
ORIGINAL PAPER

An eye-tracking study of feature-based choice in
one-shot games

Giovanna Devetag • Sibilla Di Guida • Luca Polonio

Received: 28 March 2013 / Revised: 18 February 2015 /Accepted: 20 February 2015 /

Published online: 26 February 2015

� Economic Science Association 2015

Abstract Previous experimental research suggests that individuals apply rules of

thumb to a simplified mental model of the ‘‘real’’ decision problem. We claim that

this simplification is obtained either by neglecting the other players’ incentives and

beliefs or by taking them into consideration only for a subset of game outcomes. We

analyze subjects’ eye movements while playing a series of two-person, 3 9 3 one-

shot games in normal form. Games within each class differ by a set of descriptive

features (i.e., features that can be changed without altering the game equilibrium

properties). Data show that subjects on average perform partial or non-strategic

analysis of the payoff matrix, often ignoring the opponent́s payoffs and rarely

performing the necessary steps to detect dominance. Our analysis of eye-movements

supports the hypothesis that subjects use simple decision rules such as ‘‘choose the
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strategy with the highest average payoff’’ or ‘‘choose the strategy leading to an

attractive and symmetric outcome’’ without (optimally) incorporating knowledge on

the opponent’s behavior. Lookup patterns resulted being feature and game invariant,

heterogeneous across subjects, but stable within subjects. Using a cluster analysis,

we find correlations between eye-movements and choices; however, applying the

Cognitive Hierarchy model to our data, we show that only some of the subjects

present both information search patterns and choices compatible with a specific

cognitive level. We also find a series of correlations between strategic behavior and

individual characteristics like risk attitude, short-term memory capacity, and

mathematical and logical abilities.

Keywords One-shot games � Eye-tracking � Focal points � Individual behavior �
Bounded rationality � Feature-based choice

JEL Classification C72 � C91 � D01 � D83

1 Introduction

Most theories of behavior in games are based on the two fundamental assumptions

of strategic thinking and optimization (Camerer et al. 2004): the former meaning

that players develop beliefs about the likely behavior of other players, the latter

implying that subjects best respond to these beliefs. Models that incorporate

bounded rationality (however defined) allow beliefs and choices to be both

heterogeneous and out of equilibrium, particularly before any learning process takes

place: i.e. in games that are played only once or in initial behavior in repeated

games. For example, models of limited cognition (Stahl and Wilson 1994, 1995;

Nagel 1995; Ho et al. 1998; Costa-Gomes et al. 2001; Bosch-Domènech et al. 2002;

Crawford 2003; Camerer et al. 2004; Costa-Gomes and Crawford 2006; Crawford

and Iriberri 2007a, b) typically assume that players vary in their ability to perform

iterated reasoning, and believe that other players are able to perform less steps than

themselves (Camerer et al. 2004). However, players are still assumed to form a

correct mental representation of the strategic situation at hand, and to apply forms of

strategic reasoning that allow them to form a model of the other player(s), however

imperfect and incorrect it may be.

However, isolated but important recent results seem to question the validity of

these fundamental assumptions. Costa-Gomes and Weizsäcker (2008) show that

choices are, on average, inconsistent with beliefs and subjects fail to best respond to

their own stated beliefs in roughly half the games being tested. Devetag and

Warglien (2008) show that subjects’ mental models are systematically (and

mistakenly) simplified, so as to reduce the game payoff structure from a mixed

motive to a pure motive one. In a series of dominance solvable guessing games,

Rydval et al. (2009) show that nearly two thirds of experimental subjects show

reasoning inconsistent with dominance, although a quarter of them actually do

choose dominant strategies. Using the eye-tracking, Arieli et al. (2011) show that
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subjects facing two lotteries often compare prizes and probabilities separately,

rather than extensively analyzing the whole structure of each lottery, as suggested

by expected utility theory. In Weizsäcker (2003), subjects behave as if they

underestimate their opponents’ rationality or ignore other players’ choices when

making their own decisions. Finally, it has been shown experimentally that some

subjects focus their attention unevenly across the information at their disposal

(Hristova and Grinberg 2005), while others collect information thoroughly (Brocas

et al. 2014).

The evidence cited above points at two strictly interrelated phenomena; first,

some players seem to ignore other players’ motivations and incentives, possibly to

simplify a choice problem that is perceived as cognitively demanding. Second,

players apply decision rules that do not involve orthodox strategic reasoning and

that are not based on a mental model that corresponds to the true game being played.

We hypothesize that in one-shot games, subjects best respond to a simplification

of the original decision problem, obtained either by ignoring the other players

motivations or by taking them into account only for a subset of all possible game

outcomes. Di Guida and Devetag (2013) show that it is possible to induce

systematic and predictable changes in players’ behavior by manipulating a game set

of descriptive features (i.e., features that can be changed without altering the game

equilibrium properties). They suggest that descriptive features provide attractive

solutions to subjects using boundedly rational decision rules. Only when these

features are removed, subjects exert more effort into thinking strategically, and in

some cases, choose Nash equilibrium strategies.

A recent approach to the study of gaming behavior aimed to shed light on

players’ strategic reasoning includes the use of process data. The analysis of

information search patterns, together with a classical analysis of subjects’ actual

choices, allows investigating the subconscious mechanisms at the basis of

strategizing. Techniques like mouse-tracking (Costa-Gomes et al. 2001; Johnson

et al. 2002; Brocas et al. 2014), eye-tracking (Knoepfle et al. 2009; Wang et al.

2010; Arieli et al. 2011; Chen et al. 2013 mimeo; Fiedler et al. 2013), and fMRI

(Bhatt and Camerer 2005) allow researchers to catch a glimpse of the cognitive

mechanisms driving human strategic behavior while keeping them subconscious,

and therefore avoiding the noise produced in the phase of ‘‘elicitation’’ (i.e. when

subjects are asked to explain verbally why did they act in a particular way).

In this paper, we analyze subjects’ eye movements (or ‘‘lookup patterns’’) when

playing the games presented in Di Guida and Devetag (2013) to test whether the

information search patterns subjects exhibit are more compatible with ‘‘boundedly

rational decision rules’’ or with the ‘‘best responding to beliefs’’ hypothesis. Our

data substantially confirm Di Guida and Devetag (2013) results. Analysis of lookup

patterns shows that subjects perform partial or non-strategic analyses of the game,

often ignoring the payoffs of the opponent. We also find a correlation between

choices and lookup patterns, but interestingly, even though choices are affected by

features, lookup patterns are neither affected by features nor by the game

equilibrium structure; they appear to be heterogeneous across subjects, but largely

invariant within subjects.
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Altogether, our findings strongly support the hypothesis that subjects in one-shot

games in normal form apply boundedly rational decision rules that are based on a

simplified model of the true situation.

2 Games, experimental design, and behavioral predictions

2.1 The games

As we are interested in initial behavior only, we implement a random rematching

scheme with no feedback (as in Costa-Gomes et al. 2001), in order to minimize

learning and ‘‘repeated game’’ effects. The payoff matrices used in the experiment

are listed in Table 1.

The basic games (see Di Guida and Devetag 2013) are: a game with a strictly

dominant strategy for the column player (henceforth, DomCol); a game without

pure strategy Nash Equilibria (noNe), a game with a single pure strategy Nash

Equilibrium but not solvable through iterated elimination of dominated strategies

(UniqNe), a modified Prisoners’ Dilemma (PD), and a Weak Link coordination

game (WL).

As in Di Guida and Devetag (2013), we are interested in the effects produced by

two descriptive features: the variance of the strategy giving the highest average

payoff to the player whose behavior we intend to observe (henceforth HA), and the

presence of an attractor (henceforth A). Manipulating its variance makes HA a safe

and moderately appealing strategy when the variance is low and a riskier but

tempting one when the variance is high. An attractor is any cell containing Pareto-

efficient and symmetric payoffs, located at the center of the matrix.1 Except in the

Weak Link game, our attractors are not equilibria. To identify both features’

separate and joint effects, we created a matrix for every possible combination of

features. Six matrices were therefore created for each base game, for a total of 30

matrices.

To facilitate our exposition, we refer to each matrix by the acronym identifying

the game type, and by two acronyms identifying its features: ‘‘A’’ means a matrix

with an attractor, ‘‘NA’’ a matrix without attractor, and ‘‘Low’’, ‘‘Medium’’, and

‘‘High’’ the three levels of variance of the strategy with the highest average payoff.

Since due to matrices’ construction constraints we are only interested in row players

behavior, all descriptions of features and matrices deal with the row player’s

perspective, unless otherwise specified. Given the structure of the matrices, we

assume that agents choosing the row containing the attractor do so because of the

attractor itself. Therefore, the row containing the attractor is labeled as ‘‘A

strategy’’. Same holds for the row giving the highest average payoff, labeled as ‘‘HA

strategy’’ (see Di Guida and Devetag 2013 for further details of the experimental

design).

1 In the Weak Link game all symmetric cells were positioned along the main diagonal from the highest to

the lowest payoff.
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All versions of each game are created by modifying cells’ content as little as

possible and by maintaining unaltered the pure strategy Nash Equilibria. In a few

cases, these changes added new Nash equilibria in mixed strategies. In extreme

cases, two matrices differed by a single cell. Except in one matrix (WL A Low), the

average payoff of the HA strategy remained invariant: only its distribution was

modified as to change the value of payoff variance. In DomCol, noNe, and UniqNe,

matrices without attractor are obtained by breaking the symmetry of payoffs and by

substantially reducing payoffs’ magnitude. For the PD we are obliged by the game

structure to eliminate the attractor by breaking payoff symmetry only, without a

significant reduction in payoff size. In the Weak Link, given that the attractor is the

payoff-dominant equilibrium, we simply move the corresponding cell out of the

main diagonal.

We keep our strategies of interest separate whenever possible. To avoid spurious

effects due to the position of the strategies in the matrix, we always keep the

position of every strategy fixed in the different versions of the same game, the only

exception being the WL game.2

2.2 Experimental design and implementation

The experiment was conducted at the EPL lab (Experimental Psychology

Laboratory) of the University of Trento. As we are only interested in the row

players’ behavior, we collected eye-tracking data for row players only, and matched

each row player with a column player drawn at random from the pool of subjects

participating in the experiment in Di Guida and Devetag (2013). The pairings

differed across games. A total of 43 subjects were eye-tracked, all playing as row

player. Before the experiment started, a printed copy of the instructions was given to

the subject and read aloud by the experimenter. Control questions were adminis-

tered to assure that the mechanism of the experiment was understood.3

Subjects were explicitly told that they would play in the role of row player, and

that their choices would be matched with those of other subjects that had played

before. It was specified that the payment would be calculated based on the outcomes

of 3 randomly selected games. The mechanism of random selection was made

explicit.

After the eye-tracking machinery was calibrated, subjects played four practice

games. The order in which the 30 matrices were displayed was random and differed

across subjects. Once the experiment was concluded, subjects had to complete a

series of questionnaires aimed at measuring cognitive abilities, personality traits,

and degree of risk aversion. The experiment lasted on average less than 1 h, and

average payment was 9.20 Euros (the average payment was calibrated according to

the EPL lab guidelines). In each round, subjects had to select their preferred strategy

2 Results in Di Guida and Devetag (2013) suggest that the position of a strategy does not affect its

frequency.
3 Detailed description of the experimental procedure and of the machinery calibration phase, translated

copy of the instructions, and control questions are reported in Appendices A and B in supplementary

materials.
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by pressing the keys ‘‘1’’, ‘‘2’’, or ‘‘3’’, on the keyboard. No feedback was given

until the end of the experiment.

2.3 Eye-tracking data

At each round, subjects are presented with a 3 9 3 payoff matrix. For each matrix,

18 areas of interest (AOIs) are defined, one for each of the 18 payoffs (Fig. 1). Each

cell contains two areas of interest, centered on the row and column players’ payoff.

The AOIs of the row player are numbered from 1 to 9, whereas those of the column

player from 10 to 18. AOIs do not overlap, nor cover the matrix area entirely, but

only half of it approximately. In this way, AOIs include only eye-movements whose

interpretation is not ambiguous. Although a large part of the matrix is not included

in any AOIs, the majority of fixations observed (90 %) fell inside the AOIs.

For each subject and round, we record four types of variables. The first two are

how many times (fixation count) and for how long (fixation time) a subject fixes a

point inside (but also outside) an AOI. Since these two variables are usually strongly

correlated, we will mostly refer to the first variable (fixation count or simply

fixation). The third and fourth variables are the number and type of transitions, i.e.

the eye-movements from one AOI to the next.

Considering all possible pairs of AOIs and assuming that each pair can be

connected by two transitions (one for each direction), the number of transitions that

Fig. 1 Summary of the AOIs and transitions of interest; the numbers in italic represent the labels of the
different Areas Of Interest (AOI), from 1 to 18. Transitions are represented as follows: Row Player by
row (RPr): thin continuous line with arrows; Column Player by row (CPr): dashed line with arrows; Row
Player by column (RPc): thin continuous line with circles; Column Player by column (CPc): dashed line
with circles; Infracell (INF): thick continuous line
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could be potentially observed equals 324, including transitions within the same

AOI. However, only a subset of these is informative for our purposes. We consider

the following five types of transitions—where AOI R corresponds to the AOIs of

row players’ payoffs and AOI C to those of column players’ payoffs (see Fig. 1):

Row Player by row (RPr), i.e. eye-movements from one AOI R to another AOI R

lying in the same row; Column Player by row (CPr), i.e. eye-movements from one

AOI C to another AOI C lying in the same row; Row Player by column (RPc), i.e.

eye-movements from one AOI R to another AOI R lying in the same column;

Column Player by column (CPc), i.e. eye-movements from one AOI C to another

AOI C lying in the same column; Payoffs infracell (INF), i.e. eye-movements from

an AOI R to an AOI C or vice versa lying within the same cell. Transitions that

remain within the same AOI are excluded.

According to our hypotheses, transitions can be interpreted as information search

patterns, and are closely related to the decision rule adopted. Therefore, the analysis

of transitions can provide insight about the type of rules used by the decision

makers. For example, exploring the matrix exclusively or prevailingly through RPr

transitions (Row Player by row) indicates a subject ignoring other players’ choices.

In a case like this, the decision maker may be calculating the average expected value

of all strategies available in order to pick the one with the highest value, a process

that requires summing up (and therefore observing) payoffs by row. RPc transitions

(Row Player by column) are instead compatible with the detection of simple

dominance, while CPr (Column Player by row) with the detection of dominant

strategies for the column player, i.e., with performing one step of iterated

dominance. CPc transitions (Column Player by column) might be used if looking for

the strategy giving the column player the highest average payoff [behavior

consistent with level-2 players, as suggested by Costa-Gomes et al. (2001), and by

Bhatt and Camerer (2005)]. Finally, INF is compatible with a choice process based

on the analysis of matrix cells, induced either by the presence of salient outcomes

such as focal points or attractors, or by decision rules that focus on payoffs sums

[like the ‘‘Altruistic’’ type, see Stahl and Wilson (1994, 1995), Costa-Gomes et al.

(2001)], or payoffs differences [fairness, inequality aversion, competitive prefer-

ences,… see Rabin (1993); Fehr and Schmidt (1999); Bolton and Ockenfels (2000)].

2.4 Behavioral hypotheses

We formulate the following research hypotheses: first (Hypothesis 1: ‘‘features-

choices relation’’) we assume that players are influenced by the presence of

‘‘intuitive’’ and ‘‘easy’’ solutions; therefore, strategy HA when its variance is low,

together with strategy A (leading to an attractive outcome) will be chosen more

often than the equilibrium strategy, with the share of HA decreasing as its variance

increases. Only when these features are absent, more players will switch to the

equilibrium strategy.

Second (Hypothesis 2: ‘‘features-lookup patterns relation’’), we assume that

subjects on average perform partial or non-strategic analyses, paying attention only

to specific subsets of the matrix elements. The attention depends both on game type

and on feature composition, besides presumably varying across players. For
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example, we expect the ‘‘attractor’’ cell to attract more attention than the remaining

cells, ceteris paribus.

Finally (Hypothesis 3: ‘‘lookup patterns-choices relation’’), we assume a

correlation between choices and lookup patterns. In particular, players who select

HA tend to focus on their own payoffs (ignoring the opponents’ payoffs) and are

more prone to analyze the matrix by row; players who select A are more prone to

Fig. 2 a Observed frequencies of row 1 choices. b Observed frequencies of row 2 choices. c Observed
frequencies of row 3 choices. Frequencies in matrices with attractor are marked with a continuous line,
those in matrices without attractor with a dashed line
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analyze the game by cell (i.e., they present more infracell saccades) and pay

relatively more attention to the attractor cell; players who select EQ perform on

average a more complete game analysis (Costa-Gomes et al. 2001).

Hypothesis 2 states that subjects’ use of decision rules is based on selective

information processing, that is, a simplified model of the ‘‘true’’ situation.

Hypothesis 3 states that specific choices are the result of specific decision rules,

which are based on the aforementioned selective information processing. Both

hypotheses are important to discriminate between explanations of behavior based on

‘‘best-reply-to-beliefs’’ and those based on the use of decisional shortcuts that rely

on mental simplifications of the real decision problem.

3 Results

3.1 Behavioral data

Before moving to the lookup pattern analysis, we present an overview of choice

data. Three eye-tracked observations had to be discarded because of low calibration

quality. Therefore the subject pool is composed of 43 subjects in the aggregate

analysis and 40 subjects in the lookup pattern analysis. A data overview is provided

in Fig. 2. The difference in choice distributions between matrices with and without

attractor is evident, as well as the effect due to the increase in the variance of

strategy HA. A comparison between choice distributions in the A Low and in the

NA High version of each game by a Bhapkar test reveals that differences are always

significant at the 5 % level, indicating that the presence or absence of features

affects choices. In all games except the Weak Link,4 the frequency of the attractor

strategy is higher in matrices with an attractor than in those without it. According to

a binomial test, in the games DomCol, noNe, and UniqNe, the difference in choice

shares is always significant with p B .05 (except in UniqNe Middle where p = .07).

Also, according to a paired t test, the average frequency of HA in games where

variance is low is significantly higher than that in games where variance is high

(p = .001), confirming that an increase in variance reduces the appeal of the HA

strategy.

Overall, our Hypothesis 1 is confirmed, and the results in Di Guida and Devetag

(2013) successfully replicated. Our descriptive features create ‘‘easy’’ choices: a

safe and attractive strategy, and a strategy leading to a very attractive outcome for

both players. The attractor in our game matrices can be labeled as a behavioral

‘‘focal point’’.

4 In the WL NA matrices, the cell containing the attractor is not modified, but rows and columns are

shuffled to move the attractor to a less ‘‘evident’’ position. As already shown in Di Guida and Devetag

(2013), subjects’ behavior indicates that this is not sufficient to reduce the cell attractiveness.
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3.2 Overview of fixations

We only consider fixations longer than 100 ms, which have been proved a sufficient

threshold to discriminate between fixations and other ocular activities (Manor and

Gordon 2003).

Figure 3 shows the number of fixations by game type and by features

combination. It is noteworthy that, moving from left to right, i.e., shifting from

matrices with attractor to matrices without, and from low to high levels of variance

of HA, the total number of fixations increases, confirming our hypothesis that the

absence of attractive features makes a game harder to process. Notwithstanding this

general tendency, however, the distribution of fixations across games appears

markedly different. Some games (DomCol, noNe, and PD) are particularly sensitive

to changes in descriptive features, as shown by their fixations increasing by 50 % or

more from A low to NA high games. UniqNe seems less feature-sensitive since only

a slight increase in the number of fixations is observed, while the fixations of WL

are almost constant across different versions. Overall attention was very unevenly

distributed across the different elements of the game matrix. Fixations devoted to

AOIs from 1 to 9 (comprising a subject’s own payoffs) amount to 26,118, against

the 20,554 fixations dedicated to AOIs from 10 to 18. At the individual level, the

two distributions are significantly different by a Wilcoxon signed rank test

(p = .039). Hence, on average, subjects devote disproportionately more attention to

their own payoffs compared to their opponents’ payoffs, in line with what suggested

by choice data from previous experiments (Costa-Gomes et al. 2001; Wang et al.

2010).

Figure 4a reports the absolute and relative frequencies of fixations in the matrices

with (A) and without (NA) attractor, by cell. It is noteworthy that fixations in

matrices with attractor are always less, in absolute terms, than those in matrices

without attractor, except, as predicted, for the attractor cell. The two distributions,

however, look almost identical (again with the exception of the attractor),

suggesting that relative attention was invariant. Figure 4b shows the absolute and

relative frequency of fixations for each of the three variance levels of the HA

strategy by cell. The graph shows that each cell is always observed less frequently in

matrices with HA low variance than in those with medium and high variance.

Distributions are again invariant, suggesting that increasing HA increases the

amount of overall gazing time but does not per se change each cell relative

importance. As expected, the attractor is the most looked at cell.

3.3 Overview of transitions

Figure 4c and d report the absolute and relative frequency of transitions by type,

distinguishing between matrices with and without attractor (Fig. 4c), and between

different levels of HA variance (Fig. 4d). The figures show that the most frequent

transitions are RPr (Row Player by row) and INF (Payoffs infracell). The third most

frequent category is that of CPc transitions. The observation suggests that subjects

tend to compare strategies according to their average payoff (RPr and CPc), rather

than by looking for dominance relation (RPc and CPr). An equally frequent
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transition entails comparing payoffs within the same cell. Absolute frequencies of

transitions are higher for matrices without attractors, and they increase as HA

variance increases. Nonetheless, their relative frequency seems relatively unaffected

by the presence or absence of features.

Figure 4e shows how transitions are distributed across different games and

payoff matrices. As the graph shows, there is a clear and stable prevalence of RPr

and INF over all typologies of transitions in each of the 30 games, despite

substantial variations in absolute levels. Hence, the most frequently observed

information processing patterns look roughly similar across all games.

3.4 Features, choices, and lookup patterns

This analysis aims to verify whether a correlation may be found between subjects’

choices and their lookup patterns. In the experiment, a total of 40 subjects played 30

games each, for a total of 1200 choices. Of these, 40 % were HA choices, 17 % A,

15 % EQ, and 13 % EQ/HA.5 Table 2 shows the correlation results. Shaded

coefficients are those that resulted statistically significant at the 5 per cent level

according to a Spearman correlation test.

Several considerations can be drawn by looking at correlation data: HA choices

are positively and significantly correlated with RPr transitions (r = .47, eye-

movements that connect a player’s own payoffs by row) and are negatively and

significantly correlated with all transitions involving the opponents’ payoffs,

including INF transitions (r = -.46). Moreover, HA choices are also negatively and

significantly correlated with all AOIs from 10 to 18, i.e., all AOIs related to the

opponent’s payoffs. This evidence strongly confirms our hypothesis that players

who choose HA do so by employing a decision rule that prescribes to pick the

Fig. 3 Total fixations divided by game, by presence of attractor (A/NA), and by HA level

5 The others were: 9 per cent NA, 4 per cent COS, and 2 per cent DOM, see Table 1.
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strategy with the highest expected value ignoring the other players’ motivations, and

implicitly treating the strategic decision problem as an individual decision making

problem.

A choices (choices of strategies leading to the attractor), as predicted, are

positively and significantly correlated with INF transitions (r = .40), and with

transitions connecting column players’ payoffs by row (r = .46). A choices are also

positively and significantly correlated with the attractor cell, (R2, C2) and with a

subset of the opponent’s AOIs, namely AOIs 10 and 11, and 13 and 14,

corresponding to payoffs in the first and second row of the matrix. As assumed,

Fig. 4 a Absolute and relative frequency of fixations divided by cell, in matrices with attractor (A) and
without attractor (NA). b Absolute and relative frequency of fixations divided by cell, in matrices with
different variances of HA. c Absolute and relative frequency of transitions, in matrices with attractor
(A) and without attractor (NA). d Absolute and relative frequency of transitions, in matrices with
different variances of HA. e Absolute frequency of transitions, by game
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players who pick strategy A do take into account their opponent’s payoffs, but focus

their attention on a subset of possible game outcomes.

Choices of the equilibrium strategy (EQ) are positively and significantly

correlated with the following transitions: CPr (r = .35), RPc (r = .34), CPc

(r = .69), and INF (r = .46). They are positively and significantly correlated with

AOIs 3, 6, and 9, i.e., with the player’s own payoffs in the third column of the

matrix. Moreover, EQ choices are positively and significantly correlated with all

AOIs from 10 to 18, that is, AOIs corresponding to all opponent’s payoffs. In

addition, the correlation with all cells belonging to the third column of the matrix

(corresponding to the opponent’s choice in equilibrium) is likewise positive and

significant. This evidence strongly supports the idea that players who choose the

equilibrium strategy are by far the most strategic in the standard game-theoretic

meaning, processing the matrix according to eye-movements that suggest the search

for dominance (RPc if looking for a dominant strategy for themselves, CPr if

looking for a dominant strategy for the opponent) or for the strategy giving the

opponent the highest average payoff (using CPc transitions and behaving as a level-

Table 2 Correlation between choices (only the main categories were considered), transitions, and

number of fixations (by cell and by AOI)

Shaded coefficients are statistically significant at the 5 % level
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2 player), paying attention to the opponents’ payoffs for all possible game

outcomes, and to cells of the matrix which other player types typically neglect (like

the ones on the third column).

Correlations support hypothesis 3. Assuming that any information that is not

looked at by the decision maker cannot enter the decision process, we find evidence

that many players in one-shot games apply boundedly rational decision rules that

simplify the decision problem either by ignoring the opponents’ payoffs, or by

considering them only for a subset of all possible outcomes.6

3.5 Cluster analysis

To further investigate to what extent lookup patterns are correlated with choices, we

split our matrices into two equal-sized groups, use the first group to categorize

subjects according to their lookup patterns,7 then test whether the patterns observed

are correlated with the choices expressed in the second group of matrices.8 We only

use games DomCol, noNe, and UniqNe (as in these games the three features of

interest are separate) and randomly divide the resulting 18 games into two groups of

9 games each.

We perform a cluster analysis using the normal distribution of the five transition

types classified in Sect. 2.3 (RPr, RPc, CPr, CPc, INF). For this purpose, we used

the mixture model presented in Brocas et al. (2014) and proposed by Fraley and

Raftery (2002). Mixture models treat each cluster as a component probability

distribution. A bayesian approach was then used to choose among different cluster

numbers and statistical methods. As in Brocas et al. (2014), we considered a

maximum of nine clusters and ten possible models, and we choose the combination

that maximizes the Bayesian Information Criterion (BIC). With our data the BIC is

maximized at -356 by a ‘‘diagonal model, varying volume and shape’’ yielding 3

clusters.

Figure 5a shows the normalized proportions of the different transitions (RPr,

RPc, CPr, CPc, INF) that subjects belonging to different clusters employ to analyze

the games. Lookup patterns appear markedly different across clusters. In cluster 1

(10 subjects), agents focus entirely on their own payoffs, using mostly RPr

transitions. Subjects like these—neglecting the opponent’s payoffs—are expected to

choose HA, since they did not acquire the information necessary to locate the

equilibrium or the attractor. In cluster 2 (16 subjects), agents use mainly transitions

connecting the other player’s payoffs (especially by column). These subjects collect

information more carefully than those belonging to cluster 1, and the use of CPc

transitions suggests that they might be looking for the strategy giving the column

player the highest average payoff [behavior consistent with level-2 players, as

6 We also used Mediation Analysis to test whether lookup patterns are affected by features, and in turn

affect choices. Causality between presence of features and choices is significant, but no significant

relation is observed between features and lookup patterns..
7 Matrices: DomCol_A_low, DomCol_NA_low, Domcol_NA_hig, noNe_A_middle, noNe_A_high,

noNe_NA_middle, UniqNe_A_middle, UniqNe_NA_low, UniqNe_NA_middle.
8 Matrices: DomCol_A_middle, DomCol_A_high, Domcol_NA_middle, noNe_A_low, noNe_NA_low,

noNe_NA_high, UniqNe_A_low, UniqNe_A_high, UniqNe_NA_high.
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suggested by Costa-Gomes et al. (2001), and by Bhatt and Camerer (2005)]. In the

18 games we are using for the cluster analysis, the best reply to a column player

choosing HA is always EQ, and this is what we expect subjects belonging to cluster

2 to choose. Lastly, in cluster 3 (14 subjects) agents devote considerable attention to

the other player’s payoffs, but use many more infracell transitions than any other

cluster. The large use of CPr transitions suggests that subjects might be looking for

dominant strategies for the opponent, while the use of infracell transitions suggests

that they might be also looking for cells resulting attractive for both players. These

lookup patterns depict a row player carefully considering how to reply to the two

most likely strategies the column player might adopt: whether choosing a dominant

strategy or trying to coordinate. We expect these subjects to choose A whenever the

attractor is present and EQ otherwise.

Figure 5b reports the proportions of HA, A/NA, and EQ/QES choices for each

cluster. The figure confirms the relationship between transition types and choices:

Fig. 5 a Boxplot summarizing the individual normalized proportion of different transitions, by cluster.
b Boxplot summarizing the individual proportions of HA, A/NA, and EQ/QES choices, by cluster
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players in cluster 1 analyze their own payoffs by row and select HA almost

exclusively (89 % HA, 7 % A/NA, and 4 % EQ choices, on average). Players in

cluster 2 use mostly CPc transitions and show the highest frequency of EQ choices,

together with a minor proportion of HA and A/NA (44, 26, and 29 % on average,

respectively). Cluster 3 shows the largest use of infracell transitions and the highest

number of A/NA choices (49 % on average), followed by HA and EQ choices (32

and 20 % respectively). In cluster 3, players mostly choose A when the attractor is

present (65 % of the times, in 5 out of 9 games), and switch to another strategy

when the attractor is removed (30 % of NA choices in the remaining 4 games).

3.6 The cognitive hierarchy model applied to our data

Games like ours, built so that the use of different decision rules would lead to

different choices, naturally suggests testing predictions of type-based or level-k

models. Because of its tractability, its single parameter (corresponding to the

average reasoning level of the subject sample), and of other specific characteristics,9

we decided to test the Cognitive Hierarchy model. In this model (Camerer et al.

2004) subjects are divided into different strategic categories according to their level

of sophistication. Each subject assumes to be more sophisticated than the others, and

chooses her strategy as the best response to a distribution of opponents (distributed

according to a Poisson) ranging from level 0 to level k-1, where k is the level of

sophistication of the subject herself. Costa-Gomes et al. (2001), Bhatt and Camerer

(2005), and Brocas et al. (2014) define the pattern of information acquisition

employed by players exhibiting different levels of strategic thinking when playing

normal form games. In line with these researches, we expect level-0 players to

mostly ignore the information at their disposal and level-1 players to focus entirely

on their own payoffs, using RPr transitions to calculate the expected value of each

strategy or RPc to look for dominance relations. Level-2 players analyze thoroughly

the payoffs of both players; more specifically, they are expected to use CPc and CPr

transitions to draw considerations about the opponent’s behavior, and RPc in order

to choose their best response once the probable choice of the opponent has been

singled out (as well as to look for a possible dominant strategy). For players of

higher levels we expect a mixture of all the transitions connecting the payoffs of the

same player; however, for no one we expect to observe infracell transitions.

We estimate s on the same games used for creating our clusters and then compare

the Cognitive Hierarchy predictions with the clusters we obtained. We estimated the

parameters by choosing the value that minimizes the mean square deviation (MSD)

between observed and estimated frequencies. The parameter value that best fits the

observed choices in the nine games of interest is s = 0.34, which implies that 28 of

our subjects should behave as level-0 (71 %), 10 as level-1 (25 %), and 2 as level-2

(4 %). We also obtain 3 clusters, but our subjects’ lookup patterns are only partially

compatible with those predicted by the Cognitive Hierarchy model. Subjects in

Cluster 1 are behaving as level-1 subjects, i.e. they focus almost entirely on their

9 As specified in Camerer et al. (2004), other level-k models make implausible predictions in some

games and exhibit increasingly irrational expectations.
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own payoffs (in the first set of games on average 95 % of the transitions are either

RPr or RPc) and choose strategy HA almost exclusively (in the second set of games,

on average, 89 % of the choices corresponds to HA). Also, the number of subjects

belonging to Cluster 1 is the same predicted by the Cognitive Hierarchy model for

level-1 subjects.

Subjects in Cluster 2 behave in a way compatible with level-2 subjects (i.e. they

use mostly CPc and CPr transitions: on average 32 % and 16 % respectively), but

for the large number of infracell transitions (19 %). Moreover, 16 of our subjects

belong to Cluster 2, while only 2 were predicted by the model. Lastly, for s = 0.34,

A/NA choices should never be made by level-2 subjects other than by error, while

we observe (on average) 26 % of A/NA choices.

The most intriguing behavior is the one exhibited by subjects belonging to

Cluster 3, where agents use every type of transition with equal frequency (34 %

connecting their own payoffs, 30 % connecting the opponent’s payoffs, 36 %

infracell) and select every possible strategy, albeit with a strong preference for

A/NA (49 % on average). Such an extended use of every transition type and strategy

might be compatible with level-3 (or higher) subjects. However, the Cognitive

Hierarchy model does not allow for subjects of any level to use infracell transitions

and in order to have that many subjects of level-3 or higher we should have almost

no level-0 and level-1 subjects. Could subjects in Cluster 3 be ‘‘refined’’ level-0

subjects, who do not simply choose randomly all the time, but look for attractors and

select them whenever present while switching to random when no attractors are

available? We tend to exclude this possibility, given that subjects with such an

unrefined strategy would be expected to devote less time and attention to the game

structure than subjects of higher levels. On the contrary, subjects in Cluster 3 use

only slightly less transitions in each game than subjects in Cluster 2 (on average

26.2 against 27.9) and much more than subjects in Cluster 1 (11).

This contrast between apparently unsophisticated choices (as suggested by the

Cognitive Hierarchy parameter estimation) and sophisticated and stable information

search patterns supports our hypothesis that subjects approach the game with a clear

decision rule in mind and switch to a different one when the preferred one is not

applicable, rather than modify their strategic sophistication across games. Our results

partially challenge and partially support the level-k and type-based approaches. On

the one hand, they challenge the models by showing that subjects do not consistently

behave according to a specific cognitive level (or type). On the other hand, they

support the models by showing that subjects behave consistently in games sharing

the same features. Our findings, hence, suggest that a type-based approach is indeed

appropriate, but that each type should allow subjects to apply different strategies to

different game types (as identified by features). In other words, in order to use level-k

or type-based models to predict behavior in certain games, the parameters should be

estimated not on generic game classes, but on games sharing features.

3.7 Cognitive and personality traits

In this section we report the most relevant results of correlation tests (Spearman)

among variables related to strategic behavior (choices and eye-movements) and a
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series of variables that should capture cognitive and personality traits likely to

matter in the strategic task at hand (For a summary of complete results as well as a

detailed explanation of the tests, see Appendix C in supplementary materials).

After the experiment, subjects were asked to complete a questionnaire

containing: an immediate free recall working memory test (Unsworth and Engle

2007), a Wechsler Digit Span test for short memory (Wechsler 1987; Walsh and

Betz 1990), the Cognitive Reflection Test (Frederick 2005), the Holt and Laury Risk

Aversion test (Holt and Laury 2002), a test of Theory of Mind (Baron-Cohen 2004),

and some cognitive and personality questionnaires (Rydval et al. 2009).

Several interesting findings emerge. First, risk aversion (as measured by the H&L

lottery test) is positively and significantly correlated with transitions of the RPr type

(r = .37), suggesting that players who are more risk averse tend to process their

own payoffs by row, a behavior compatible with the choice of HA.10 Risk aversion

is also negatively correlated with equilibrium choices (r = -.43). The Wechsler

Digit Span test measures short term memory capacity (for details see Walsh and

Betz 1990): we observe that scores in the digit span test (where a high score

indicates high short term memory capacity) are positively correlated with the

number of EQ choices (r = .37), suggesting that subjects who pick equilibrium

strategies are on average more capable of processing information. The score in the

digit span test is also positively correlated with transitions that connect column

players’ payoffs (CPr r = .35; CPc r = .53), and transitions that connect row

players’ payoffs by column (RPc r = .54). Besides, there is a positive and

significant correlation between individual score in the digit span test and all the

AOIs that concern the other players’ payoffs, as well as all the AOIs of the row

player located in the third column (the column that in 18 out of 30 games

corresponds to the equilibrium choice). Finally, the test is also positively correlated

with a subject’s strategic IQ,11 confirming the importance of short term memory

capacity in strategic reasoning and strategic ‘performance’ (r = .46). The strategic

IQ is also positively correlated with EQ choices (r = .80), while negatively

correlated (r = -.35) with HA choices.

Of the various tests presented in Rydval et al. (2009), an interesting finding

regards the Math Anxiety test (a small score indicates a relaxed feeling towards

math), which is positively correlated with A choices (r = .40) and negatively

correlated with EQ choices (r = -.31, p-value = .053). The Sensation Seeking test

(where a small score indicates a risk seeking attitude) is negatively correlated with

A choices (r = -.35).

The above findings support the conclusion that the ability to correctly incorporate

the other players’ incentives and motivations into ones own decision making

process is strongly correlated with measures of individual capacity to process

information as well as with some personality traits; in particular, short term memory

10 The lack of a significant correlation between risk aversion and number of HA choices is most likely

due to the fact that players, being risk averse, end up not selecting HA when its variance is high or

medium. Hence, this finding strongly confirms the relevance of the risk factor in inducing a choice based

on a strategy average payoff.
11 Following Bhatt and Camerer (2005), we calculate each subject’s ‘strategic IQ’ simply as his or her

expected payoff.

Eye-tracking study of one-shot games 197

123



constraints seem to be able to explain a relevant part of the observed heterogeneity

in game playing. Overall, these findings suggest that off-equilibrium choices in a

variety of games may be a matter of bounded rationality rather than non-standard

preferences or wild beliefs.

4 Discussion and conclusion

In this paper we extend the analysis started in Di Guida and Devetag (2013) by

investigating the relationship between features, information search patterns (inferred

from analysis of eye-movements), and choices. As previously shown (Costa-Gomes

et al. 2001; Knoepfle et al., 2009; Wang et al. 2010; Chen et al. 2013 mimeo; Brocas

et al. 2014; Stewart et al., 2015 mimeo), our subjects’ information search patterns are

highly correlated with their strategic behavior. However, and rather counterintu-

itively, while features have a direct influence on players’ strategic behavior, they do

not seem to affect information search patterns. Patterns appear to be relatively game

and feature-invariant, stable within subjects, but largely variable across subjects.

More specifically, we show that subjects’ choices in one-shot games are

susceptible to the influence of equilibrium-irrelevant features in systematic and

predictable ways. We posit that this effect can be adequately explained by assuming

that players use decision rules that are based on a simplification of the decision

problem, which may or may not involve neglecting the other player’s incentives.

We assume that the presence of an attractor and the presence of a strategy with an

attractive risk-return profile offer easy and convenient ‘‘solutions’’ to the game

being played. Only in the absence of such features may subjects engage in a more

complete game analysis and employ more strategic decision criteria, including

selecting the equilibrium strategy. Our hypotheses concern modal behavior only;

hence, we expect heterogeneity in choices, which we assume to be correlated with

heterogeneity in patterns of information analysis.

By studying subjects’ eye movements, we observe that most subjects analyze the

game only partially, paying disproportionately more attention to their own payoffs

as opposed to the other player’s payoffs (Costa-Gomes et al. 2001; Wang et al.

2010; Brocas et al. 2014), and to some of the matrix cells (e.g., the cell containing

the attractor) as opposed to other cells (Hristova and Grinberg 2005). We also show

that a non-negligible subset of subjects never look at the opponent’s payoff,

implicitly transforming the game into an individual decision making problem.

Contrary to our expectations (but as observed also in Stewart et al. 2015 mimeo),

our analyses of transitions reveal that lookup patterns are relatively game and

feature-invariant.

As hypothesized, we find strong correlations between choices and lookup

patterns. On average, the lookup patterns necessary for detecting dominance are the

least observed (CRr and RPc), suggesting that looking for dominance relations is not

at all an ‘‘obvious’’ and ‘‘intuitive’’ operation, as traditional game theory would

suggest. A cluster analysis based on eye movements supports this observation,

showing that subjects who focus on their own payoffs (some of which totally

neglecting the opponent’s payoffs) choose the strategy with the highest average
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payoff for themselves (acting as level-1 agents), whereas subjects who choose the

strategy leading to the attractor the most are also those who use transitions that

connect payoffs within cell the most. Finally, subjects who most often select the

equilibrium strategy (which in many of our games coincides with a level-2 strategy),

on average, perform a more complete game analysis, and in particular pay attention

to the other player’s payoffs by column, in line with a level-2 approach to the game.

Applying the Cognitive Hierarchy model (Camerer et al. 2004) to our data, we

show that only some of the subjects present both information search patterns and

choices compatible with a specific level of reasoning and that our feature-based

approach gives a reasonable explanation for the large variance in parameter values

observed. These findings, together with the results in Di Guida and Devetag (2013)

on the application of the model in Costa-Gomes et al. (2001), suggest that in order

to use level-k, and type-based models to predict subjects’ behavior it is necessary to

estimate their parameters on games that share features.

Finally, part of the heterogeneity observed can be explained by differences in risk

attitudes and in short term memory capacity, in line with previous results on game

playing (Devetag and Warglien 2008; Rydval et al. 2009).

It is important to stress that the decision rules driving our subjects’ choices are

presumably not the only ones at work in one-shot games. In fact, more than pinning

down the specific choice criteria employed, our study aims to show that players may

apply decision rules which (1) are based on an incomplete/imperfect model of the

strategic situation at hand, and (2) are context-dependent; more specifically, they are

sensitive to features of the game other than its equilibrium properties. Moreover, we

believe heuristic-based behavior extends well beyond the games presented here and

that deciding on the basis of a risk-return calculation is common in many games.

Attractors, as defined here, can be present in many games: for example, both the

payoff-dominant equilibrium in the stag hunt game and the mutual cooperation

outcome in the Prisoner’s Dilemma are attractors. Likewise, players may pick

dominant strategies in dominant-solvable games not because they recognize the

dominance relation (in fact, eye-movements compatible with the mental operation

of checking dominance relations are rarely observed in our database), but because

by definition these strategies have the highest average payoff.
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