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Abstract. This work presents a review of the recent Compressive Sensing (CS)-based 
computational methodologies when applied to the design and processing of antenna arrays. The 
arising inverse problems have been properly formulated in order to deals with the CS 
theoretical requirements. Two instances of array processing and design, namely the diagnosis 
of failed elements and the synthesis of clustered arrays, are proposed and validated by a simple 
numerical example.  

1.  Introduction 
In the last years the Compressive Sensing (CS) paradigm has been proposed as a promising and 
effective strategy for solving inverse problems in different research fields, from video/image 
processing to electromagnetics [1]-[3]. Starting from a reduced set of measurements, fewer than 
required from standard Nyquist based strategies, CS allows fast and reliable inversions, assuming the 
sparsity of the unknowns [1]. Anyway the use of CS in generic inverse problems is not trivial: the 
choice of the basis function used for the sparse representation of the unknowns is of non-negligible 
importance [3], and the problem matrix, linking the measurements to the unknowns, must satisfy the 
restrict isometry property (RIP) [3][4]. Unfortunately checking the RIP condition is not a simple task 
and in most of the cases it is computationally unfeasible. Indeed the problem must be properly 
formulated in order to comply with the CS theoretical requirements [2][3]. As instance, CS has been 
recently applied to free-space inverse scattering problems [5]-[8] by mans of Bayesian formulations, 
for the imaging of intrinsically sparse (i.e. pixel sparse) targets [5], and of scatterers that are sparse in 
transformed domains [6]-[8]. The effectiveness of CS methodologies in solving other electromagnetics 
related problems [2] has been effectively showed when applied to the synthesis of sparse arrays of 
antennas [9]-[17], considering linear [10], planar [11]-[14] and conformal geometries [16][17], and 
properly handling the complex nature of the unknown variables [10]. CS has been also successfully 
exploited for the estimation of direction-of-arrivals (DoA) signals [18]-[21], thanks to the intrinsic 
sparsity of the DoAs in the angular domain, considering single [18][19] and multiple snapshot 
techniques [20][21], and a multi-resolution scheme for real elements arrays affected by mutual-
coupling [19].  

In this work the recent advancements of CS as applied to inverse problems arising in array 
processing and synthesis are reported. More in detail, the diagnosis problem of failures in planar 
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phased arrays [22]-[25] and the design of contiguously clustered linear arrays [26] are formulated and 
validated with a set of numerical examples. Finally the limitations and the future trends of CS applied 
to array processing related inverse problems are discussed as well.  

2.  Mathematical Formulation 
Let us consider an array of P  elements having barycenters  ppp yx ,r , Pp ,...,1  weighted by a set 

of complex coefficients  Ppwp ,...,1; w  related to the corresponding radiated pattern as: 

 
AwF        (1) 

 

where in (1) 
  PpNnea npnp vyuxjk

np ,...,1,,...,1;  
A  and   NnvuF nn ,...,1;, F , are the 

measurement matrix and the pattern samples vector, respectively, 2k  is the wave number,   

being the wavelength, nnnu  cossin  and nnnv  sinsin , Nn ,...,1 , are the direction cosines, N 
being the number of pattern samples. In the following, according to the above formulation, two 
different inverse problems related to array processing, namely the diagnosis of array faulty elements  
and the design of unconventional clustered array architectures, are described and formulated in order 
to allow the use of CS in solve the arising inverse problems. 

 

2.1.  CS-based Diagnostic of Planar Phased Arrays 
Let us assume that fN  elements of the array under test (AUT) are failed and the goal is to precisely 

estimate such failures starting from the knowledge of N measured samples of the respective far-field 
pattern. The vector of the AUT excitations can be mathematically described as 
 

 wDw diagAUT       (2) 
 
where D  is an PP  diagonal matrix whose diagonal values are equal to pppd  , Pp ,...,1 , 

where if 1p  the p-th element is correctly working, while if 1p  the p-th element is failed 

( 0p  if the p-th element is totally failed). The radiated AUT far-field patter is then acquired in N 

sampling points   NnvuF nn ,...,1;,
~~

F   as: 

 

eAwF  AUT~
     (3) 

 
where   Nnvue nn ,...,1;, e  is the vector of the measurement zero-mean Gaussian noise. Assuming 
the knowledge of the reference, fault-free array pattern F , the difference between the AUT array 

pattern and the one radiated by the reference array , FFF
~

 , can be obtained as the pattern radiated 

by an array fed by the differential weights AUTwww  . According to the above formulation, the 
addressed failure diagnosis problem is then reduced to the estimation of  w  starting from a set of N 

field measurements F
~

 satisfying the following relation 
 

ewAF       (4) 
 
It is worth noting here that if PN f  , thanks to the above formulation, the vector w  turns out to 

be sparse. Consequently, thanks to the linear relationship between the measured far-field samples, F
~
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and the differential weights vector, w , the inverse problem (4) can be solved using the single-task 
Bayesian CS (ST-BCS) propsed in [22] for linear layouts, after properly transforming the complex 
matrix equation into a real-one [2][3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.  Design of Clustered Linear Arrays by means of a TV-CS Strategy 
Dealing with the design of clustered linear arrays by means of a CS-based scheme, let us formulate the 
synthesis problem as a pattern matching with respect to an available reference fully-populated (i.e. 
non-clustered) array. Let us consider a linear array of P elements placed along the x-axis, contiguously 

partitioned into Q sub-arrays. The vector of the equivalent array weights  Ppw p ,...,1; w  contains 
the P  equivalent excitations coefficients expressed as: 

 



Q

q
qc

SUB
qp Ppww

p
1

,...,1      (5) 

where in eq. (5) SUB
qw Qq ,...,1  are the complex excitation weights of the Q  sub-arrays, 

  PpQcp ,...,1,,1 c , is the clustering vector that univocally defines the sub-array membership of 

the p-th element to the q-th sub-arrays by means of Q integer numbers, and qc p
  is the Kronecker 

delta function ( 1qc p
  if qcp  , otherwise 0qc p

 ). Let us assume that the reference array far-field 

pattern F  is known, the goal is to estimate the equivalent array excitations w  satisfying the pattern 
matching condition 

   


N

n

P

p

ujkx
pn

npewuF
1

2

1
      (6) 

 
with   reasonably small. It is worth noting here that if  the array is partitioned into PQ   

contiguous clusters, the vector w  turns out to be a constant function with few discontinuities. 
Consequently the gradient of the vector w  defined as: 
 

 1 ppp wwww      (7) 

 
turns out to be a sparse vectors with all zero entries, except for the p indexes corresponding to the 
elements that are located at the border of the clusters. Accordingly, the pattern matching problem (6) 
can be solved using a CS-based approach. More in detail the Total Variation CS (TV-CS) method [6] 
can be directly applied in order to retrieve TV-sparse solutions effectively fitting the proposed 
formulation. With respect to the state-of-art CS-based technique [26] the proposed method does not 

  
(a) (b) 

Figure 1. Numerical Examples (ST-BCS, 1264P , 1257N  152fN ) – (a) Array 
excitation amplitude and (b) the array normalized power pattern.
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need to define a-priori the size of the clusters, allowing a complete exploration of the existing 
solutions.  
 
 
 

3.  Numerical Examples 
As a first numerical example of array diagnosis using a CS approach, a planar circular array of 

1264P  isotropic sources equally spaced by 5.0 yx dd  is considered. The excitations amplitude 

have been obtained according to a Taylor distribution ( 3n , 25SLL [dB]) as shown in Fig. 1(a), 
radiating the far-field power pattern reported in Fig. 1(b). The test case considers an AUT in which a 
subset of elements is totally failed while all the other elements are correctly working (i.e. 0p  or 

1p , Pp ,...,1 ). The number of failed elements is equal to 152fN  (i.e. a percentage of failure 

equal to %12 ) as shown in Fig. 2(a), reporting the differential weights w . Starting from the 

knowledge of 1257N  noisy samples of the far field radiated by the AUT, the failure configuration 
has been estimated using the ST-BCS solver [22], and reported in Fig. 2(b)-(c). As can be seen, the CS 
method allows to estimate all the 152fN  failures with small deviations in terms of the amplitude 

for both the considered noisy levels [i.e. SNR=20 [dB], Fig. 2(b) and SNR=40 [dB], Fig. 2(c)]. Of 
course the percentage of failures that can be reliably estimated is limited, due to the sparseness of the 
solution enforced in solving eq. (4). A maximum number of failures recovered by the proposed ST-
BCS based method, has been estimated in the interval  %20%,16max χ  if reliable reconstruction 
must be guaranteed. In order to improve such limitation, the use of the MT-BCS approach [10] will be 
considered as a possible extension of the methodology, exploiting as instance, the correlation of the 
real and imaginary parts of the measured pattern values. It is worth noting that the proposed approach, 
according to the formulation reported in Sec. 2, can handle only pixel-like failures, consequently, 
future extensions will consider non-pixel like failures, such as clusters of failed elements complying 
with unconventional tiled architectures [27]. 

 
(a) 

  
(b) (c) 

Figure 2. Numerical Examples (ST-BCS, 1264P , 1257N  152fN ) – (a) The 
actual failures and (b)(c) the CS estimated failures considering noisy field samples with 
(b) 40SNR  [dB] and (c) 20SNR [dB].
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As a second numerical example a linear array of 20P  ideal isotropic elements, laying in the x-
axis equally spaced by 5.0xd  is considered. The goal is to find a clustered solution that minimize 

the matching with the reference array reported in Fig. 3(c) (Taylor, 6n , 20SLL [dB]). Figure 
3(a) shows the clustering configuration corresponding to the solution provided by the TV-CS solver 
[Fig. 3(b)], which allows to reduce the number of control points to 13Q . Figure 3(c) compares the 
power pattern of the reference array with the TV-CS synthesized pattern. As can be seen the TV-CS 
pattern is very close to the reference with a non negligible simplification of the feeding network (i.e. a 
reduction of  %35  of amplifiers). Higher reduction percentages can be achieved when considering 

larger arrays. As instance, Fig. 4 shows the case of a 100P  elements array. Two different solutions, 
selected according to two different sampling rates, are shown in Fig. 4(a) ( 90N ) and Fig. 4(b) 
( 200N ), characterized by 25Q  and 33Q  clusters, respectively. The clustered amplitude 
coefficients are compared in Fig. 4(c) while the respective power patterns are reported in Fig. 4(d). As 
can be notice, the power pattern radiated by the 33Q  sub-arrays solution shows negligible 
deviations from the optimal pattern, with a final reduction of %65χ  of control points. Instead, the 

25Q  solution allows a further simplification of the feeding network ( %75χ ) accepting the 
presence of slightly higher lobes in the side-lobe region [Fig. 4(d)]. Future extensions of the proposed 
approach include the possibility to handle planar array structures and, by exploiting suitable basis 
functions, to optimize the partitioning of tile-based modular arrays [27].  

 

 

4.  Conclusions 
In this work, a review of the main CS-based methodologies applied to inverse problems arising in the 
design and processing of antenna arrays, is reported. Two instances of inverse problems have been 
formulated in order to comply with the CS theoretical requirements, namely the diagnosis of failures in 
planar arrays and the design of contiguously clustered arrays, discussing the limitations and the future 

 
(a) 

  
(b) (c) 

Figure 3. Numerical Examples (TV-CS, 20P , 90N , 13Q ) – (a) The CS clustering 
configuration, (b) the reference and TV-CS excitations amplitudes and (c) the normalized 
reference and TV-CS synthesized power patterns. 
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trends of both techniques. Finally two illustrative examples are reported, validating the effectiveness 
of the proposed method.    
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