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Abstract. This work presents an innovative multi-physics (MP) Learning-by-Examples (LBE)
inversion methodology for real-time non-destructive testing (NDT). Eddy Current Testing
(ECT) and Ultrasonic Testing (UT) data are effectively combined to deal with the localization
and characterization of a crack inside a conductive structure. An adaptive sampling strategy
is applied on ECT-UT data in order to build an optimal (i.e., having minimum cardinality
and highly informative) training set. Support vector regression (SVR) is exploited to
obtain a computationally-efficient and accurate surrogate model of the inverse operator and,
subsequently, to perform real-time inversions on previously-unseen measurements provided by
simulations. The robustness of the proposed MP-LBE approach is numerically assessed in
presence of synthetic noisy test set and compared to single-physic (i.e., ECT or UT) inversion.

1. Introduction
Real time accurate inversion solution becomes the main priority in non-destructive testing
and evaluation (NDT-NDE) applications. Among different iterative [1, 2, 3] and non-iterative
[4, 5, 6, 7] inversion solutions, Learning by examples (LBE) strategy is getting more attention
for having quasi-real time inversion capabilities. In this work, LBE has been adopted for a NDE
problem where a narrow crack is occurred around a fastener (e.g., bore hole) within an inspected
medium [8]. This is an important problem for the aging aircraft NDE community and Eddy
Current Testing (ECT) is widely applied while the structure under test (SUT) thickness is thin.
However, the penetration depth of the induced currents is limited by the skin depth. This makes
the detection and resolution of defects more difficult as the depth increases. Whereas ultrasound
testing (UT) NDT inspection is suitable for high resolution, but the inspection is affected by
the surface roughness of the inspected medium [9]. That means, each of these NDT methods
has some pros and cons according to their own physics. Moreover, for the mentioned problem
at hand, ECT signal is mostly affected for the presence of fastener. Due to the significant
probe impedance variation, the area of the fastener is acting as a circular defect within the
inspected medium. The impedance variation due to the fastener is much stronger than narrow
crack, thus, when the crack is placed deeper inside the SUT, the ECT signals contribution
due to the presence of narrow crack becomes weaker. Conversely, UT signals are stronger for
subsurface crack compare to the crack placed at the top surface of the SUT. As a consequence,
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different impacts on the crack characterization and localization performance are expected based
on ECT and UT methods. Thus, multi-physics (MP) data fusion (ECT-UT) has been applied
to maximize the inversion performance for crack characterization and localization.

In general, LBE is a two phases approach. During the preliminary phase (so called offline
phase), a fast and accurate inverse/trained model is built based on a training set made of input-
output (I/O) pairs by learning algorithm. The developed (trained) model from offline phase is
then used to predict the output associated to an unknown test sample during the second phase
(online phase). Within the framework of LBE, an adaptive sampling strategy combining Partial
Lest Square (PLS) [10] feature extraction and modified version of output space filling (OSF)
[11] (i.e., PLS-OSF sampling [4]) has been adopted for obtaining optimal training sets by both
ECT and UT methods separately. An updated version of PLS-OSF sampling algorithm has also
been illustrated for dealing with ECT-UT data. Support vector regression (SVR) [12] is used
to obtain accurate training model and perform real time inversion. Finally, the performance
of the MP-LBE inversion schema for crack characterization and localization is compared to
single-physic (i.e., ECT and UT) inversion on noisy data.

2. Mathematical formulation of forward and inverse problem
Let us consider a homogeneous plate made by aluminium 2024 alloy of thickness 6 mm, density
2.77 g.cm−3, has been investigated by both ECT and UT NDT methods. The plate consists of
a fastener (bore hole) of radius 3.75 mm and 6.00 mm height. The plate is affected by a single
notch (e.g., narrow crack) of volume Ω having fixed width 0.01 mm and height 2 mm (Fig. 1)
which is attached with the fastener. The crack is characterized by total Q = 3 descriptors of
length (lc), ligament (δc) and angular distance (φc) (i.e., p = (lc, δc, φc)).

(a) (b)

Figure 1. Examples of studied (a) ECT and (b) UT configuration

2.1. ECT treatment
The plate is inspected by a single coil working in absolute mode of frequency 1 kHz with lift
off 1 mm. The coil impedance variation due to presence of the crack measured at the k−th
(k = 1, ..., K) scanning position with respect to the flawless region is given by [13].

χECT
k =

1

I2

∫
Ω
Einc(r|rk).ρ(r|rk)dr (1)

I is the current flowing inside the coil while Einc(r|rk) is the incident field generated at position
r in the unflawed plate (rk = (xk, yk) represents the k-th coil position within the plate). ρ(r|rk)
is the unknown induced current dipole density, which models the presence of the crack and is
related to the total field, Etot(r|rk) that can be expresses by ρ(r|rk) = [σ(r) − σ]Etot(r|rk).
CIVA simulator [14] has been used as a forward operator ΦECT {.} in order to generate ECT
coil signals χECT . Due to the complex nature of the ECT signals, ECT signals are represented

by χECT =
{(

ℜ
{
χECT
k

}
;ℑ

{
χECT
k

})
; k = 1, ..., K

}
of FECT = 2K ECT features.
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2.2. Ultrasound testing treatment
The plate has been investigated by a ray probe by using water coupling medium (i.e., density
1 g.cm−3). The probe is acting both for transmitting and receiving UT signals. More details
of the treated problem and probe definition are available in [15]. CIVA uses a hybrid model
known as Physical Theory of Diffraction (PTD), based on Kirchhoff approximation and high-
frequency Geometrical Theory of Diffraction (GTD) for generating diffraction/scattering waves
from planner-like defects. The scattered field, for the PTD model can be expressed by [16]

uScat(PTD)(r) = uRayleigh(r) + uKir(r) +
∑
β

[(
D

α(GTD)
β (r)−D

α(KA)
β (r)

) eiλβSβ√
λβLβ

eβ(r)

]
. (2)

where, α = L, TV, or TH (Longitudinal, Transverse Vertical or Transverse Horizontal,
respectively) incident type wave vector and β = L, TV, or TH is the scatter type wave vector.
Sβ is the distance between the diffraction point rαβ and the observation point r. Lβ is a

parameter distance. D
α(GTD)
β is the GTD diffraction coefficient and D

α(KA)
β is the Kirchhoff

edge diffraction coefficient. uKir is the displacement scattered field at the observation r, and
the Rayleigh field uRayleigh(r) comprises the surface waves. The reflections/scatters wave have
been collected through C-Scan (e.g., maximum ray amplitude available at each inspection point)
and represented by χUT . CIVA simulator [14] has been utilized as a forward operator ΦUT {.} in
order to generate UT data. Unlike, ECT signals, UT signals contain only the real data, hence

UT signals are represented by χUT =
{
χUT
k ; k = 1, ..., K

}
of FUT = K UT features.

2.3. Data fusion using ECT and UT
In this case, ECT signals and UT signals are generated separately by their own forward solver
(i.e., ΦECT {.} and ΦUT {.}) and both of these data sets are fused by concatenating ECT and

UT data. The obtained fused ECT-UT data are represented by χECT−UT =
{
χECT ;χUT

}
of

FECT−UT = 3K ECT-UT features.

2.4. Adaptive sampling through feature extraction
The main goal of the adaptive sampling (i.e., PLS-OSF) is to apply PLS feature extraction for
reducing the dimension of the actual features (e.g., FECT , FUT and FECT−UT ) by projecting into
extracted feature space. After-which, adaptive sampling is performed directly in the extracted
feature space to build suitable I/O pairs for building optimal training model by using lowest
number of training samples during offline phase. Though, PLS-OSF [4] has been directly applied
for ECT and UT data separately, a modified version of PLS-OSF is needed for dealing with
ECT-UT data. The following steps describe the updated PLS-OSF sampling strategy.

i Initialization- Generate N0 number of initial samples by uniform GRID (i.e., full factorial
grid) sampling approach. A matrix of defect parameters p = (p(n);n = 1, ..., N0) having

(N0 ×Q) dimension is formed, where p(n) is the n-th row of p. By using ΦECT {.} and

ΦUT {.} generate ECT and UT data respectively, and fill the
(
N0 × FECT−UT

)
feature

matrix χECT−UT =

{(
χECT−UT

)(n)
;n = 1, ..., N0

}
.

ii PLS Feature Extraction- In this step, the FECT−UT = 3K dimensional ECT-UT data

are reduced to J number of extracted features where, J << FECT−UT . A
(
N0 × FECT−UT

)
matrix

(
χECT−UT

)′
is built by subtracting to each f -th (f = 1, ..., FECT−UT ) column of

χECT−UT its mean value µf . Similarly, a (N0 ×Q) matrix p′ is built by subtracting to each
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q-th column of the parameter matrix p its mean value µq. Apply the PLS algorithm to

linearly decompose
(
χECT−UT

)′
and p′ as follows(

χECT−UT
)′

= TECT−UT × S + Y ; p′ = U × Z +G. (3)

TECT−UT =

{(
TECT−UT

)(n)
;n = 1, ..., N0

}
in Eq. (3) is the (N × J) matrix of χ-scores

[
(
TECT−UT

)(n)
=

{(
TECT−UT
j

)(n)
; j = 1, ..., J

}
]. It is obtained from

(
χECT−UT

)′
through

the
(
FECT−UT × J

)
weight matrix W [i.e., TECT−UT =

(
χECT−UT

)′
× W ]. Among

different iterative algorithms, we have used SIMPLS algorithm [17] to obtain the weight

matrix W . Y and G contain the
(
N0 × FECT−UT

)
and (N0 ×Q) residuals of the linear

decomposition while S and Z are the
(
J × FECT−UT

)
and (J ×Q) matrices of loadings. The

decomposition in Eq. (3) is aimed at maximizing the co-variance between the corresponding
columns of TECT−UT and of the (N0 × J) matrix of p-scores U . This guarantees all the
information about the ECT-UT data embedded inside χ′ (i.e., inside χ) is compressed into

T . Assign the number of training sample Niterative = N0 and construct an initial training

set D̂Niterative =

[{(
TECT−UT

)(n)
; p(n)

}
;n = 1, ..., Niterative

]
for the adaptive step.

iii Adaptive Sampling- Generate V candidate samples by p
(v)
cand =

(
p
(v)
cand,q; q = 1, ..., Q

)
through Latin Hypercube Sampling (LHS) strategy where v = 1, ..., V . An estimation
of the J-dimensional set of extracted features corresponding to each v-th candidate,(
T̃
ECT−UT
cand

)(v)
is retrieved by applying a multi-dimensional linear interpolator on

D̂Niterative . Select the optimal v = vopt candidate (i.e., p
(vopt)
cand ) from V such that

the minimum distance between the obtained extracted features
(
T̃
ECT−UT
cand

)(vopt)
and all

the available extracted features
(
TECT−UT

)(n)
(n = 1, ..., Niterative) within D̂Niterative

is maximized [i.e., vopt = arg (maxv=1,..., V {minn=1,..., N [dvn]})]. dvn is the Euclidean

distance between
(
T̃
ECT−UT
cand

)(v)
and

(
TECT−UT

)(n)
, which can be described by dvn =√∑J

j=1

{(
T̃
ECT−UT
cand,j

)(v)
−

(
TECT−UT
j

)(n)}2

.
(
χECT
cand

)(vopt)
and

(
χUT
cand

)(vopt)
associated to

the selected candidate sample are computed by utilizing ΦECT {.} and ΦUT {.}, respectively
and obtained the corresponding ECT-UT features

(
χECT−UT
cand

)(vopt)
. The set of extracted

features is obtained by
(
TECT−UT
cand

)(vopt)
=

{(
χECT−UT
cand

)(vopt)}′
×W . Update the training

set D̂Niterative+1 = D̂Niterative ∪
{(

TECT−UT
cand

)(vopt)
; p

(vopt)
cand

}
with Niterative = Niterative + 1.

iv Stop Criterion- The adaptive sampling step adds new sample iteratively until Niterative =
N (N is desired/feasible training size).

At this stage, an ε-SVR [12] has been utilized to train separately q-th set of I/O pairs

D̂N,q =

[{(
TECT−UT

)(n)
; p

(n)
q

}
;n = 1, ..., N

]
on the generated training set for each q-th

parameter (q = 1, ..., Q) of the crack. The m-th test sample
(
χECT−UT

)(m)
of FECT−UT ECT-

UT features associated to a previously-unseen crack parameter configuration p(m) is projected
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through W into the J-dimensional PLS -extracted features space [i.e.,
(
TECT−UT

)(m)
={(

χECT−UT
)(m)

}′
× W ]. Finally, the q-th crack parameter associated to

(
TECT−UT

)(m)
is

estimated (i.e., p̃
(m)
q ) by the corresponding trained model in online phase.

3. Numerical validation
The ECT probe and the UT probe collect their corresponding NDT data from 81 positions along
X directions with a step size of 0.5 mm and from 41 positions along Y directions with a step
size of 1 mm, respectively through a raster scan. Therefore, ECT (i.e., impedance variation
signal) and UT signals (i.e., reflected rays) are collected from K = 81 × 41 = 3321 number of
inspected points. Therefore, for a single crack configuration (i.e., sample), FECT = 2K = 6642,
FUT = K = 3321 and FECT−UT = 9963 actual features are treated. For having a valid
comparison, J = 20 most significant features are extracted from each of these higher dimensional
data sets by PLS feature extraction strategy. Different training sets (corresponding to three
different crack parameters) have been created by changing the crack dimensions within the
range lc ∈ [3.00, 10.00] mm, δc ∈ [0, 4.00] mm and φc ∈ [0, 90] deg. by PLS-OSF sampling
approach through utilizing ECT, UT and ECT-UT data separately. The initial and maximum
number of samples are chosen for N0 = 27 and N = 216, respectively. Figure 2 represents the
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Figure 2. Training samples mapped on (a)-(c) the crack parameter space, (d)-(f) the extracted
feature space for (a)-(d) ECT, (b)-(e) UT and (c)-(f) ECT-UT while N0 = 27, J = 2, N = 216.

distribution of the resultant training samples in the parameter space as well as in the extracted
feature space (for imaging purpose, the first 2 extracted features are considered) of all the data
sets (i.e., ECT, UT and ECT-UT). M = 1000 unknown samples for 3 crack parameters have
been generated by using LHS design and the corresponding 3 test sets of ECT, UT and ECT-
UT actual features are obtained. J = 20 features are extracted by projecting the test sets into
extracted feature space through the PLS weight matrix (e.g., obtained from the corresponding
ECT, UT and ECT-UT methods during training phase) for each test set. To partially consider
noise effects, Additive White Gaussian Noise (AWGN) has been imposed for different signal to
noise ratio (SNR) (e.g., [10, 20, 30, 40] [dB]) for blurring ECT, UT signals separately, obtain the
corrupted ECT-UT features and project to the extracted feature space. Normalized mean error



6

1234567890 ‘’“”

8th International Conference on New Computational Methods for Inverse Problems IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1131 (2018) 012012  doi :10.1088/1742-6596/1131/1/012012

(NME) described in [4] has been utilized for evaluating the inversion performance.
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Figure 3. NME vs. SNR representation for crack (a) length lc, (b) ligament δc and (c) angular
position φc estimation for N = 216, J = 20, M = 1000 through ECT, UT and ECT-UT data.
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Figure 4. Actual vs. predicted plots for M=1000 test configurations at SNR = 20 [dB], for
N = 216, J = 20, M = 1000 for crack (a)-(c) length lc, (d)-(f) ligament δc and (g)-(i) angular
position φc through ECT, UT and ECT-UT.

ECT signals are mostly corrupted for imposing noise and by combining ECT and UT signals,
we can improve the overall inversion performance. Fig. 3 (a) shows that lc estimation by using
ECT suffers on noisy data than UT, while on Noiseless test set by both ECT and UT have
shown similar prediction accuracy. On the other hand, crack ligament distance δc estimation
is showing lower prediction error for adopting ECT signals than UT signals for both noisy and
Noiseless test set (Fig. 3 (b)). Whereas, UT data shows lower NME than ECT data for
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angular distance φc estimation (Fig. 3 (c)). By combining both ECT and UT signals, ECT-UT
data fusion contains both information from ECT and UT signals. Whereas, applying PLS-
OSF sampling, we can retrieve most significant information from ECT-UT. As a consequence,
it improves the learning ability of SVR during training model development. Hence, ECT-UT
data fusion has shown higher prediction accuracy than ECT and UT data for all the cases
on noisy and Noiseless test sets. Fig. 4 shows the scatter plots of true vs. predicted crack
parameters obtained for N = 216 for noisy test set (SNR = 20 [dB]). Qualitatively, ECT-UT
data fusion provides better lc, δc and φc estimation than ECT and UT signals. Concerning real
time solution, it takes 0.03s for testing 1000 samples during online phase.

4. Conclusions
In this work, we have shown an innovative MP-LBE inversion strategy for crack dimension
and position estimation. Within the framework of LBE, PLS-OSF/SVR strategy has been
applied for solving a NDE problem by utilizing ECT signals, UT signals and ECT-UT data
fusion. By combining two different NDT methods, we first retrieved the variation of actual
ECT and UT signals for changing crack parameters. Applying adaptive sampling through PLS
feature extraction retrieves most significant information from the actual ECT-UT features that
improves the learning ability of SVR. ECT-UT shows better prediction accuracy than ECT and
UT methods separately for performing inversion on both noisy and noiseless synthetic test set.
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