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An analytical model is used to investigate the resonant behavior in a semi-closed channel. 
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one-dimensional model as a function of three dimensionless parameters, representing 
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cross-section convergence, friction and distance to the closed boundary. Arbitrary along
channel variations of width and depth are accounted for by using a multi-reach approach, 
whereby the main tidal dynamics are reconstructed by solving a set of linear equations 
satisfying the continuity conditions of water level and discharge at the junctions of the 
sub-reaches. We highlight the importance of depth variation in the momentum equation, 
which is not considered in the classical tidal theory. The model allows for a direct charac
terization of the resonant response and for the understanding of the relative importance of 
the controlling parameters, highlighting the role of convergence and friction. Subsequently, 
the analytical model is applied to the Bristol Channel and the Guadalquivir estuary. The 
proposed analytical relations provide direct insights into the tidal resonance in terms of 
tidal forcing, geometry and friction, which will be useful for the study of semi-closed tidal 
channels that experience relatively large tidal ranges at the closed end. 

Keywords: Tidal resonance; amplification; tidal channel; analytical model. 

1. Introduction 

The tides in semi-closed estuaries, such as the Bay of Fundy, Gulf of California and 
Bristol Channel, are among the strongest in the world, offering potential for tidal 
energy generation by installation of tidal power barrages. It is therefore of practical 
importance as well as of theoretical interest to understand how the construction of a 
barrage would alter the tidal characteristics of the area and hence affect the aquatic 
environment and the potential use of water resources [Xia et al., 2010; Zhou et al., 
2014]. In addition, it is important to understand the tidal response of an estuary 
to external changes (e.g. channel dredging, dam or weir construction, and sea level 
rise), which is closely related to navigation, design of coastal engineering works and 
estuarine environment. 

Exceptionally high tidal ranges are primarily due to tidal resonance occurring 
when the natural period of oscillation in these systems is close to the dominant tidal 
period. Tidal wave amplification is also enhanced by convergence of channels [e.g. 
Friedrichs and Aubrey, 1994; Savenije, 2005, 2012]. Although the natural resonant 
period can be accurately determined by means of numerical models [e.g. Fang and 
Heaps, 1978; Greenberg, 1979; Zhong et al., 2008; Cerralbo et al., 2014; Liang et al., 
2014], the cause-effect relationships underlying the observed tidal behavior (e.g. the 
geometric effect on wave propagation and resonance) cannot be explicitly detected 
by single realizations of numerical runs. To this aim, analytical relationships are 
valuable tools that provide a direct insight. In addition, analytical models usually 
require a minimum amount of data, and provide explicit estimates of integral quan
tities (e.g. tidal amplitude, velocity amplitude, wave celerity and phase lag) without 
having the need to reconstruct them from temporal and spatial series. 

Several solutions have been proposed in the context of one-dimensional (1D) 
models to provide insight into the propagation of a tidal wave in a semi-closed 
channel for different estuary shapes [e.g. Taylor, 1921; Hunt, 1964; Bennett, 1975; 
Robinson, 1980; Prandle and Rahman, 1980; Prandle, 1985; Rainey, 2009; van Rijn, 
2011; Toffolon and Savenije, 2011; Winterwerp and Wang, 2013]. Most researchers 
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sought solutions described by functions that are valid for the entire estuary (we term 
this kind of approach as 'global'), often assuming a constant (linearized) friction term 
along the estuary. Taylor [1921] was one of the first to derive analytical solutions in 
semi-closed estuaries with width and depth varying linearly along the channel axis. 
He adopted a standing wave solution, which coincides with a frictionless estuary 
where there is no net transport of energy into the channel (since the water level 
and velocity are out of phase by 90°) and obtained the tidal amplitude as a Bessel 
function. Taylor's method was further developed by Bennett [1975] and Rainey 
[2009] by using the general solution of the tidal wave, including both incident and 
reflected waves, which enables the tidal wave to transport energy landward. However, 
their models did not take account of the frictional dissipation, resulting in a standing 
wave that is caused by the superposition of an incident and reflected wave. Later the 
frictional effect was included in an analytical solution by Robinson [1980], building 
on the works by Taylor [1921] and Bennett [1975]. The analytical solutions derived 
by Hunt [1964], Prandle and Rahman [1980], and Prandle [1985], who used different 
geometric schematizations, have large similarities with Robinson's approach with 
regard to linearization of the friction term and the exploitation of Bessel functions 
to describe the results. Similarly, van Rijn [2011], Toffolon and Savenije [2011] and 
Winterwerp and Wang [2013] proposed analogous analytical solutions for estuaries 
with convergent width and constant depth. Alebregtse et al. [2013] investigated 
the influence of a secondary channel on the resonance characteristics of the tidal 
wave in a main channel, but assumed a constant cross-section. Although Prandle 
and Rahman [1980] did take consideration of a variable depth in the continuity 
equation, they still assumed a constant friction factor (indicating a constant depth) 
in the momentum equation. 

To gain additional insights into the vertical-longitudinal distribution of tidal 
currents, many other researchers derived two-dimensional (2D) width-averaged ana
lytical solutions making use of perturbation analysis [e.g. Ianniello, 1979; Chernetsky 
et al., 2010; Schuttelaars et al., 2013]. Analogously, 2D depth-averaged models can 
be used to investigate the tidal dynamics in the longitudinal-transverse plane [e.g. 
Li and Valle-Levinson, 1999; Roos and Schuttelaars, 2011; Roos et al., 2011]. On the 
basis of simplified geometry and flow characteristics, some researchers even derived 
three-dimensional (3D) analytical solutions to describe the tidal motions in a semi
closed channel [e.g. Winant, 2007; Jiang and Feng, 2014; Ensing et al., 2015], or in 
a system of connected basins [e.g. Waterhouse et al., 2011]. However, these models 
(2D or 3D) have to assume several simplifications in the geometrical description of 
the system and to include further parameterizations (e.g. for vertical eddy viscosity). 

This study aims at providing an analytical tool to describe resonance in a semi
closed convergent channel, so we develop a 1D model as the simplest formulation 
that allows for reproducing the main tidal dynamics (i.e. a first-order solution). 
It has been shown that the analytical solutions to the 1D Saint Venant equations 
for tidal dynamics in an infinite channel can be cast in the form of a set of four 
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implicit equations for tidal damping, velocity amplitude, wave celerity (or speed) 
and phase lag in terms of two model parameters describing the friction and channel 
convergence [see Toffolon et al., 2006; Savenije et al., 2008; Cai et al., 2012]. Similarly, 
here we demonstrate that the hydrodynamics in a semi-closed tidal channel can 
also be obtained by solving a set of implicit equations, which provide insights into 
the physical relation between the main tidal dynamics and model inputs (i.e. tidal 
forcing at the estuary mouth, length of the estuary, channel convergence and bottom 
friction). 

In the next section, we present the model formulation. In Sec. 3, the analyti
cal solutions for a single reach (with constant depth) is presented. Subsequently, 
we reformulate the solutions in implicit form using dimensionless parameters and 
account for along-channel variation of depth by using a multi-reach approach where 
the main tidal dynamics along the channel are reconstructed by solving a set of lin
ear equations satisfying the internal boundary conditions at the junctions of these 
sub-reaches. In Sec. 4, the resonance behavior in a convergent semi-closed channel 
is presented. In Sec. 5, the analytical model is subsequently applied to the Bristol 
Channel and in the Guadalquivir estuary, distinguishing the main tidal constituents 
M2 and S2, and the resonance behavior in these two tidal channels is discussed. 
Finally, conclusions are drawn in Sec. 6. 

2. Formulation of the Problem 

2.1. Geometry and governing equations 

We consider a semi-closed tidal channel of length Le that is forced by one predom
inant tidal constituent with tidal frequency w = 27r /T, where T is the tidal period 
(e.g. rv12.42h for a M2 tide). The water level is imposed at the seaward mouth of 
the channel, while a no-flux boundary condition is ensured at its head. 

As the tidal wave propagates into the estuary, the signals of water level and 
velocity are characterized, respectively, by celerity CA and cv, amplitude TJ and v, 
phase <P A and <Pv. Figure 1 shows the geometry of the idealized tidal channel and 
a simplified picture illustrating the periodic oscillation of water level and velocity. 
Assuming that the flow is concentrated in a main rectangular cross-section, we seek 
solutions for water level and velocity for the case of convergent cross-sectional area 
A (an overbar denotes tidal average) and width B, described by: 

A= Aoexp(-xja), B = Bo exp( -x/b), (1) 

where x is the longitudinal coordinate positive in landward direction, A0 and Bo 
are the values of cross-sectional area and width at the estuary mouth (x = 0), 
respectively, and a, b are their convergence lengths. It follows from the assump
tion of rectangular cross-section that the tidally averaged depth h is given by 
h = ho exp( -x/d), where ho = Ao/ Bo is the tidally averaged depth at the estu
ary mouth and d = ab/(b - a) is the convergence length of depth. The possible 
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Fig. 1. Sketch of the tidal channel displaying the basic notation [after Savenije et al., 2008]. 

influence of storage area (e.g. tidal fiats) is quantified by the storage width ratio rs, 
defined as the ratio of storage width Bs to tidally averaged width B (i.e. rs = Bs/ B, 
see Fig. 1). 

The cross-sectionally averaged continuity and momentum equations (one
dimensional Saint Venant equations) in a channel with gradually varying cross
section can be written as [e.g. Toffolon and Savenije, 2011]: 

ah ah au hUdB 
rs-a +U-a +h-a +-=--d =0, t X X B X 

(2) 

au au az 
8t + u ax + g ax + gj = o, (3) 

where U is the cross-sectionally averaged velocity, Z the free surface elevation, h = 
h + Z is the depth, g the gravity acceleration, t is the time, and 

(4) 

is the dimensionless friction term, with K the Manning-Strickler friction coefficient. 
The latter parameter describes the effective friction, including some factors of diffi
cult quantification, in addition to the usual sediment roughness, like the additional 
drag resistance due to bed forms, the influence of suspended sediments [e.g. Winter
werp and Wang, 2013; Wang et al., 2014], and the possible effect of lateral storage 
areas [e.g. Savenije, 2005, 2012]. Therefore, K is often considered as a parameter of 
the model to be calibrated against observations. 

2.2. Linearization and controlling parameters 

In order to pursue an analytical approach and obtain simple solutions, we linearize 
the governing equations by assuming that nonlinear products can be neglected in the 
governing equations [e.g. Toffolon and Savenije, 2011]. We linearize the friction term 
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by using a standard approach [Lorentz, 1926; Zimmerman, 1982] for the quadratic 
velocity and assuming a constant depth in the friction term (4), so that the linearized 
friction coefficient r is introduced: 

8 gv 
r - - -----:-= 

- 37r K2Ti4/3 . gj = rU, (5) 

In Eq. (5), vis a reference maximum velocity scale. The velocity amplitude v (strictly 
varying with x) is usually chosen as the typical velocity scale, i.e. v = v. In general, 
an iterative procedure is needed to determine the correct friction factor r because v 

is an unknown parameter [e.g. Toffolon and Savenije, 2011; Roos and Schuttelaars, 
2011]. 

The effect of nonlinearities can be important in many estuaries [e.g. Friedrichs 
and Aubrey, 1994; Alebregtse and de Swart, 2014], especially for large values of the 
amplitude-to-depth ratio. Moreover, overtides can be produced (such as M4 from 
direct self-interaction of M2) that produce a distortion of the wave shape. Although 
these effects can be directly reproduced by numerical models, here we neglect 
them following an analytical approach, which provides a complementary insight 
into the dynamics of resonance. In fact, mathematical relationships have a general 
validity that goes beyond the information gathered by a set of single numerical 
realizations. 

We observe that linearized forms of Eqs. (2) and (3) can be combined to form 
a single, second-order differential equation for either Z or U. In principle, sim
ple analytical solutions are only possible if the coefficients in the derived differen
tial equation are constant, which implies a constant depth (and linearized friction) 
[e.g. van Rijn, 2011; Toffolon and Savenije, 2011; Winterwerp and Wang, 2013]. 
Otherwise, the solutions have to be formulated in terms of Bessel functions in 
order to account for variable depth in the continuity equation, but still assumed 
a constant friction factor in the momentum equation [e.g. Prandle and Rahman, 
1980]. 

It was demonstrated by Toffolon and Savenije [2011] that the hydrodynamics in 
a semi-closed estuary are controlled by a few dimensionless parameters (defined in 
Table 1) that depend on geometry and external forcing but are independent of the 
resulting hydrodynamics (hence they are defined as independent): (o = rJo/ho the 
dimensionless tidal amplitude (at the seaward boundary), 1 = co/(wa) the estuary 
shape number (representing the effect of cross-sectional area convergence), xo the 
friction number (describing the role of the frictional dissipation) and L; the dimen
sionless estuary length (where the asterix indicates a dimensionless parameter), with 

rJo the tidal amplitude at the seaward boundary, co = J gho/rs the reference wave 
celerity in a prismatic frictionless channel, and £ 0 = coT the tidal wavelength 
in a prismatic frictionless channel. It is noted that we adopt a slightly different 
length scale with respect to Toffolon and Savenije [2011], the ratio between them 
being 271". 
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Table 1. Dimensionless parameters. 

Independent 

Tidal amplitude at the mouth 

(o = 'T/o/ho 
Friction number at the mouth 

xo = rsco(og/ K who ( 
2 -4/3) 

Estuary shape 
1 = co/(wa) 

Estuary length 
L:=Le/Lo 

Dependent 

Tidal amplitude 
( ='rf/h 

Friction number 

x = rsco(gj ( K2w~13) 
Velocity number 

tL = vj(rs( co) 
Damping number for water level 

OA = cod'rf/('rfwdx) 
Damping number for velocity 

8v = codvj(vwdx) 
Celerity number for water level 

AA = cofcA 
Celerity number for velocity 

AV = co/cv 
Phase difference 

¢ = ¢v- ¢A 

The main dependent (i.e. affected by the resulting hydrodynamics) dimension
less parameters are also presented in Table 1, and include: the actual values of 
dimensionless tidal amplitude ( and friction number x, the velocity number J.L 

(the ratio of the actual velocity amplitude to the frictionless value in a prismatic 
channel), the celerity number for elevation AA and velocity >.v (the ratio between 
the frictionless wave celerity in a prismatic channel and actual wave celerity), 
the amplification numbers for elevation 8A and velocity 8v (describing the rate 
of increase, 8A (or 8v) > 0, or decrease, 8A (or 8v) < 0, of the wave amplitudes 
along the estuary axis), and the phase difference between velocity and elevation 
¢ = ¢v- ¢A· 

Different ways of presenting the linearized solution for tidal wave propagation are 
available in literature [e.g. van Rijn, 2011; Toffolon and Savenije, 2011; Winterwerp 
and Wang, 2013]. In the following analysis, we refer to the approach proposed by 
Toffolon and Savenije [2011], which is summarized in Appendix A. 

3. Tidal Dynamics in Semi-Closed Channels 

3.1. Analytical solution 

Toffolon and Savenije [2011] derived simple implicit relationships for the main depen
dent dimensionless parameters (J.L, 8 A, 8v, AA, >. v, ¢) in a semi-closed estuary. In 
Appendix A, we elaborate these further and derive a new set of explicit relations as 
functions of 8A and AA: 

(6) 
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.xA- x8A 
.Xv = 82 + _x2 , 

A A 

2 8~ +.X~ 
J.L = 1+x2' 

8A + XAA 
tan(4>) = .X ~8 , 

A-X A 

(7) 

(8) 

(9) 

where Eq. (8) is an implicit function of J.L through the friction parameter X = 
8J.Lx/(37r). Substituting x into Eq. (8), a quadratic equation for J.L2 can be obtained, 
which gives the positive solution 

2 -1 + .)1 + 256x2 /(97r2 )(8~ + .x~) 
J.L = 128x2 1 (97r2 ) 

(10) 

Equations (6), (7), (9) and (10) allow us to directly estimate the main dependent 
parameters 8v, .Xv, J.L, 4> as functions of the other two dependent parameters 8 A and 
AA· Thus, the problem of determining the specific tidal dynamics is reduced to 
finding the solution for 8A and AA· 

3.2. Global solution 

The problem of specifying the parameters 8A and AA in semi-closed channels can 
be easily solved within a global approach (i.e. considering uniform properties along 
the whole channel). These parameters can be obtained as a function of friction, 
convergence and along-channel location by the following equations (the derivation 
is provided in Appendix A): 

8A = 1- R{A [1- 2 l } 
2 1 + exp(47rAL*)~~~j; ' 

(11) 

AA = c;s {A [1 - 2 l } , 
1 + exp(47rAL*)~~~~; 

(12) 

where A= V'Y2/4- 1 + ix, and L* = L:- x* is the distance to the closed end 
boundary. 

The set of Eqs. (6)-(9), with the addition of (11) and (12), represents a new 
consistent analytical framework for understanding the tidal dynamics in a semi
closed system. Table 2 shows the analytical solutions for the general case as well 
as for some special cases: infinite channel length (L * --t oo ), frictionless (x = 0, 
both with subcritical convergence, 'Y < 2, and supercritical convergence, "f ~ 2), 
and constant cross-section ('Y = 0). In particular, if L* approaches infinity, the set 
of Eqs. (6)-(9), (11) and (12) can be simplified and reduced to the analytical results 
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for an infinite channel without reflected wave [Toffolon and Savenije, 2011]. The 
equations are provided in Appendix B, together with those obtained by Cai et al. 
[2012] using the 'envelope method'. For the frictionless case (x = 0), the detailed 
derivation of analytical solutions can be found in Appendix C. 

The determination of the friction parameter x requires the knowledge of the 
unknown value of J.L (or v), which is obtained iteratively [Toffolon and Savenije, 2011]. 
This can be done by the following procedure: (1) assume x = x and compute J.L = 
IV*I using the analytical solutions presented in Sec. 3.1; (2) update x = 8J.Lx/(37r) 
and calculate a new value of J.L; (3) repeat the process until it converges. The above 
process usually converges in a few steps. 

3.3. Multi-reach approach 

It is interesting to realize that the Eqs. (6)-(12) can be defined in each position 
x* along the estuary. They consider the global dynamics along the reach of length 
L * that remains to the head of the estuary. Interpreting them as a series of local 
relationships opens the possibility to obtain a simple description of the effect of the 
landward boundary on the wave properties along the estuary. 

The tidal dynamics along estuary is affected by the longitudinal variation of the 
cross-section geometry (e.g. depth and friction) and by the reflected wave. Thus, we 
exploit a multi-reach approach [Toffolon and Savenije, 2011] that divides the whole 
estuary into sub-sections and solves a set of linear equations satisfying the internal 
boundary conditions (i.e. continuity of water level and velocity) at the junctions 
of the sub-reaches (see details in A.2). In principle, the proposed method is valid 
for arbitrary width and depth variations (not only exponential), even with strong 
longitudinal gradients. 

To demonstrate the ability of the analytical model to reproduce the main tidal 
dynamics in a semi-closed estuary, we compared the analytical solution against a 
fully nonlinear one-dimensional numerical model [Toffolon et al., 2006]. The numer
ical model uses an explicit MacCormack method and is second order accurate both 
in space and in time. Meanwhile, it exploits a Fourier analysis to extract the first 
tidal constituent (i.e. M2) since we only focus on the behavior of the main wave com
ponent. As a test case, we consider a semi-closed estuary characterized by (o = 0.2, 
ho = 10m, T = 12.42 h, b = 100 km, d = 160 km, K = 45 m 113s-1 , rs = 1. Dif
ferent channel lengths are considered between 20 km and 100 km. Figure 2 shows 
the analytically computed tidal amplitude and velocity amplitude compared with 
the numerical results: the analytical model is able to reproduce the fully nonlinear 
numerical results both qualitatively and quantitatively. 

3.4. Comparison among analytical models 

There exists many analytical theories for tidal hydrodynamics in a semi-closed tidal 
channel of various shape (constant, power or exponential) [e.g. Hunt, 1964; Ippen, 
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(a) (b) 

(c) (d) 

Fig. 2. Contour plot of the tidal amplitude TJ and the velocity amplitude v in a semi-closed estuary 
with variable depth as a function of the position and of the estuary length, for given values of 
(o = 0.2, ho =10m, T = 12.42h, b = lOOkm, d = 160km, K = 45m113s-l, rs = 1. Panels (a) 
and (b) present values of TJ and v for the analytical model, while panels (c) and (d) present the 
numerical results. 

1966; Prandle and Rahman, 1980; Souza and Hill, 2006; Toffolon and Savenije, 2011; 
van Rijn, 2011; Winterwerp and Wang, 2013]. The main differences among these 
solutions lie in the scaling method, the imposed boundary conditions, the geometric 
schematization and the way to linearize the friction term. It was demonstrated that 
all the linear analytical solutions for the tidal dynamics in an infinite tidal channel 
of exponentially converging width and constant depth [including those developed by 
Prandle, 1985; Friedrichs and Aubrey, 1994; Lanzoni and Seminara, 1998; Prandle, 
2003; Friedrichs, 2010] are in principle identical since they are solving the same 
governing equations while exploiting a linearized friction term [Cai et al., 2012; Cai, 
2014]. Similar conclusions can be made for the case of a semi-closed tidal channel, 
as pointed out by Winterwerp and Wang [2013]. For instance, we note that the 
wavenumber defined in the paper of Winterwerp and Wang [2013] is a complex 
number (see their Eq. (10)), where the real part represents the dimensional wave 
number w / c while the imaginary part represents the damping rate of tidal amplitude 

1650009-11 



H. Cai, M. Toffolon & H. H. G. Savenije 

d7]/(7]dx). We observe that this dimensional complex wavenumber corresponds to 
our dimensionless complex number wi (l = 1, 2) defined by Eq. (A.11) in Appendix 
A (scaled by co/w), except that the real part represents the damping factor 8A while 
the imaginary part represents the celerity number >.A. 

However, most of the solutions used a constant friction factor r (see Eq. (5)), 
which suggests a constant maximum velocity scale and average depth in the lin
earized friction term. In our approach, the performance of the analytical model 
is improved by using an iterative procedure to correctly determine the maximum 
velocity scale and exploiting a multi-reach approach to account for variable geom
etry along the channel axis. We note that Prandle and Rahman [1980] used power 
functions to account for both width and depth variations in the continuity equation, 
but still assumed a constant friction factor in the momentum equation. 

The analytical solution described by the set of implicit Eqs. (6)-(9), (11) and 
(12), is an extension of our previous solutions for an infinite tidal channel (see 
Appendix B). A special feature of this set of equations is that the relation between 
8v, >.v, J.L, ¢>,i.e. Eqs. (6)-(9), and 8A, >.A, can be interpreted as locally valid at each 
position (fixed x) along the channel, if the expressions (11) and (12) for the main 
dependent parameters 8A, >.A are taken as approximations for the dynamics in the 
landward part. The correct dynamics is reproduced by the multi-reach approach that 
accounts for along-channel variations of all geometrical and hydrodynamic variables 
(see previous Sec. 3.3). 

3.5. Tidal amplitude and wave celerity 

The main dimensionless parameters 8v, >.v, J.L and¢> are determined from Eqs. (6)
(10) as nonlinear functions of 8A and >.A. To illustrate the tidal dynamics, Fig. 3 
presents an example of the solutions for 8 A and >.A at the mouth of the estuary as 
a function of 1 and L:, for different values of X· 

Figures 3(a)-3(d) focus on 8A, representing tidal wave amplification: negative 
values of 8A refer to a longitudinal decrease of the amplitude (damping), while pos
itive values refer to amplification. It is worth noting that in a semi-closed estuary 
the damping number 8A varies significantly along the channel [e.g. Fig. 3(a)]. This is 
very different from the case of an infinite channel without wave reflection, where the 
condition 8 A = 0 may be approximately valid for the entire channel, thus making it 
possible to define the ideal estuary condition where friction is balanced by channel 
convergence [Savenije et al., 2008; Cai et al., 2012]. For lower values of friction and 
convergence [x and 1 tending to zero, see Fig. 3(a)], resembling the case of a fric
tionless prismatic channel, a strong variation of 8 A occurs as a function of length 
L: . The condition of no damping (indicated by the thick red lines) for a prismatic 
channel ( 1 = 0) corresponds with the usual resonant conditions at multiples of a 
quarter of the tidal wavelength (i.e. L: = j/4 with j = 1, 2, ... ). As will be clarified 
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Fig. 3. (Color online) Contour plots of the damping number for tidal amplitude 8A (a--d, > 0 
amplification, < 0 damping) and celerity number for elevation >.A (e-h, > 1 low celerity, < 1 high 
celerity) as a function of estuary shape number 1 and dimensionless estuary length L:, for different 
values of the friction number: (a, e) X= 0.1; (b, f) X= 1; (c, g) X= 2; (d, h) x = 5. The thick red 
lines indicate the values of 8A = 0 and >.A = 1. 

in the following section, even multiples (e.g. L: = 2/4,4/4, ... ) correspond to antin
odes, where the amplitude is maximum at the mouth. Conversely, odd multiples 
(e.g. L: = 1/4, L: = 3/4) correspond to nodes. At these lengths, slightly different 
values of L: may produce a sudden change of sign of 8A at the mouth with a sharp 
switch from positive to negative values. Moreover, the imposed amplitude at the 
mouth can be strongly amplified due to resonance. With increasing friction x, the 
tidal wave damping increases (lower negative values of damping number 8A), while 
convergence acts the other way around. When convergence is strong, the effect of 
the reflected wave becomes weaker and the tidal dynamics becomes more similar to 
an 'apparently standing wave' in an open ended estuary [Jay, 1991; Friedrichs and 
Aubrey, 1994; Savenije et al., 2008]: the wave is not a formally standing wave gen
erated by the superposition of incident and reflected waves; rather it is an incident 
wave that mimics a standing wave having a phase difference of ¢ = 90° between 
velocity and elevation and a wave celerity approaching infinity. The reason for this 
behavior is that in a strongly convergent estuary the reflected wave rapidly loses 
energy per unit width whereas the incident wave gains it. Friction intensifies this 
effect because the reflected wave loses its energy even quicker. 
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Figures 3(e)-3(h) show a similar picture for the celerity number AA. The higher 
its value, the lower is the wave celerity (c = co/>.A)· For straight channels with low 
friction ['Y ::= 0 in Figs. 3(a) and 3(e)] it is possible to recognize that the condition 
8A = 0 corresponds to maximum or minimum values of AA, and hence of J.L according 
to Eq. (10), with the maximum velocity occurring for L: = 1/4. Such a behavior 
is a result of resonance, as will be elaborated in the next section. The influence 
of convergence tends to move the system toward a standing wave configuration, 
where the wave celerity approaches infinity (>.A = 0). Figures 3(e)-3(h) also show 
the values of AA = 1 highlighted with thick red lines, which indicate that the wave 
celerity is the same as in a frictionless prismatic channel. On the other hand, the 
wave celerity decreases as friction increases. For large values of x [e.g. Figs. 3(d) 
and 3(h)], we see that the pattern of the celerity number AA is similar to that of the 
damping number 8A: AA = 1 almost corresponds to 8A = 0, which indicates that 
the system becomes similar to an infinite channel with negligible reflected wave. 

It should be noted that the three independent parameters/, x and L* are func
tions of frequency w. Hence Fig. 3 shows not only the amplification of tidal amplitude 
and the wave celerity or speed, but also the frequency response at a specific position. 
Similar results were presented by Prandle and Rahman [1980], but they described 
the tidal amplification/ damping by the ratio of tidal amplitude to that at a reference 
position (such as the head of the estuary) rather than the damping rate 8A used in 
our approach. 

4. Analysis of Resonance 

4.1. Response functions 

Previous studies on resonance behavior are mainly based on the response function 
of tidal amplitude in terms of location x and tidal frequency w, where the maximum 
or minimum value corresponds to resonance and is achieved for given eigenvalue of 
w (i.e. resonance frequency) and eigenvector representing the spatial structure of the 
resonance [e.g. Garrett, 1972; Ku et al., 1985; Godin, 1988, 1993; Webb, 2012, 2013, 
2014]. Garrett [1972] was one of the first to explore the resonance behavior in a 
tidal channel. He determined the resonant period of the Bay of Fundy based on the 
so-called 'Q factor' describing the energy dissipation near the resonance frequency 
in the response function. This method was further developed by Ku et al. [1985] 
including the nodal modulation of the M2 tide. Subsequently, Godin [1988, 1993], 
building on the linearized St. Venant equations, derived the 'Q factor' as whjr, which 
is the inverse of the dimensionless friction parameter x in our notation, i.e. Q = 1/x. 
Recently, Webb [2012, 2013, 2014] extended the analysis using complex values of 
tidal frequency and obtained new insights into understanding the tidal resonance. 
We realize that the previous studies exploiting 'Q factor' to determine the resonant 
period either used an oversimplified response function for tidal elevation [Garrett, 
1972; Ku et al., 1985] or did not account for the influence of channel convergence 
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[Godin, 1988, 1993] or required numerical results as inputs [Webb, 2012, 2013, 2014]. 
Conversely, in this paper, we analytically derived the amplified/ damping rates of the 
tidal amplitude &A and the velocity amplitude &v for given channel convergence /, 
bottom friction x and distance to the closed end L *, which can also be regarded as 
response functions of the system, since the independent parameters 1, X and L * are 
all functions of tidal frequency w. 

In the following sections, we investigate tidal resonance in a semi-closed estuary 
highlighting the importance of friction and channel convergence. The explicit con
sideration of these two elements is made possible for the first time thanks to the 
analytical formulation presented in the previous section. For sake of simplicity in 
presenting the results, here we focus on the cases with constant depth (d -too, thus 
a = b) where the analytical solution of the system (6)-(9), (11) and (12) can be 
determined at each distance from the head of the estuary L * = L: - x*. The same 
analysis could also be applied to a channel with a bottom slope (a =f. b) by means 
of the multi-reach approach presented in Sec. 3.3, which can be used for any type 
of along-channel depth variations. 

Pure resonance only occurs in a frictionless case. Considering water level, nodes 
are those points where the tidal amplitude is zero (rt = 0), while antinodes are 
those points where the tidal amplitude is maximum (hence &A = 0). Their position 
is indicated by the dimensionless distances L~~e and L:~inode' respectively, from 
the head of the estuary. Nodes and antinodes can also be defined considering the 
velocity amplitude. In this case we introduce the distance L~~de ( v = 0) and L:~inode 
(&v = 0). 

Nodes and antinodes are not properly defined in the frictional case. Real nodes 
(rt = 0, v = 0) no longer exist, but virtual nodes can be defined as the position where 
the amplitude reaches its minimum value, although different from zero. Antinodes, 
however, can be identified by the condition &A = 0 and &v = 0, corresponding to 
maximum amplitude. 

4.2. Frictionless case 

The solution for the frictionless case is obtained by setting X= 0. This implies that 
AA = 0 and hence J.L = &A (see Appendix C), so the antinode for tidal amplitude 
coincides with the node for velocity amplitude (L:~tinode = L~~de). The cases of 
supercritical convergence (I ~ 2) and subcritical convergence (I < 2) need to be 
distinguished [Jay, 1991; Savenije et al., 2008; Toffolon and Savenije, 2011]. Explicit 
solutions for the relevant parameters (&A, &v and J.L) are derived from Eqs. (6), (8), 
(11) and (12) in Appendix C for both cases. The analysis of the position of nodes and 
antinodes confirms well-known results, but for the first time allows for an explicit 
consideration of the effect of convergence on resonance. 

An example of the amplification produced by four different convergence rates 
is shown in Fig. 4. The local maximum values of rt (&A = 0) define the antinodes 

1650009-15 



H. Cai, M. Toffolon f3 H. H. G. Savenije 

15 r===;o:5l 

l:..:..::eJ 
10· 

5 

5 

I I: 

I 1: 
I .. \. 

\. 

0.1 

:/ ,.. 

(a) 

(c) 

/: 

0.3 

/ 

0.4 

0.4 

3.5 r==;2:5l 

3~· 

~ 2.5. 
§ 
s::::- 2 . 

1.5 ............. . ...... ~ ..-:' 
/. 

0.1 

(b) 

0.3 - .- -:- _:-;- .- ~ :-'" .. :-:--. :-: 

0.2 

0.1 

/: 

0.3 0.4 

;..,:· 

o~----~----~----~----~~ 
0 0.1 0.3 0.4 

(d) 

Fig. 4. Amplification for subcritical (a, c) and supercritical (b, d) convergence in a frictionless 
channel (X = 0) for different values of the estuary shape number: (a, b) longitudinal variation of 
tidal amplitude 7Ji and (c, d) damping number 8A. Other data: T = 12.42 h, Le = 200 km, 1JO = 1m, 
ho = 10m, rs = 1. 

(8A = 0), while nodes occur where the amplitude vanishes ("1 = 0), a condition 
that corresponds to vertical asymptotes of 8 A with a change of its sign. Figure 5 
summarizes the variation of the distance of the first node and antinode to the head 
as a function of estuary shape number 'Y. 

In the subcritical range, when the estuary shape number 'Y increases (stronger 
channel convergence), the first node and antinode for tidal amplitude (and hence 
the node for velocity amplitude) move seaward until disappearing when they reach 
the total length of the estuary [Fig. 5 for 'Y < 2, see also Figs. 4(a) and 4(c)]. 
Only the first antinode for velocity amplitude moves landward. The tendency for 
L~~de ----+ oo is approached asymptotically for the critical convergence ( 'Y = 2 in 
Fig. 5). The figure also shows that the well-known phenomenon that a frictionless 
channel resonates when it has a length of odd multiple of a quarter tidal wavelength 

1650009-16 



Resonance in Semi-Closed Tidal Channels 

2.5r;::::::==.::::::!i----.----...-------r'r-------r---~ 
-L'A 

lltxlt• 

-L'V 
"od' 
•A 

- - - L a11ti11ode . 

•v 
-- -L alllinude 

---~------~------~------~------
oL-__ ___,_ ___ _._ ___ ......_ __ ___. ___ ___._ __ ____J 

0 0.5 1.5 2.5 
Estuary shape number y 

Fig. 5. The influence of convergence "( on the dimensionless distance from the position of the first 
node or antinode to the head in the frictionless case. 

is only valid in a prismatic channel with a horizontal bed (L~~de ~ 0.25 for 'Y ~ 0 
in Fig. 5). 

Conversely, neither nodes nor antinodes for tidal amplitude exist for the super
critical case [Fig. 5 for 'Y > 2, see also Figs. 4(b) and 4(d)J. There only exists a single 
node for the velocity amplitude at the head of an estuary (L~~de = 0), as implied by 
the closed boundary at the head of the channel in any case. The position L:~inode 
decreases as 'Y increases, hence bringing the maximum of velocity amplitude closer 
to the head of the estuary in strongly convergent estuaries. Interestingly, the ana
lytical solution shows that the amplification decreases with increasing convergence 
[Fig. 4(d)J in the supercritical case, confirming the result found by Cai et al. [2012] 
for infinite channels. 

Figure 6 shows a dimensional plot of the frequency response of the first tidal 
amplitude node in frictionless estuaries with different convergence length and depth. 
For prismatic channels (b ~ oo), we see that L~ode approaches an asymptotic value 
which is one quarter of the tidal wavelength (i.e. Lo/4) for all frequencies. As the 
convergence length b decreases (larger 'Y), L~ode tends toward infinity, thus making 
resonant conditions virtually impossible. This condition corresponds to the case 
where the estuary shape number 'Y tends toward 2 (i.e. the critical convergence for 
frictionless case). Indeed, a resonant behavior is manifested only for not too strong 
convergence, because the reflected wave quickly loses its energy if the width increases 
rapidly in the seaward direction. It is also interesting to note that the transition 
between an approximately constant value of L~ode and the vertical asymptote occurs 
in a relatively limited range of value of the convergence length b. 
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4.3. Frictional case 

In the frictional case (X > 0), an explicit analytical solution for the position of 
nodes and antinodes cannot be found, because it requires an iterative procedure. 
We can determine the distance of the first virtual tidal amplitude node to the head 
by varying the length of the estuary L: and looking for a minimum value of the 
amplitude TJ at the mouth. Figure 7 shows how this distance, L~~de• varies as a 
function of 1 and X· We can see that the increase of friction moves the position 
of the first virtual node landward (shorter L~~de), while the channel convergence 
acts the other way around. Moreover, the resonance period Tr = Le/(coL~~de) is 
inversely proportional to L~~de• which suggests that friction tends to increase the 
resonance period of an estuary, while the channel convergence reduces it. In Fig. 7, 
the quarter wavelength case (L~~de = 0.25) is highlighted with a thick red line, 
which corresponds to a resonance period Tro = 4Le/ co in a prismatic channel with 
negligible friction (! = 0, x = 0). If channel convergence is stronger than friction, 
the resonance period is less than Tro (below the thick red line in Fig. 7); if friction 
is stronger than channel convergence, the resonant period is larger than Tro (above 
the thick red line in Fig. 7); if they are balanced, the resonance period is equal to 
Tro (the thick red line in Fig. 7). 
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Fig. 7. (Color online) Contour plot of the distance of the first tidal amplitude node to the head L~~de 
in the 1-x plane obtained by varying the length of the estuary L~. The thick red line indicates the 
quarter wavelength case (L~~de = 0.25), which is the theoretical solution for a frictionless prismatic 
channel. 

5. Tidal Reflection in the Bristol Channel and the Guadalquivir 
Estuary 

5.1. Application of the analytical model 

The analytical model presented in Sec. 3 has been applied to the Bristol Channel 
(U.K.) and the Guadalquivir estuary (Spain), where the geometric data (see Table 3) 
and tidal observations were obtained from Robinson [1980] and Diez-Minguito et al. 
[2012], respectively. The Bristol Channel is one of the largest estuaries in the UK, 
is characterized by a very large tidal range (whose simulation is challenging for a 
linearized model) and has repeatedly attracted scientific interest [e.g. Taylor, 1921; 
Rainey, 2009; Liang et al., 2014]. The Guadalquivir estuary is located in the south
west part of Spain and has significant socio-economic importance and environmental 

Table 3. Geometric characteristics and calibrated parameters used in studied estuaries. 

Correction 
a b d Bo ho Le K coefficient f 

Estuary Mouth (km) (km) (km) (m) (m) (km) (ml/3s-l) for s2 rs 

Bristol Ilfracombe 33.7 67 68 45110 33.1 129 54 3 1.2-1 * 
channel 

Guadalquivir Port of 60.3 65.5 760 795 7.1 103 46 5 1.5-1 
Bonanza 

Note: • A value of 1.2-1 means a linear reduction of the storage width ratio of 1.2-1 over the reach D-129 km. 
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issues. The shape (width and depth) of the estuary has substantially changed due to 
intensive human interventions (such as dam constructions and periodical dredging 
for navigational purposes), which impacted the tidal dynamics and its flow regime. 
However, only few studies have investigated the evolution of hydrodynamics along 
the Guadalquivir estuary [e.g. Garda-Lafuente et al., 2012; Diez-Minguito et al., 
2012; Wang et al., 2014]. 

The two case studies have been chosen to illustrate the performances of the ana
lytical approach because they present similarities in the width convergence ratio, 
but are characterized by a significantly different response to resonance. The main 
geometrical characteristics of the two estuaries are collected in Table 3. The width 
convergence length b in both estuaries is similar, but the cross-sectional area con
vergence in the Bristol Channel (1.5 < 1 < 3.5) is much stronger than that in the 
Guadalquivir estuary (0.7 < 1 < 0.9) due to significant depth convergence in the 
Bristol Channel (depth convergence is defined referring to exponential variations for 
simplicity, but the method can be applied also to the real bathymetry). The compar
ison of these two different estuaries allows us to explore the geometric effect on the 
resonance behavior. Tides in both estuaries are dominated by the M2 component 
(semidiurnallunar tide, with a period of 12.42 h), with 82 (semidiurnal solar tide, 
with a period of 12 h) being the second dominant tidal constituent. 

The tidal amplitude and phase of elevation computed by the analytical solutions 
are presented in Fig. 8, along with M2 and 82 tidal observations. The correspondence 
with observations is good for M2, while 82 can be obtained only by adjusting the 
friction term. As explained in Appendix D, a correction factor f has been applied 
to the coefficient r in Eq. (5) to account for the interaction of 82 with the dominant 
component: 

8 gv 
Tnew = fr = 37r (K/ ..[J)2"fi!13 · 

(13) 

The correction factor f accounts for the actual friction experienced by the minor 
constituents. In fact, in a linearized model the velocity amplitude used as a reference 
in the linearized friction coefficient r is mainly determined by the principal tidal 
component [e.g. Pingree, 1983; Fang, 1987; Inoue and Garrett, 2007; Cai et al., 
2015], so r differs from constituent to constituent when considering a combined 
tidal signal. 

One simple way to deal with this interaction is to modify the Manning-8trickler 
friction coefficient for the different constituents. We determined K for the M2 tide 
by calibrating the model against observations filtered on this harmonic period, since 
M2 is the dominant tidal constituent in both estuaries. Then, f has been calibrated 
with the observed 82 tide. The values of K and f are presented in Table 3 along with 
the assumed storage width ratio rs. We see that f = 3 has been used to reproduce 
the correct tidal dynamics for the secondary constituent 82 in the Bristol Channel, 
while f = 5 is adopted in the Guadalquivir estuary. The factor f is always larger 
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Fig. 8. Analytically and numerically calculated tidal amplitude and phase of elevation compared 
with observations for Mz (a, c) and Sz (b, d) in the Bristol Channel (a, b) and Guadalquivir estuary 
(c, d). 

than unity, and grows for increasing ratios between the amplitudes of the dominant 
and the secondary tidal components (see Appendix D). 

Note that the analysis presented in Diez-Minguito et al. [2012] with regard to 
the Guadalquivir estuary, based on a standard harmonic analysis, provides results 
of wave propagation over a complete frequency range, while here we mainly focus 
on the dominant semi-diurnal components (i.e. M2 and 82) aiming to reproduce 
the main tidal dynamics along the channel by means of an analytical method. For 
further details of the wave propagation of other tidal constituents, readers can refer 
to Diez-Minguito et al. [2012]. 

To examine the performance of analytical model, in Fig. 8 we also present numer
ical results obtained using the 1D numerical model [see Toffolon et al., 2006] making 
use of the same friction coefficients as in the analytical model. For the weaker tidal 
constituent 82, it directly follows from (13) that the corrected friction coefficient 
is expressed as K /..fl. The agreement between analytical and numerical results is 
satisfactory since the analytical solution is able to both qualitatively and quantita
tively reproduce the numerical results in the two estuaries. The difference between 
the numerical and analytical M2 results near the upstream boundary of the Bristol 
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Fig. 9. Longitudinal variation of the reflection coefficients Ill A and Wv for M2 (a, c) and 82 (b, d) 
tides in the Bristol Channel (a, b) and Guadalquivir estuary (c, d). 

Channel [see Fig. 8(a)] is somewhat unexpected, but probably due to the difficulty 
of the Fourier separation near the upstream boundary. 

Figure 9 shows the analytically computed longitudinal variation of the reflec
tion coefficients for tidal amplitude \ll A and velocity amplitude 'ltv (please refer to 
Appendix A for the precise definition) for both M2 and S2 tidal constituents in these 
two estuaries. The maximum reflection is of course reached at the closed end. We 
also note that the reflection for the velocity amplitude is bigger than that for the 
tidal amplitude (\ltv > \ll A) in both estuaries, but especially in the Bristol Channel 
near the mouth. In this estuary, the minimum of the reflection occurs approximately 
at 76 km from the mouth. Conversely, in the Guadalquivir estuary both reflection 
coefficients increase continuously along the estuary. 

It is worth noting that Diez-Minguito et al. [2012] adopted a linear analysis 
using a least squares fitting technique to derive the reflection coefficient for differ
ent tidal constituents. However, their method requires a simplified estuarine system 
where both the effects of friction and convergence are negligible. From Figs. 9( c) 
and 9(d), we observe that the reflection coefficient of semi-diurnal tides (M2 and 
S2) near the dam (x = 88km, a distance of 15km from the close end) is around 0.7, 
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which is much larger than the value 0.4 estimated in Sec. 4 in Diez-Minguito et al. 
[2012]. The deviation might be due to their assumption that a standard dispersion 
relationship between frequency and wavenumber (i.e. the one obtained for gravity 
waves in an infinite domain) holds also close to the boundary, while in our analysis 
the wavenumber is computed in each position along the channel and may vary sig
nificantly. On the other hand, for a greater distance of 70 km from the closed end 
(i.e. x = 47 km), the reflection coefficient predicted by Diez-Minguito et al. [2012] is 
very close to the analytical result (rv0.25 in both cases). The good correspondence 
at this position suggests that the dispersion relationship becomes more valid suf
ficiently far from the boundary. The proposed analytical method can be regarded 
as a useful tool to further understand the tidal reflection along the Guadalquivir 
estuary. 

5.2. Resonance behavior 

It is of interest to explore the resonance period in a semi-closed estuary since it pro
vides insights into the ability of an estuary to resonate in the presence of friction and 
channel convergence. The analytical model allows for considering the separate effect 
of the different tidal constituents in a computationally very efficient way and in a 
wide parameter space. Thus, it can be considered as a complementary approach to 
numerical models, which provide more accurate results, including nonlinear inter
actions, but are concerned with single realizations and yield aggregate dynamics, 
from which it is necessary to extract the information on single constituents. More
over, numerical models do not allow for recognizing the separate effect of direct and 
reflected waves propagating along the channel. 

In the present analysis, the condition for tidal resonance to occur in a channel is 
that the tidal amplitude at the head reaches its maximum value. Figures 10 and 11 
show how the main tidal parameters (including tidal amplitude TJ, phase difference 
</> between elevation and velocity, incident tidal amplitude TJI and reflected tidal 
amplitude TJR) develop in response to tidal forcing with period varying between 1 
and 40 h (with 0.5 h interval) at the estuary mouth in the Bristol Channel and the 
Guadalquivir estuary, respectively. We assume that the tidal forcing at the ocean 
boundary is constant and equal to the amplitude of the examined tidal component. 

In the Bristol Channel, the tidal amplitude at the estuary head reaches a max
imum value when T is approximately 12 h [i.e. resonance period, see Fig. 10(a)], 
which is close to the semi-diurnal periodicity. In Fig. lO(b), we see how the phase 
varies along the estuary axis with forcing of different periods. At the resonant period 
the phase reduces to a minimum value (i.e. 63°) around x = 58 km before it increases 
until 90° at the head of the estuary. The contributions of the incident and reflected 
waves to the tidal amplitude can be found from Figs. lO(c) and lO(d). The amplitude 
of the incident wave increases until a maximum value is reached around x = 68 km 
[Fig. lO(c)], which is due to the fact that the geometric amplification arising channel 
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(a) (b) 

(c) (d) 

Fig. 10. Contour plot of the main parameters in the Bristol Channel as a function of distance 
x and tidal period T: (a) tidal amplitude; (b) phase difference between elevation and velocity; (c) 
incident tidal amplitude; and (d) reflected tidal amplitude. The gray line represents the longitudinal 
development at the resonance period (i.e. 12 h) when the tidal amplitude at the head of the estuary 
is largest. 

convergence is stronger than frictional damping. On the other hand, we see that the 
amplitude of the reflected wave generally decays as it propagates from the head to 
the estuary mouth [Fig. 10(d)] due to the damping introduced by channel diver
gence and friction. In Figs. 10(c) and 10(d), we also note that the amplitude of the 
incident wave at the estuary head reaches its maximum at a tidal period of 17 h, 
while it is 16.5 h for the reflected wave, which is different from the resonance period 
of 12 h. This is due to the phase difference between incident and reflected waves. 

Figure 11 shows a similar picture for the Guadalquivir estuary, which tends to 
resonate at a period of 35 h (when tidal amplitude at the estuary head is the largest), 
and not close to the semi-diurnal periodicity nor the diurnal periodicity [Fig. ll(a)]. 
At semi-diurnal periodicity, the tidal amplitude reduces to its lowest value around 
x = 50 km, before the geometric amplification increases it further upstream. The 
phase at both semi-diurnal and diurnal periodicities is increased along the estuary 
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(a) (b) 

(c) (d) 

Fig. 11. Contour plot of the main parameters in the Guadalquivir estuary as a function of distance 
x and tidal period T: (a) tidal amplitude; (b) phase difference between elevation and velocity; (c) 
incident tidal amplitude; and (d) reflected tidal amplitude. The gray line represents the longitudinal 
development at the resonance period (i.e. 35 h) when the tidal amplitude at the head of the estuary 
is largest. 

axis until a phase of 90° is reached at the head of the estuary [Fig. 11 (b)]. Both the 
incident and reflected waves make considerable contributions to the tidal amplitude 
[Figs. ll(c) and ll(d)]. At the resonant period, the amplitude of the incident wave 
increases in landward direction while that of the reflected wave decreases in the 
opposite direction [Fig. ll(c)]. In contrast, the behavior of the incident wave at 
semi-diurnal periodicity is opposite, i.e. decreasing from the mouth to the head. 
This phenomenon is related to the relative importance of convergence (indicated 
by 'Y) and frictional dissipation (represented by x), since both 'Y and x are linearly 
proportional to the tidal period (see Table 1). The behavior of the reflected wave is 
similar to that in the Bristol Channel, i.e. decaying in seaward direction. 

6. Conclusions 

The analytical solution for linearized one-dimensional tidal hydrodynamics 
developed by Toffolon and Savenije [2011] has been used to explore the resonance 
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behavior in semi-closed channels with variable width and depth. We have refor
mulated the analytical solution in terms of equations involving the main tidal 
wave parameters (amplitude, amplification, celerity, phase lag). The resulting set 
of equations forms a consistent theoretical framework for describing the tidal wave 
propagation and its reflection due to a close end (e.g. tidal barrage or weir), as 
a function of two externally defined dimensionless parameters (representing fric
tion and cross-section convergence) and of the longitudinal coordinate (distance to 
the closed boundary). To account for the depth variations along the channel, we 
exploited a multi-reach technique, subdividing the total channel in multiple reaches 
and reconstructing the tidal dynamics by solving a set of linear equations satisfying 
the continuity conditions of water level and discharge at junctions of these sub
reaches. Unlike the classical tidal theory [e.g. Prandle and Rahman, 1980] assuming 
an effective drag coefficient (indicating a constant depth and velocity amplitude in 
the friction term), the proposed model allows for taking account of depth variation 
in the momentum equation, which is important when longitudinal depth variation 
is notable. 

We have highlighted the importance of channel convergence on the resonant 
behavior both with and without friction. Explicit analytical expressions for the posi
tions of nodes and antinodes have been derived for the water level and velocity when 
friction is negligible. For the frictional case, these positions can only be obtained 
numerically and represented in graphical form because an explicit solution cannot be 
derived. However, in those cases where a numerical solution of the set of equations 
for the tidal parameters is needed, the computational effort is absolutely negligible 
with respect to complete numerical simulations. 

The analytical approach relies on several assumptions, starting from the lin
earization of the governing Saint Venant equations, and hence the results cannot 
be as accurate as those of fully nonlinear numerical simulations. Nonetheless, the 
analytical approach has some important advantages with respect to numerical runs. 
First, equations are written in terms of clearly identifiable integral quantities (e.g. 
amplitude, phase, damping) that otherwise have to be reconstructed from numerical 
simulations by means of suitable algorithms. Second, wide ranges in the parameter 
space can be considered, while a general interpretation of the tidal behavior can 
be obtained from numerical simulations only by the sum of a large number of sin
gle runs. Third, the individual effects of tidal constituents that do not result from 
direct harmonic interactions (i.e. that are not overtides) can be analyzed separately. 
Fourth, the specific contribution of the direct and reflected waves to resonance can 
be explicitly detected, which is not straightforward from numerical runs. These con
siderations make the analytical approach a complementary tool that can support 
specific numerical runs by providing the general picture, and by giving physical hints 
for the interpretation of the usually complex dynamics of numerical results. 

The analytical model has been applied to the Bristol Channel and the 
Guadalquivir estuary considering the dominant tidal component (M2 ) and a weaker 
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secondary constituent (S2). A correction to the linearized friction term for the sec
ondary component was used to account for the quadratic total velocity. The analysis 
shows that the Bristol Channel tends to resonate close to semi-diurnal period (12 h), 
while the Guadalquivir estuary at a period of 35 h. 

The proposed analytical approach represents a new consistent analytical frame
work for understanding the tidal hydrodynamics in semi-closed tidal channels, in 
which the relations among the main tidal dynamics can be described by using a 
set of six implicit equations (see Table 2). The merit of the method is that it pro
vides direct insights into the tidal resonance in terms of external parameters (i.e. 
tidal forcing, geometry, friction), which is useful for the study of tidal channels that 
experience relatively large tidal ranges at the closed end. 

Appendix A. Linearized Solution and Derivation of the Parameters 
for a Semi-Closed Channel 

A.l. Global approach 

In this appendix we follow the approach proposed by Toffolon and Savenije [2011], 
who linearized the continuity and momentum Eqs. (2) and (3) and imposed the 
following structure to the two unknowns, water level and velocity: 

Z = (oho[A* exp(iwt) + Cc]/2, U = rs(oco[V* exp(iwt) + Cc]/2, (A.l) 

where A* and V* are unknown complex functions (Cc represents the complex conju
gate of the preceding term) varying along the dimensionless coordinate x* = xj L 0 : 

A* = ai exp(27rwix*) +a; exp(27rw2x*), 

V* =vi exp(27rwix*) + v2 exp(27rw2x*), 

(A.2) 

(A.3) 

where ai, a2, vi, v2, wi, and w2 are unknown complex variables to be determined 
by the boundary conditions. 

The first term on the right-hand side of Eq. (A.2) represents a wave traveling 
seaward (i.e. reflected wave), while the second term represents a wave traveling 
landward (i.e. incident wave). As a result, the reflection coefficients \[1 A for tidal 
amplitude (the ratio of the amplitude of the reflected to incident wave) and Wv for 
velocity amplitude are given by: 

\(1 A = I :~ I ' \(1 v = I ~~ I· 
The analytical solutions for the tidal amplitudes and phases are given by: 

1J = (o ho IA*I, 
~(A*) 

tan(¢A) = !R(A*), 

v = rs (o co IV* I, 
~(V*) 

tan(¢v) = !R(V*)' 
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with ~(A*) representing the imaginary part of A* and ~(A*) the real part. Then, 
the dependent dimensionless parameters (defined in Table 1) can be computed by 
the following equations: 

1-L = IV* I, ¢ = ¢v- ¢A, (A.7) 

( 1 dA*) 8A = ~ A* dx* ' 
( 1 dV*) 8

V = ~ V* dx* ' (A.8) 

( 1 dA*) 
>.A = ~ A* dx* ' 

( 1 dV*) 
>.v = ~ V* dx* · (A.9) 

Toffolon and Savenije [2011] also derived the solution for the particular case 
of a closed-end channel. The analytical solutions A* and V* can be obtained 
using 

where 

* [ ( A *)A+ 1 /2] -l a 1 = 1 + exp 47r L A _ 
112 

, 

-iai vi= 
A- 1/2' 

wi = 1/2 +A, 

~ 8 
X= 31l"JLX, 

and L * = L: - x* is the distance to the closed end boundary. 

(A.10) 

(A.11) 

(A.12) 

Within a single-reach approach, further elaboration of the above equations yields 

8A- i>.A = _.!._ dA* I = 'J...- A [1- 2 ]· 
A* dx* x*=O 2 1 + exp(47rAL*)~~~j; 

(A.13) 

Equation (A.13), expressed in complex notation, can be separated into its real and 
imaginary parts, leading to Eqs. (11) and (12) in the main text. 

Similarly, we can derive that 

1 dV* 
8v- i>.v = --

V* dx* 
x*=O 

1- ix 
- I + ------,------,-
- -112 + A(1- 2ai) 

1- iX 8A + XAA .AA- X8A 
=I+ -8A + iAA =I- 8~ + ).~ + z 8~ + ).~ . 

(A.14) 

By separately equating the real and imaginary parts of the above equation, we 
have 

(A.15) 
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Since V* I x* =O = vi + v2, we can also derive that 

J.L2 = IV* 12 = ~-~ /2 +X~~- 2ai) 12 

I 
1 12 1 82 + ..\2 

= -i(8v-!+i..\v) - (8~-1)2 +..\~- t+X2A. 
(A.16) 

It follows from (A.16) that 

(A.17) 

We impose that the phase rf> A is zero at the seaward boundary of each reach by 
locally shifting the origin of time, thus making possible to assume that rf> = r/>v 
and hence obtain simpler relationships. These are summarized in the main text as 
Eqs. (6)-(9). 

A.2. Multi-reach approach 

The multi-reach approach divides the whole channel into sub-sections. In each 
sub-section, the solutions for four unknown complex numbers ai, a2, wi, w2 are 
obtained by solving a set of linear equations satisfying the internal boundary 
conditions (i.e. continuity of water level and discharge) at the junctions of these 
sub-reaches [see details in Toffolon and Savenije, 2011]. Specifically, we evalu
ated the main tidal dynamics at the seaward boundary of each sub-section (i.e. 
x* = 0) by moving the origin axis, thus it directly follows from (A.2), (A.8) and 
(A.9) that the amplification number 8A and the celerity number AA are given 
by: 

(A.18) 

(A.19) 

With obtained 8A and ..\A, the rest of dependent parameters 8v, ..\v, r/> and J.L can 
be computed from Eqs. (6), (7), (9) and (10). The longitudinal dimensional tidal 
amplitude can be reproduced by TJ = (ohlai+a21, while the longitudinal dimensional 
velocity amplitude can be computed according to the definition of the velocity num
ber J.L (see Table 1) and is given by v = J.Lrs(co. An example of Matlab scripts is 
provided as supplement to illustrate the computation process. 
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Appendix B. Tidal Dynamics in an Infinite Channel 

An infinite channel is characterized by a length L * approaching infinity. Then, ai = 0 
in (A.lO), and the set of Eqs. (6), (7), (8), (9) and (A.13) can be rewritten as: 

1 1 
8v = OA = 2''Y- "4\hm- 8 + 2')'2 , (B.1) 

2 2 1 1 1 2 
Av = AA = Sm + 2 - 8~' ' (B.2) 

(B.3) 

(B.4) 

with m = J16 - 8')'2 + ')'4 + 16X2. These equations correspond to the analytical 
results for an infinite channel without reflected wave [see also Toffolon and Savenije, 
2011]. However, the set of Eqs. (B.1)-(B.4) is still implicit since x contains an a 
priori unknown 11- describing the dimensionless scale of velocity. 

Simpler relationships between these main tidal dynamics were provided by Cai 
et al. [2012] using the 'envelope method', where a tidal damping equation is obtained 
by subtracting the envelope curves of high water and low water. Making use of 
Lorentz's linearization for the quadratic velocity [Lorentz, 1926], Cai et al. [2012] 
shows that the tidal wave propagation in an infinite channel can be described by a 
set of four implicit equations, i.e. the damping equation, the celerity equation, the 
scaling equation and the phase lag equation: 

I' 4 Xl-l 
8v =OA = ----

2 31!' AA' 

A~= A~= 1- OA(I'- DA), 

cos(¢) sin(¢) 
11-----

- AA - OA -')'' 

OA -')' 
tan(¢)= AA . 

This system can be solved by a simple Newton-Raphson method. 

Appendix C. Analytical Solution for Resonance in Frictionless 
Channels 

C.l. Subcritical convergence 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

The subcritical case is characterized by I'< 2, hence A= iJ1- (1'/2)2 . Thus, the 
right hand side of Eq. (A.13) can be separated into its real and imaginary parts, 
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where the imaginary part is AA = 0, and the real part provides 

~ sin(27raL*) 
UA-

- cos(27raL* - 0) + a/2' 
(C.1) 

with a= y'4- "(2 = -2iA and(}= arccos(a/2). 
We can obtain the position of the antinodes by setting &A = 0 in Eq. (C.1). This 

correspond to the condition that the numerator of (C.1) is zero, which provides the 
solution L* = n/(2a), where n = 0, 1, 2, ... is a positive integer number (we use 
the same notation in the following expressions). The position of the nodes is more 
difficult to define because it should be obtained by setting "' = 0, while we have an 
equation for &A. However, we can exploit the fact that the sign of &A changes in a 
node, which represents a discontinuity. This condition can be obtained by setting the 
denominator of (C.1) equal to zero, which provides two solutions. The first solution 
is given by the values L* = (1 + 2n)/(2a), which is composed by odd multiples of 
1/(2a) that were already included in the solutions obtainedfor the antinodes. In 
these positions the ratio is theoretically indefinite (0/0), but &A assumes a finite 
value and is continuous, so these values must be excluded from the solutions for 
the antinodes, which are located only in the even multiples of 1/(2a). The second 
solution obtained for the nodes does not overlap with that of the antinodes, and 
hence represents the actual set of values for the positions of the nodes. Hence, the 
position of nodes and antinodes in a frictionless channel can be summarized as 
follows: 

*A n 
Lantinode = ;• (C.2) 

L
*A arccos(a/2) 2n + 1 - +--node - 1ra 2a · (C.3) 

A simple relationship for the tidal damping for velocity can be obtained from 
(6) in the case without friction: 

1 
&v = 'Y- -. 

&A 
(C.4) 

Moreover, Eq. (8) directly yields J.L = &A. The positions of the velocity amplitude 
nodes and antinodes can be computed using the conditions v = 0 (whereby J.L = 
&A = 0) and &v = 0, respectively: 

L*v L*A n node = antinode = ; ' (C.5) 

*v arccos(a/2) 2n + 1 
L .d-- +---antmo e - 1ra 2a · (C.6) 

In a prismatic channel, we can set 'Y = 0 (hence a= 2) and obtain the well-known 

solution L~~de = L=~inode = (2n + 1)/4 and L~inode = L~~de = n/2. The classical 
quarter wavelength resonance then occurs when the tidal period coincides with the 
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resonance period Tro = 4Le/[eo(2n+ 1)]. Recalling that J.L = 8A and using (C.1) with 
1 = 0, it follows that 

sin{41l'L*) * 
J.LI-r=o = (4 L ) 1 = tan(27l'L ), cos 7l' * + 

(C.7) 

from which the velocity amplitude v can be calculated according to the definition 
in Table 1. For short prismatic channels (i.e. 27l'L* « 1), it directly follows that the 
velocity increases approximately linearly with the length. 

C.2. Supercritical convergence 

In the case of supercritical convergence in a frictionless estuary (T 2:: 2, x = 0), 
then A = y'{T/2)2 - 1 is a real number. Similar to the previous case, algebraic 
manipulation allows one to separate the real and imaginary parts of Eq. (A.13). 
The result is that AA = 0 (i.e. a standing wave with infinite celerity) and 

8A = 1 - A [1 - ----2----=--=] 
2 1+exp(41T'AL*)~~~7; ' 

(C.8) 

which is always positive, indicating that in strongly convergent estuaries the tidal 
amplitude always increases along the estuary axis. An example of the solution in 
this case is given in Figs. 4(b) and 4(d). 

It is worth noting that ( 47!' A) - 1 defines a characteristic dimensionless length 
scale. If the distance L* » (41T'A)-1 , the denominator in the last term of Eq. (C.8) 
goes to infinity, which leads to an equilibrium value of 8A = 1/2- A = 1/2-
J 12/4 - 1 far from the channel head, thus tending to the case of an infinite estuary 
described by Eq. (56) of Savenije et al. [2008]. In this case, the amplification decreases 
with increasing convergence [see also Fig. 4(d)], as can be seen by rearranging the 
above relationship and evaluating the limit 8A = {T/2 + V12/4 -1)-1 ----+ 1-1 for 
I» 2. 

We note that neither nodes nor antinodes for tidal amplitude exist in this case. 
There only exists a single node for the velocity amplitude at the head of an estuary 
(L~~de = 0). The position of the velocity amplitude antinode can be determined by 
setting 8v = 0 in Eq. (C.4) in combination with Eq. (C.8) to obtain 

*v 1 (I+ 2A) 
Lantinode = 47l'A ln I- 2A . (C.9) 

The position L:~inode decreases as 1 increases, hence bringing the maximum of 
velocity amplitude closer to the head of the estuary in strongly convergent estuaries. 
It is interesting to note that Eq. (C.6) (subcritical) and (C.9) (supercritical) are 
continuous (see Fig. 5), being L:~inode = (27!')-1 the position of the first antinode 
when 1 = 2. 
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Appendix D. Interaction Between Dominant and Weaker Tidal 
Constituents 

In this Appendix, we propose a simple conceptual model illustrating the nonlin
ear interaction between dominant and weaker tidal constituents. For simplicity, we 
assume that the tidal current is composed of one dominant constituent (e.g. M2 ) 

with velocity UI, and a weaker constituent (e.g. S2) with velocity U2: 

where E = v2/vi, with VI, v2 the velocity amplitudes of the first and second con
stituent, and WI and w2 their frequencies. We assume the second component is 
actually minor with respect to the dominant (E « 1). 

The Fourier expansion of UIUI can be written as [e.g. Fang, 1987; Inoue and 
Garrett, 2007]: 

(D.2) 

where f3I and fJ2 are the Fourier coefficients that account for the nonlinear inter
action between dominant M2 and weaker tidal component S2. The fourth-order 
approximations of f3I and fJ2 are given by [see Fang, 1987; Inoue and Garrett, 2007]: 

3 2 3 4 6 
f3I = 1 + 4E - 64 E + O(E ), (D.3) 

(D.4) 

Combining Eqs. (3), (4) and (D.2), and neglecting the nonlinear advective terms, 
yields 

aui au2 azi az2 8 gvi 
at + at + g ax + g ax + 37r K2-,;t/3 (f3I UI + f32U2) = 0, (D.5) 

where ZI is the free surface elevation for the dominant constituent while z2 for the 
secondary constituent. Exploiting the linearity of Eq. (D.5), we can solve the two 
problems independently. 

We separate the equation for the dominant component: 

aui azi 
at + g ax + TI UI = 0, (D.6) 

where ri = 3~ K;~13 f3I is the effective linearized friction term. By comparing it 

with the coefficient r defined in Eq. (5), i.e. when dealing with only one single tidal 
constituent, the effect of the simultaneous presence of the S2 tidal component on the 
dominant M2 yields a correction factor f3I· By referring to Eq. (D.3), the assumption 
E « 1 implies that f3I -::= 1, suggesting the obvious result that a very weak secondary 
component does not significantly alter the dominant one. 
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The remaining terms of Eq. (D.5) can be related to the second tidal constituent: 

8U2 8Z2 ~ 
8t + 9 Bx + r2U2 = 0. (D.7) 

It directly follows from the comparison of (D.5), (D.6) and (D.7) that r2 = 

3~ K;~bfh. In order to treat Eq. (D.7) for the secondary component as the 'normal' 

case of a single tidal constituent, we would have to introduce a correction factor f 
such that 

(D.8) 

with r2 = 3
8 9~73 . Consequently, the estimate of the correction factor for the 
7r K 2 h 

secondary constituent for S2 reads: 

j = f2 = V! f32 = f32 . 
T2 V2 E 

(D.9) 

Equation (D.9) suggests that f grows with decreasing E, so a weak secondary com
ponent will be characterized by large values of f. 

The above procedure can easily be extended to examine the situation with more 
than two constituents, which is the case in real estuaries. 
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