗E

g · νE dHn−1 for any g ∈ C1
c (Rn;Rn).

The perimeter functional extends the usual notion of (n − 1)-
dimensional measure of the boundary of a set, in the sense that, for
instance, P (E) = Hn−1(∂E) for any bounded set E with Lipschitz
boundary. The advantage of using the perimeter functional instead
of the Hausdorff measure in geometric variational problems is mainly
due to the lower-semicontinuity and compactness properties stated
in the following proposition (see, e.g., [4]):

Proposition 3.2 (Lower-semicontinuity and compactness). Let Ω ⊂
Rn be an open set and let (Ej)j be a sequence of Borel sets. We have
the following well-known properties:

(i) if E is a Borel set, such that χEj → χE in L1
loc(Ω), then

P (E; Ω) ≤ lim inf
j

P (Ej ; Ω);

(ii) if there exists a constant C > 0 such that P (Ej ; Ω) ≤ C for all
j, then there exists a subsequence Ejk and a Borel set E such
that χEjk → χE in L1

loc(Ω).

Other useful properties of the perimeter (invariance by isome-
tries and scaling property, isoperimetric inequality, lattice property)
are collected in the next proposition.

Proposition 3.3. Given two Borel sets E,F ⊂ Rn of finite perimeter,
λ > 0 and an isometry T : Rn → Rn, we have

P (λT (E)) = λn−1P (E) , (15)

P (E) ≥ nω
1
n
n |E|

n−1
n , (16)

P (E ∪ F ) + P (E ∩ F ) ≤ P (E) + P (F ) . (17)

We point out that sets of finite perimeter can be extremely
weird. For instance, let G be the countable union of open balls of
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radius 2−i centered at qi, i ∈ N, where (qi)i∈N is any enumeration
of all points with rational coordinates in R2. By (17) and lower-
semicontinuity of the perimeter, G has finite perimeter. However,
its topological boundary has a positive Lebesgue measure (thus in
particular its (n− 1)-dimensional Hausdorff measure is +∞). While
generic sets of finite perimeter may thus be very irregular, a regular-
ity theory is available in particular for minimizers of the perimeter
subject to a volume constraint (see [35]).

Theorem 3.4 (Regularity of perimeter minimizers with volume con-
straint). Let Ω be a fixed open domain, and assume E is a Borel set
satisfying the following property: P (E; Ω) < +∞ and for all Borel F
such that E∆F ⊂⊂ Ω and |F ∩ Ω| = |E ∩ Ω|, it holds

P (F ; Ω) ≤ P (E; Ω) .

Then, ∂∗E ∩Ω is an analytic surface with constant mean curvature,
and the singular set (∂E \ ∂∗E) ∩ Ω is a closed set with Hausdorff
dimension at most n− 8.

We now focus on the Cheeger problem, and in doing so we first
present some general properties of the Cheeger constant h(Ω) and of
Cheeger sets inside Ω, valid for any dimension n ≥ 2 (see [34, 22, 23]).

Proposition 3.5. Let Ω, Ω̃ ⊂ Rn be bounded, open sets. Then the
following properties hold.

(i) If Ω ⊂ Ω̃ then h(Ω) ≥ h(Ω̃).
(ii) For any λ > 0 and any isometry T : Rn → Rn, one has

h(λT (Ω)) = 1
λh(Ω).

(iii) There exists a (possibly non-unique) Cheeger set E ⊂ Ω, i.e.

such that P (E)
|E| = h(Ω).

(iv) If E is Cheeger in Ω, then E minimizes the relative perimeter
among sets with the same volume; consequently, ∂E∩Ω has the
regularity stated in Theorem 3.4, and in particular ∂∗E ∩ Ω is

a hypersurface of constant mean curvature equal to h(Ω)
n−1 .

(v) If E is Cheeger in Ω then |E| ≥ ωn
(

n
h(Ω)

)n
.

(vi) If E and F are Cheeger in Ω, then E ∪ F and E ∩ F (if it is
not empty) are also Cheeger in Ω.

(vii) If E is Cheeger in Ω and Ω has finite perimeter, then ∂E∩Ω can
meet ∂∗Ω only in a tangential way, that is, for any x ∈ ∂∗Ω∩∂E
one has that x ∈ ∂∗E and νE(x) = νΩ(x).

Sketch of proof. (i) and (ii) are immediate consequences of the defini-
tion of Cheeger constant and of (15) coupled with |λΩ| = λn|Ω|. The
proofs of (iii) and (iv) are accomplished by, respectively, Proposition
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3.2 and Theorem 3.4. The proof of (v) follows from the isoperimetric
inequality (16) and the fact that P (E) = h(Ω)|E|. To prove (vi) we
apply (17) and get

h(Ω)(|E ∪ F |+ |E ∩ F |) = h(Ω)(|E|+ |F |)
= P (E) + P (F )

≥ P (E ∪ F ) + P (E ∩ F )

≥ h(Ω)(|E ∪ F |+ |E ∩ F |) ,
hence all previous inequalities are actually equalities and this hap-
pens if and only if

P (E ∪ F ) = h(Ω)|E ∪ F | and P (E ∩ F ) = h(Ω)|E ∩ F | ,
which proves (vi). While the proofs of (i)-(vi) are essentially known
and can be found in the previously cited references, for the proof of
(vii) we refer to [27].

�

Remark 3.6. We notice that, by Proposition 3.5 (v) and (vi), we can
always find minimal Cheeger sets in Ω (possibly not unique) and a
unique maximal Cheeger set (this last can be obtained as the union
of all minimal Cheeger sets of Ω). An example of a domain with two
disjoint minimal Cheeger sets is shown in Figure 8.

We consider the problem of continuity of the Cheeger constant
h(Ω) with respect to some suitable notions of convergence of do-
mains. In [27] we prove Theorem 3.7 below (see also [30] for the
special case of convex domains). Since the proof is particularly sim-
ple, we quote it below with full details.

Theorem 3.7 (Continuity properties of the Cheeger constant, [27]).
Let Ω,Ωj ⊂ Rn be nonempty open bounded sets for all j ∈ N. If
χΩj → χΩ in L1, then

lim inf
j→∞

h(Ωj) ≥ h(Ω) . (18)

If in addition Ω,Ωj are sets of finite perimeter and P (Ωj) → P (Ω)
as j →∞, then

lim
j→∞

h(Ωj) = h(Ω) . (19)

Proof. Let Ej be a Cheeger set in Ωj (whose existence is guaranteed
by Proposition 3.5 (iii)). Without loss of generality we assume that
lim inf
j→∞

P (Ej) is finite, then by Proposition 3.2 we deduce that χEj →

χE in L1 as j →∞, up to subsequences and for some Borel set E with
positive volume. Since Ej ⊂ Ωj and χΩj → χΩ in L1 as j →∞, one
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immediately infers that E ⊂ Ω up to null sets. Then by Proposition
3.2 and by the convergence of |Ej | to |E|, one has

h(Ω) ≤ P (E)

|E|
≤ lim inf

j→∞

P (Ej)

|Ej |
,

which proves (18). If in addition P (Ωj)→ P (Ω) as j →∞, then we
consider E Cheeger in Ω and define Ej = Ωj ∩ E. One can easily
check that Ej → E and E ∪ Ωj → Ω in L1, as j →∞. Therefore by
(17) we find

lim sup
j→∞

P (Ej) ≤ P (E) + lim sup
j→∞

P (Ωj)− lim inf
j→∞

P (E ∪ Ωj)

≤ P (E) + P (Ω)− P (Ω)

= P (E) ,

which combined with (18) gives (19). �

3.1. The Cheeger problem in convex domains

Further properties of the Cheeger constant and of Cheeger sets are
known when the domain Ω is convex. In particular, we refer to [1]
and to the references therein for the proof of the following result.

Theorem 3.8. Let Ω ⊂ Rn be a convex domain. Then there exists a
unique Cheeger set E in Ω. Moreover, E is convex and of class C1,1.

We remark that Theorem 3.8 was proved in [8] under stronger
assumptions on Ω. The proof is essentially based on exploiting the
link between the Cheeger problem and the capillary problem with
zero gravity (i.e., with vertical contact at the boundary, see the dis-
cussion in the previous section). In particular, one has that a convex
domain Ω is self-Cheeger if and only if it is calibrable, and this hap-
pens precisely when Ω is of class C1,1 and the mean curvature of ∂Ω

is bounded from above by P (Ω)
(n−1)|Ω| .

More can be said about Cheeger sets of convex domains of the
plane. For the proof of the following result, see [34, 23].

Theorem 3.9. Let Ω be a bounded convex set in R2. Then the unique
Cheeger set E of Ω is the union of all balls of radius r = h(Ω)−1 that
are contained in Ω. Moreover, if we define the inner Cheeger set as

Er = {x ∈ Ω : dist(x, ∂Ω) > r} (20)

we have E = Er +B(0, r) (as a Minkowski sum) and it holds

|Er| = πr2 . (21)
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The proof of Theorem 3.9 is essentially based on Steiner’s for-
mulae for area and perimeter of tubular neighbourhoods of convex
sets in the plane ([32]): if A ⊂ R2 is a bounded convex set and ρ > 0,
then setting Aρ = A+Bρ we have

|Aρ| = |A|+ ρP (A) + πρ2, (22)

P (Aρ) = P (A) + 2πρ . (23)

We recall that Steiner’s formula (22) has been generalized by Weyl to
n dimensional domains with boundary of class C2 (the so-called tube
formula, see [36]) and then by Federer [16] under the assumption of
positive reach, that we introduce hereafter. Given K ⊂ Rn compact,
we define the reach of K as

R(K) = sup{ε ≥ 0 : dist(x,K) ≤ ε ⇒ x has a unique

projection onto K} .
We say that K has positive reach if R(K) > 0. Notice that if K is
convex, then R(K) = +∞. It is convenient to introduce the outer
Minkowski content of an open bounded set A, defined as

M(A) = lim
ρ→0

|Aρ| − |A|
ρ

,

provided that the limit exists. Then we have the following result (see
[27]).

Proposition 3.10. Let A ⊂ R2 be a bounded open set with Lipschitz
boundary. Let us assume that R(A) > 0. Then P (A) < +∞ and
Steiner’s formulae (22), (23) hold for all 0 < ρ < R(A).

Remark 3.11. To see how the inner Cheeger formula (21) can be
used to derive information on the Cheeger problem for convex pla-
nar domains, we compute the Cheeger constant of a unit square
Q = (0, 1)2. First, we observe that the inner Cheeger set of Q is a
concentric square of side length 1− 2r. Therefore (21) becomes

(1− 2r)2 = πr2 ,

and by coupling this equation with the condition 1− 2r > 0 we infer
after some elementary computations that

r =
1

2 +
√
π
,

whence h(Q) = 2 +
√
π. A general algorithm for computing the

Cheeger constant of a convex polygon (with some extra property,
i.e., that there is a one-to-one correspondence between the connected
components of the boundary of the Cheeger set in the interior of the
polygon and the vertices of the polygon) can be found in [23].
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3.2. Some further results about Cheeger sets in R2

Let E be a Cheeger set inside an open bounded domain Ω ⊂ R2,
and set r = h(Ω)−1 as before. Then a first, general fact is that a
connected component of ∂E ∩Ω is an arc of radius r, that cannot be
longer than πr (i.e., it can be at most a half-circle).

Lemma 3.12 ([27]). Let ∂E ∩ Ω be nonempty and let S be one of its
connected components. Then S is an arc of circle of radius r, whose
length does not exceed πr.

An apparently, very intuitive property of a planar Cheeger set E
could be the fact that E satisfies an internal ball condition of radius
r = |E|

P (E) (i.e., that it is a union of balls of radius r). However, this

property is false in general (see Figure 5 and, in particular, Example
5.2). Anyway, the following result holds true: as soon as a maximal
Cheeger set E in Ω contains some ball Br(x0), one can roll this ball
inside Ω following any sufficiently smooth path of centers, and in
doing so the moving ball will remain inside E.but without exiting
from E.

Theorem 3.13 (Moving ball, [27]). Let r = 1/h(Ω) and let E be
a maximal Cheeger set in Ω containing a ball Br(x0). Assume that
there exists a curve γ : [0, 1]→ Ω of class C1,1 and curvature bounded
by h(Ω), such that x0 = γ(0) and Br(γ(t)) ⊂ Ω for all t ∈ [0, 1]. Then
Br(γ(t)) ⊂ E for all t ∈ [0, 1].

Remark 3.14. The requirement in Theorem 3.13 of maximality of
E can be dropped whenever the moving ball remains at a positive
distance from ∂Ω. In this case, one can prove by using Lemma 3.12
that the moving ball will never intersect ∂E.

4. Characterization of Cheeger sets in planar strips

In [25], D. Krejčǐŕık and A. Pratelli consider the Cheeger problem
for a class of generically non-convex planar domains, called strips.
Let γ : [0, L] → R2 be a curve of class C1,1 parametrized by arc-
length, such that the modulus of its curvature is bounded by 1. For
t ∈ [0, L] we denote by σ(t) the relatively open segment of length
2 whose midpoint is γ(t) and such that γ̇(t) is orthogonal to σ(t).
We also assume that 0 ≤ t1 < t2 ≤ L implies σ(t1) ∩ σ(t2) = ∅
(no-crossing condition). Then, the set

S = Int

 ⋃
t∈[0,L]

σ(t)
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is an open strip of width 2 and length L (here Int(A) denotes the set
of interior points of A). We call γ the spinal curve of the strip S. If the
no-crossing condition holds for all t1 < t2 ∈ (0, L), but σ(0) = σ(L),
then we say that S is a closed strip (of course, this requires that
the curve γ is closed, too). In particular, an open strip is a C1,1-
diffeomorphic image of (0, L)× (−1, 1), while a closed strip is a C1,1-
diffeomorphic image of [0, L] × (−1, 1) with identification of points
(0, y) and (L, y). More precisely we can take (t, u) ∈ [0, L]× (−1, 1)
and define the map

Ψ(t, u) = γ(t) + u ν(t) ,

where ν(t) denotes the counter-clockwise rotation of the unit vector
γ̇(t) by 90 degrees. In the following we shall focus on open strips, as
the Cheeger problem for closed ones has been completely treated in
[25]. One can check that the map Ψ defined above is a diffeomorphism
of class C1,1 between the rectangle (0, L) × (−1, 1) and the (open)
strip S. Using the (t, u) coordinate system, i.e. the representation of
a generic point x of the strip by means of its coordinates (t, u) =
Ψ−1(x), can sometimes be of help.

σ(0)
σ(L)

σ(t)

∂+S

∂−S

γ(t)

Figure 1. A planar strip S.

Up to a scaling, we can more generally define strips of width 2s
(in this case we must require that the modulus of the curvature of
γ is smaller than 1/s). Without loss of generality, we shall consider
only strips of width s = 2. Moreover, we shall also assume that the
curvature of γ is everywhere < 1, as we can recover the case ≤ 1
by approximation, owing to Theorem 3.7. Strips naturally appear
in spectral problems, as they model 2-dimensional waveguides (see
[15, 24]). In this sense, a number of interesting questions involve the
spectral behaviour of a strip when its length L becomes very large.
In [25] the authors prove some results specifically on the Cheeger
problem for strips. First, they show that closed strips are Cheeger in
themselves. Then they prove by means of a suitable symmetrization
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technique the following bounds on the Cheeger constant of a strip
(see Theorem 10 in [25]).

Theorem 4.1 ([25]). Let S be a strip of length L and width 2. Then

1 +
1

400L
≤ h(S) ≤ 1 +

2

L
. (24)

In [27] we push forward the analysis done in [25] and, by means
of a finer characterization of Cheeger sets inside open strips, we prove
the following result.

Theorem 4.2 ([27]). Let S be an open strip of length L ≥ 9π
2 and

width 2. Then

h(S) =
(

1 +
π

2L
+O(L−2)

)
as L→ +∞ . (25)

The asymptotic estimate (25) is optimal. Its derivation is based
on a key result proved in [27]. This result (Theorem 4.3 recalled
below) essentially shows that, concerning the Cheeger problem, strips
are not too different from convex domains.

Theorem 4.3 ([27]). Let S be an open strip of length L ≥ 9π/2, and
let r = h(S)−1. Assume E is a Cheeger set of S. Then there exists
two continuous functions ρ+, ρ− : [0, L]→ [−1, 1] such that

E = Ψ
(
{(t, s) : 0 < t < L, ρ−(t) < s < ρ+(t)}

)
. (26)

Moreover, E is unique and coincides with the union of all balls of
radius r contained in S, it is simply connected and can be obtained
as the Minkowski sum E = Er +Br, where

Er = {x ∈ S : dist(x, ∂S) ≥ r}

is a set with Lipschitz boundary and positive reach R(Er) ≥ r. Fi-
nally, the inner Cheeger formula

|Er| = πr2 (27)

holds true.

Remark 4.4. We stress that the conclusions of Theorem 4.3 (in par-
ticular, the fact that the Cheeger set E is the union of balls of radius
r contained in S, and that (27) holds true) are not satisfied by any
planar domain. Two examples showing that no inclusion between
Cheeger sets and unions of balls of radius r is generally true, are
given in the last section (Examples 5.1 and 5.2). Concerning the in-
ner Cheeger formula (27), there exists a star-shaped domain whose
Cheeger set is the union of all included balls of radius r, but for
which the formula fails (see Example 5.3).

16



Theorem 4.2 directly follows from Theorem 4.3. Indeed, by the
special geometric properties of S we infer that

2(L− 9π)(1− r) ≤ |Er| ≤ 2L(1− r) .
By combining these two inequalities with the inner Cheeger formula
(27), we finally get

2(L− 9π)(1− r) ≤ πr2 ≤ 2L(1− r) ,
which implies (25) by an elementary computation.

We synthetically present the main ideas and tools, which the
proof of Theorem 4.3 is based on. Again, we refer the reader to [27]
for the details. We start recalling two key lemmas that are used in the
proof of Theorem 4.3. The first lemma states that, if E is a Cheeger
set in S, and the length of S is large enough, then any osculating
ball to ∂E ∩ S is entirely contained in S (see Figure 2).

α

E

S

Figure 2. The arc-ball property.

Lemma 4.5 (Arc-ball property). Let E be a Cheeger set inside a strip
S of length L ≥ 9π

2 . Set r = h(S)−1. Then ∂E∩S is non-empty, and
for any circular arc α contained in ∂E ∩ S the unique ball Br, such
that α ⊂ ∂Br, is contained in S.

The second lemma establishes a ball-to-ball connectivity prop-
erty of a generic strip, that is, the possibility of connecting two balls
of radius r that are contained in S by moving one of them towards the
other, following a suitable path of centers with controlled curvature
and preserving the inclusion in S (see Figure 3).

Lemma 4.6 (Ball-to-ball property). If Br(x0) and Br(x1) are two
balls of radius r ≤ 1, and both are contained in a strip S, then there
exists a piece-wise C1,1 curve β : [0, 1] → S such that β(0) = x0,
β(1) = x1, the curvature of β is smaller than r−1, and Br(β(t)) ⊂ S
for all t ∈ (0, 1).
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Figure 3. The ball-to-ball property.

The main difficulties in proving Lemmas 4.5 and 4.6 are of
topological type. Roughly speaking, one has to exploit the structural
properties of the strip in order to exclude some weird behaviour of
its boundary. As it happens for many intuitively clear statements
concerning planar objects, proving such lemmas is not as easy as one
could imagine at a first sight. For instance, we found no particular
simplifications in those proofs by working in the (t, u) coordinate
system: this can be understood if one considers that the pre-image
of a ball with respect to the map Ψ is no more a ball in the (t, u)
coordinates. In several steps of the proofs we find it convenient to
argue by contradiction, since a number of (a-posteriori impossible)
situations, like for instance the one where an internal ball of radius
ε < r is tangent to more than one point of ∂+S, or the other where
two distinct balls of radius r centered on the spinal curve γ are both
tangent to σ(0), must be excluded.

With these two lemmas at hand, we can prove Theorem 4.3.
Hereafter we provide only a sketch of its proof.

Proof sketch of Theorem 4.3. First of all, we show that there exist
exactly four balls of radius r and centers x0,0, x1,0, x0,1, x1,1, such
that the boundary of Br(xi,j) contains the connected component of
∂E ∩ S that is tangent to

σ(0) and ∂−S if i = j = 0;
σ(0) and ∂+S if i = 0 and j = 1;
σ(L) and ∂−S if i = 1 and j = 0;
σ(L) and ∂+S if i = j = 1.

This can be accomplished by combining Lemma 4.5, Lemma 4.6,
and Theorem 3.13. With this result in force, we are able to define
the two functions ρ± satisfying (26), which completely characterize
the boundary of E. The simply connectedness of E is immediate, as
its homeomorphic representation in coordinates (t, u) clearly satisfies
this property. On the other hand, we can prove that the union Ur
of all balls of radius r that are contained in S admits in the (t, u)
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coordinate system the same representation as E:

Ur = Ψ
(
{(t, u) : 0 < t < L, ρ−(t) < u < ρ+(t)}

)
,

hence E = Ur. Finally, the properties concerning the inner Cheeger
set Er can be proved as follows. For i, j = 0, 1 we denote by ai,j the
first coordinate of xi,j in the (t, u) representation, then set

pi,j = the orthogonal projection of xi,j onto σ(iL);
Qi = the rectangle of vertices xi,1, xi,0, pi,1, pi,0;
Di,j = the circular sector with center xi,j and boundary arc
Si,j ;
R+ = the region spanned by σ(t; (1− r, 1)) as t ∈ [a0,1, a1,1];
R− = the region spanned by σ(t; (−1, r − 1)) as t ∈ [a0,0, a1,0].

In the above definitions, σ(t;A) denotes the set {γ(t) + u ν(t) : u ∈
A}. Consequently we have the decomposition

E \ Er = Q0 ∪Q1 ∪
1⋃

i,j=0

Di,j ∪R+ ∪R− .

Finally, we show that Er has a Lipschitz boundary and that any
points of E \Er has a unique projection onto Er (which can be more
precisely identified according to the above decomposition, see Figure
4). We can thus apply Steiner’s formulae (22) and (23), as in the
proof of Theorem 3.9, and obtain the inner Cheeger formula (27),
thus concluding the proof of the theorem. �

D0,0

D0,1

D1,0

D1,1

Q0

Q1

R+

R−

Figure 4. The decomposition of the Cheeger set.
The inner Cheeger set Er is colored in dark grey.
One can see the eight regions of the decomposition
of E \ Er colored in light grey.
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5. Some planar examples

We conclude by collecting some examples of non-convex planar do-
mains, together with their Cheeger sets.

We start from an example of a domain G, whose Cheeger set
is strictly contained in the union of balls of radius r = h(G)−1 that
are contained in G.

Example 5.1 ([23]). Let G be the union of two disjoint balls B1 and

B 2
3
, of radii 1 and 2

3 respectively (see Figure 5). One has P (G)
|G| = 30

13 >

2. It is not difficult to check that the Cheeger set E of G coincides
with B1, hence h(G) = 2. However, G coincides with the union of all
balls of radius r = h(G)−1 = 1

2 contained in G, which is therefore
strictly larger than E.

1
2
3

E

Figure 5. A union of two disjoint balls B1 and B 2
3
,

whose Cheeger set E coincides with the largest ball
B1.

The next example shows a Cheeger setW strictly containing the
union of all balls of radius h(W)−1 contained in W. This example
and the one depicted in Figure 5 show that, in general, no inclusion
holds between a Cheeger set of Ω and the union of all balls of radius
r = h(Ω)−1 contained in Ω.

Example 5.2 ([27]). Let us consider a unit-side equilateral triangle
T , as in Figure 6, together with its Cheeger set ET (depicted in
grey). Then, cut T with the vertical line tangent to E and reflect
the portion on the left to the right, as shown in the picture. This
produces a bow-tie W. Let now EW be a Cheeger set inside W. By
the 2-symmetry of W one can infer the 2-symmetry of EW . On the
other hand, EW cannot have a connected component F completely
contained in T , since otherwise F would be Cheeger insideW and, at
the same time, it would coincide with ET . But then ET ∪E′T (where
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ET EW

Figure 6. The construction of the bow-tieW (left)
and the Cheeger set EW in the bow-tie (right). No-
tice that the region between the two dashed lines in
the picture on the right is the difference between the
Cheeger set EW and the (strictly smaller) union of
all balls of radius r included in W.

we have denoted by E′T the reflected copy of ET with respect to
the cutting line) would be Cheeger in W, which is not possible since
∂(ET ∪E′T )∩W is not everywhere smooth, as it should according to
Proposition 3.5. Being necessarily ∂EW ∩W equal to a finite union
of circular arcs with the same curvature = h(W), it is not difficult
to rule out all possibilities except the one in which ∂EW ∩ W is
composed by four congruent arcs, one for each convex corner in the
boundary ofW. Moreover one has the strict inequality h(W) < h(T ),
therefore the union of all balls of radius h(W)−1 contained inW does
not contain EW (indeed, some small region around the two concave
corners cannot be covered by those balls).

The next example is obtained as a slight variation of Example
5.2. In this case, the resulting Cheeger set is simply connected, while
the inner Cheeger set is disconnected. As a result, we derive the
impossibility for the inner Cheeger formula (27) to hold.

Example 5.3 ([27]). Take the bow-tie W constructed in the previous
example and vertically move the two concave corners a bit far apart.
By the continuity of the Cheeger constant (see (19)) we infer the
existence of some minimal displacement of the two corners, such

that the Cheeger set in the modified bow-tie W̃ actually coincides

with the union of all balls of radius r = h(W̃)−1. This corresponds
to the situation represented in Figure 7. It is then easy to check
that the formula |Er| = πr2 does not hold in this case, essentially
because the inner Cheeger set Er (depicted in dark grey) does not
satisfy R(Er) ≥ r. We also notice that, while the Cheeger set E
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α
r

Figure 7. A loose bow-tie for which the inner
Cheeger formula does not hold.

is connected, the inner Cheeger set Er is disconnected. Finally, one
can easily check that the true formula, that is satisfied by the inner
Cheeger set in this case, is

|Er| =
(
2α+ sin(2α)

)
r2 > πr2 ,

where α is the angle depicted in Figure 7.

Before getting to the last examples, we recall a result of generic
uniqueness for the Cheeger set inside a domain Ω ⊂ Rn, proved in
[9]:

Theorem 5.4 ([9]). Let Ω ⊂ Rn be any bounded open set, and let
ε > 0 be fixed. Then there exists an open set Ωε ⊂ Ω, such that
|Ω \ Ωε| < ε and the Cheeger set of Ωε is unique.

Idea of proof. Let E be a minimal Cheeger set of Ω, and let ωε be
a relatively compact, open subset of Ω with smooth boundary, such
that |Ω \ ωε| < ε. Define Ωε = E ∪ ωε, then by an application of
the strong maximum principle for constant mean curvature hyper-
surfaces one can show that E is the unique Cheeger set of Ωε. �

Example 5.5 ([23]). Figure 8 shows a simply connected domain con-
sisting of two congruent squares connected by a small strip. Each
square with suitably rounded corners is a minimal Cheeger set, while
their union is the maximal Cheeger set of the domain.

A more sophisticated example of non-uniqueness is constructed
below. Indeed one may ask whether it is possible to find a domain
admitting infinitely many distinct Cheeger sets. The answer to this
question is in the affirmative, as shown by the following example (we
point out that a similar example was numerically discussed by E.
Parini in his master degree thesis [29]).
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Figure 8. A simply connected domain whose
Cheeger set is not unique.

Example 5.6 ([27]). Let Pθ be the union of a unit disc B1 centered
at (0, 0) and a disc of radius r = sin θ and center (cos θ, 0), where
θ ∈ (0, π/2) will be chosen later. The perimeter of Pθ is

P (θ) = 2(π − θ) + π sin θ,

while its area is

A(θ) = (π − θ) + sin θ cos θ +
π sin2 θ

2
.

Then one shows the existence and uniqueness of θ0 ∈ (0, π/2) such

1

θ
r

Figure 9. The set P(θ).

that
P (θ0)

A(θ0)
=

1

sin θ0
,

that is,

2(π − θ0) sin θ0 +
π

2
sin2 θ0 − (π − θ0)− sin(2θ0)

2
= 0 . (28)

Now we set for brevity P0 = Pθ0 and observe that the ratio P (θ0)
A(θ0)

equals the inverse of the radius of the smaller arc inside ∂P0. Then by
a direct comparison with other possible competitors one infers that
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P0 is Cheeger in itself. Now we consider the one parameter family
Pt, t ∈ [0,+∞) of sets obtained by “elongating the nose” of P0 (see
Figure 10). It turns out that Pt is Cheeger in Pτ whenever t ≤ τ , and
this property is stable if one even “bends the nose” of Pt. Indeed,
the Cheeger ratio of Pt is constantly equal to 1

sin θ0
.

1

θ
r

Figure 10. The one-parameter family of Cheeger sets.
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[32] J. Steiner. Über parallele flächen. Monatsber. Preuss. Akad. Wiss,
pages 114–118, 1840.

[33] G. Strang. Maximum flows and minimum cuts in the plane. J. Global
Optim., 47(3):527–535, 2010.

[34] E. Stredulinsky and W. P. Ziemer. Area minimizing sets subject to
a volume constraint in a convex set. J. Geom. Anal., 7(4):653–677,
1997.

[35] I. Tamanini. Regularity results for almost minimal oriented hy-
persurfaces in RN . Quaderni del Dipartimento di Matemat-
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