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Abstract

Can we predict long-term trends of lake surface temperature based on air temperature alone? We explore

this question by analyzing the performance of a hybrid model (air2water) as a predictive tool for defining sce-

narios of lake surface temperature in the framework of climate change studies. Employing Lake Tahoe

(U.S.A.) as a case study, we apply the model using different air temperature datasets (in situ measurements,

gridded observations, and downscaled General Circulation Models). Through a data-driven calibration of the

model parameters based on surface water temperature records, we show that air2water provides good perfor-

mance (root mean square error � 0.58C, on a monthly scale) regardless of the input dataset. The model is

able to accurately capture the historical long-term trend and interannual fluctuations over decades (from

1969 to present), using only 7 yr of monthly measurements of surface water temperature for calibration.

Additionally, when used to predict future surface water temperature of the lake, air2water produces the same

projections irrespective of the air temperature dataset used to drive the model. This is certainly desirable, but

not immediately expected when using a relatively simple model. Overall, the results suggest the high poten-

tial and robustness of air2water as a predictive tool for climate change assessment. Lake surface temperature

warming of up to 1.18C (RCP 4.5) and 2.98C (RCP 8.5) was simulated at the end of the 21st century during

summer months in Lake Tahoe. Such a scenario, if realized, would lead to serious consequences on lake water

chemistry, primary productivity, plankton community structure, and nutrient cycling.

During recent decades, many lakes throughout the world

have undergone rapid warming of their surface water tem-

perature (Quayle et al. 2002; Livingstone 2003; Coats et al.

2006; Austin and Colman 2007; Schneider et al. 2009;

Schneider and Hook 2010; O’Reilly et al. 2015; Sharma et al.

2015; Woolway et al. 2016). Since water temperature is a key

physical variable controlling a large variety of physical, eco-

logical, and biogeochemical processes, future changes in cli-

mate conditions and the resulting meteorological forcing at

the air–water interface may significantly alter the overall

environmental and water quality status of lakes. Indeed,

changes in the thermal behavior of lakes lead to significant

consequences for stratification and mixing regimes (Butcher

et al. 2015; Kraemer et al. 2015; Piccolroaz et al. 2015; Sahoo

et al. 2016; Wood et al. 2016) and in the community struc-

ture of many habitats (e.g., Winder et al. 2009; De Senerpont

et al. 2013; Schabh€uttl et al. 2013), with possible modifica-

tions of the biochemical compositions of some algae species

(e.g., Flaim et al. 2014). This may have significant implica-

tions for local economies, since lakes provide important serv-

ices such as drinking water, agricultural irrigation, power

generation, and cooling water for industries, water transport

corridors, recreation and tourism, and support for freshwater

fisheries.

For many lakes, an increase of lake surface water tempera-

ture (LSWT) in summer occurs in conjunction with an

increase in the duration and intensity of the stratification
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period, with increased inhibition of vertical exchanges of

mass, energy, and momentum between the epilimnion and

hypolimnion In turn, this may have important conse-

quences for the oxygenation of deep water layers, possibly

jeopardizing the sustainability of aquatic life in the aphotic

zone and facilitating the regeneration of soluble phosphorus

and metals from lake sediments. The final effect is the degra-

dation of the ecological health of the lake and an increasing

risk of summer cyanobacterial blooms (e.g., Gallina et al.

2011; Dokulil 2014; Butcher et al. 2015), including toxic spe-

cies (Gallina et al. 2013). Additionally, an increase of LSWT,

especially in winter, may result in a drastic modification of

the thermal structure and mixing regime of the lake (Blenck-

ner et al. 2002; Salmaso 2005, 2010; Wood et al. 2016). For

example, lakes may change from dimictic to monomictic,

from monomictic to oligomictic, or experience a reduced fre-

quency of overturn events in oligomictic lakes, ultimately

leading to meromixis. This can be particularly critical in

deep lakes (Wood et al. 2016), where a lower frequency of

deep mixing events may lead to a progressive reduction of

oxygen concentrations in deep layers, eventually reaching

hypoxic conditions in the whole water column during turn-

over events and, possibly, subsequent eutrophication.

Understanding, predicting, and quantifying the thermal

response of lakes to evolving climate conditions is critical for

future decision making involving water resource manage-

ment policies. However, trying to make reliable projections

of how LSWT is likely to evolve in the future is not trivial.

In fact, water temperature is a result of a combination of

complex thermodynamic fluxes occurring simultaneously,

all summing to the net heat flux of a lake (see e.g.,

Henderson-Sellers 1986; Imboden and W€uest 1995). In prin-

ciple, the accurate prediction of LSWT would require the pre-

cise estimate of all lake-atmosphere energy fluxes, which can

only be accomplished if accurate high-frequency observa-

tional data are available (see e.g., Woolway et al. 2015 for a

MATLAB script to calculate surface energy fluxes in lakes).

However, such detailed information is not always available,

and this has stimulated the development of LSWT prediction

models of different types and complexities, from purely

regressive/statistical models (McCombie 1959; Webb 1974;

Livingstone and Lotter 1998; Kettle et al. 2004; Sharma et al.

2008), to more complex process-based numerical models

(e.g., Hamilton and Schladow 1996; Perroud et al. 2009; Mar-

tynov et al. 2010; Thiery et al. 2014). As is often the case,

both families of models have significant advantages but also

substantial shortcomings. Simple regression models usually

require few inputs, generally only air temperature (AT), but

they are not able to address some fundamental physical pro-

cesses (e.g., thermal stratification), and their use is controver-

sial when applied with AT ranges beyond the limits of the

time series used for model calibration (e.g., in climate

changes studies). Conversely, deterministic models provide a

more detailed description of the thermal processes in the

lake and their interaction with the surrounding environ-

ment, but they generally require a large amount of input

data (e.g., detailed and spatially distributed time series of all

meteorological variables, geomorphological information,

streamflow data), which are often not available for long peri-

ods or with sufficient temporal and spatial resolution.

Besides these two main model categories, a third approach

exists, which is represented by models characterized by a

hybrid structure combining a physically based derivation of

the governing equations with a statistical calibration of

model parameters. This approach is aimed at retaining the

simplicity of statistical models while preserving the robust-

ness of deterministic models.

The objective of this study is to assess whether using AT

alone provides sufficiently reliable estimates of how LSWT

will respond to changing climate conditions, duly account-

ing for the limitations that such a simplified approach may

introduce. AT predictions based on General Circulation

Models (GCMs) or Regional Climate Models (RCMs) are usu-

ally more reliable than other meteorological variables (e.g.,

Gleckler et al. 2008), and downscaling is typically associated

with smaller uncertainties (Dettinger 2013). Producing reli-

able projections of the future LSWT using only AT would

certainly be a major advantage for many scientific purposes

and practical applications. This is even more attractive if the

tool used for LSWT prediction is simple, and thus accessible

to scientists with different mathematical, physical, and tech-

nical backgrounds (e.g., physicists, biologists, engineers, etc).

Clearly, this should not be intended in any manner as a jus-

tification for the indiscriminate use of AT alone to predict

LSWT, legitimizing the use of modeling tools that are not

appropriate for this aim (as is generally the case of purely

regression models).

Here, we use a simple hybrid model developed by Piccol-

roaz et al. (2013) called air2water, which predicts LSWT and

provides a measure of the depth of the well-mixed surface

layer, based on AT only. The air2water model has been

shown to provide similar performance to those of more com-

plex, process-based models even though they generally

require more extensive inputs (root mean square error

[RMSE] on the order of 18C for daily temperatures, but less

for longer averaging windows; see Piccolroaz et al. 2016).

Additionally, the air2water model has been shown to be an

effective tool to investigate the role of thermal stratification

in LSWT response (Piccolroaz et al. 2015), to provide good

performance when tested in 14 temperate lakes characterized

by different morphologies (Toffolon et al. 2014), and to satis-

factorily capture seasonal variability and interannual fluctua-

tions of LSWT when using different sources of data (e.g.,

LSWT measured at buoys or retrieved from satellite, as well

as AT from observations, re-analysis, or GCMs), suggesting

high flexibility. This is possible because of the physically

based derivation of the model equation, which allows for

transfer of information about the study lake from data to
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model parameters through an automatic calibration

procedure.

The case study analyzed here is for Lake Tahoe (U.S.A.), for

which especially long-time series of AT and LSWT data are

available from in situ, satellite, and model sources. Lake Tahoe

is a particularly relevant case study, as it is world famous for its

natural beauty, clarity, and surrounding snow-covered moun-

tains, which make it a popular tourist attraction both in win-

ter and summer seasons. Studies aimed at predicting how the

water temperature of this lake will evolve in the future are,

therefore, of interest beyond the scientific community.

The article is structured as follows: In data and methods

section we describe the case study, available data, and air2-

water model in detail. The main results are presented in

results section, which focuses on evaluating the model per-

formance in predicting LSWT during historical and future

periods using different sources of AT data. Finally, discussion

of results and concluding remarks are addressed in discus-

sion and conclusion sections, respectively.

Data and methods

Study site characteristics

Lake Tahoe is located at 39.098 N, 120.048 W (approxi-

mately 1898 m above mean sea level) in the Sierra Nevada

Mountains on the California-Nevada border (U.S.A., see

Fig.1). The lake does not freeze in winter, and complete over-

turn/mixing events occur roughly every 3–4 yr (Sahoo et al.

2013; Tahoe Environmental Research Center 2016). Lake

Tahoe is 33 km long and 18 km wide, with an average depth

of 330 m, a maximum depth of 501 m, and a total volume

of 156 km3. The lake is fed by 63 streams and drained by

one outlet, the Truckee River.

Lake Tahoe is characterized by a combination of great

depth, small watershed-to-lake area ratio, and a granitic

basin that exhibits relatively cold water with low fertility

and high transparency/clarity (Jassby et al. 1994). One of

Lake Tahoe’s most valued characteristics is the water’s deep

blue hue, which is related to low algal biomass (Tahoe Envi-

ronmental Research Center 2016). Between 1968 and 1998

the annual average transparency was observed to be decreas-

ing at Lake Tahoe (Jassby et al. 1999), and in that time

period some warm-water (exotic) fish species established

populations (Reuter and Miller 2000). Understanding how

Lake Tahoe’s aquatic ecosystem will respond to climate

change will depend on the seasonality of physical (stratifica-

tion, mixing events, etc.) and biological processes (growth

and reproduction of species, phenology, trophic interaction,

etc.), both of which are sensitive to alterations in water

Fig. 1. (a) Map of the Lake Tahoe region with locations of onshore weather stations and instrumented buoys; (b) example of CRU TS3.21 grid spac-
ing; and (c) example of CMIP5-CCSM4 grid spacing. Red boxes outline where data are derived for the gridded datasets. [Color figure can be viewed
at wileyonlinelibrary.com]
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temperature (Schindler et al. 1990; Magnuson et al. 1997;

Livingstone and Dokulil 2001; Straile 2000).

Due to the high frequency of cloud-free periods, Lake

Tahoe is an ideal water target for satellite calibration and val-

idation. As such, four instrumented buoys were installed on

the lake beginning in 1999 (by the NASA Jet Propulsion Lab-

oratory, California Institute of Technology) to provide data

for calibration and validation of absolute radiometric reflec-

tance, temperature, and emissivity data collected by instru-

mentation onboard various satellites including Landsat (5, 7,

and 8), the Moderate Resolution Imaging Spectroradiometer

(MODIS: Terra and Aqua), Along Track Scanning Radio-

meters (ATSR: ATSR-1, ATSR-2, and AATSR), the Advanced

Spaceborne Thermal Emission and Reflection (ASTER), the

Visible Infrared Imaging Radiometer Suite (VIIRS), and the

MODIS/ASTER Airborne Simulator (MASTER). Proper calibra-

tion/validation of thermal infrared data collected by space-

craft is critical for accurate, global estimation of lake surface

temperatures at locations where in situ observations may be

lacking.

Available data

This study primarily focuses on two key variables: AT and

LSWT. To comprehensively understand the predictive capa-

bilities of the hybrid model air2water, we employed multiple

input datasets from different sources. Historical in situ AT

data (1967–present) were collected at a NOAA land-based

weather station on Lake Tahoe’s shoreline (1967–2014; daily

minimum and maximum measured 3 m above ground; sta-

tion ID: USC00048758). Data were also collected at a SNO-

TEL land-based weather station, in the forest at 170 m above

lake level (1989–2014; daily average, measured at 5 m above

ground; station ID: 809) and at all four NASA buoys (1999–

2014; 5-min intervals, measured at 3 m above water). In

addition to these point observations, we also utilize the Cli-

matic Research Unit (CRU) TS3.21 data (0.58 grid spacing;

monthly average near surface AT at 2 m height) (Harris et al.

2014) as a source of historical (1950–2005), gridded AT

observations. LSWT data were collected at the four NASA

buoys (1999–present; 5-min intervals of radiometric skin

temperature), as well as at an off-shore station maintained

by the University of California, Davis (1967–2014; monthly

measurements). In the case of data collected at the NASA

buoys, we use the average of all four buoys for both AT and

LSWT throughout the analysis, and we refer to this dataset

as the “NASA buoy” data.

Modeled estimates of future AT (2006–2100) are derived

from GCM data. In particular, we use the Coupled Model

Intercomparison Project Phase 5-Community Climate System

Model version 4.0 (CMIP5-CCSM4) estimates of gridded

future AT (1.08 grid spacing; monthly average near surface

AT at 2 m height) (Taylor et al. 2009). We have chosen to

use the Representative Concentration Pathways (RCP) of 4.5

and 8.5 for analysis of intermediate and high emission

scenarios, respectively. These same datasets also cover the

historical period 1950–2005. The CMIP5-CCSM4 data were

downscaled to 30-arcsecond (1 km2) spatial resolution fol-

lowing methodology outlined in Mosier et al. (2014).

According to the fifth IPCC assessment report, the CCSM4

model produces global air temperature estimations within 0

to 20.38C of observations as compared to the other 42

CMIP5 models that range from greater than 0.5 to 20.5

(Flato et al. 2013), and is noted to have stood out as “best”

performers in studies specific to the Pacific Northwest U.S.A.

(Rupp et al. 2013) and the Southeast U.S.A. (Rupp 2014).

CMIP5 model projections of annual air temperature at Lake

Tahoe around year 2100 range from 8.1–11.38C and 10.5–

15.48C, while the CCSM4 values are 9.78C and 11.78C for

RCP 4.5 and RCP 8.5, respectively, (to be compared to 7.08C,

evaluated as the mean AT for the 1950–2005 historical

CCSM4 simulation).

Details of each air and water temperature dataset are pre-

sented in Table 1, while the location of the measurement

stations and the grid spacing of CRU and CMIP5-CCSM4 are

shown in Fig. 1. The period chosen for model calibration is

1999–2005, since this is the longest period with overlap of

all relevant measurements, including the NASA buoy LSWT

data (starting in 1999) and CRU AT data (available until

2005). CMIP5-CCSM4 model projections begin after 2005. A

shorter period (2002–2005) is used in the case of the NASA

buoy AT data, due to limitations in temporal coverage from

that source.

The long-term mean annual cycles (1999–2005) of the dif-

ferent temperature datasets are shown in Fig. 2 on monthly

timescales. Since the temporal resolution of AT data differs

among the datasets, the coarsest resolution being one

month, monthly averages of AT and LSWT have been con-

sidered in all analyses for consistency. Figure 2 shows gener-

ally good agreement among the five AT datasets, with no

significant phase lags in the timing of the annual cycle.

However, some differences can be noted in the individual

monthly averages (roughly 1–38C), which are primarily

attributable to the different locations of the meteorological

stations with respect to the lake, and to the approximations

inevitably introduced by interpolation (CRU data) and

modeling (CMIP5-CCSM4 data). These differences are used

to thoroughly test the robustness of the model, with the

desired goal being to obtain the same LSWT prediction irre-

spective of the AT data used as input forcing.

Description of the air2water model

The air2water model (Piccolroaz et al. 2013) is a simple

lumped model to predict LSWT using AT as the only exter-

nal forcing. The model is derived from the volume-

integrated equation of heat applied to the upper volume of

the lake that is directly linked to heat exchanges with the

atmosphere:
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qcpVs
dTw

dt
5AUnet; (1)

where q is water density [M L23], cp is the specific heat

capacity [L2 T22 H21], Vs [L3] is the volume of surface water

hereafter referred to as reactive volume, Tw [H] is LSWT, t [T]

is time (hereafter expressed in days), A [L2] is the surface

area of the lake, and Unet [M T23] is the net heat flux into

the upper water volume. Unet accounts for the main fluxes

entering and exiting the reactive volume Vs, and its depen-

dence on LSWT and AT (assumed to be a proxy for the inte-

grated effects of the external meteorological forcing, e.g.,

Livingstone and Padis�ak 2007) is linearized by a Taylor

expansion, giving the model the structure of a simple, ordi-

nary differential equation. Versions characterized by differ-

ent numbers of parameters were identified by Piccolroaz

et al. (2013) and slightly redefined by Toffolon et al. (2014).

Here we use the 6-parameter version:

dTw

dt
5

1

d
a11a2Ta2a3Tw1a5cos 2p

t

ty
2a6

� �� �� �
; (2)

where ai (i51 2 6) are model parameters, ty [T] is the dura-

tion of the year expressed in days, Ta [H] is AT, and d [–] is

the dimensionless volume (or depth) defined as the ratio

between the reactive volume Vs [L3] and a reference volume

Vr [L3]. The latter is assumed to be the entire volume of the

lake in Piccolroaz et al. (2015) and Toffolon et al. (2014).

The following relationship for d, which is assumed to vary

with thermal stratification as a function of the temperature

difference between surface and deep water (Tw2ThÞ, has

been proposed:

d5exp 2
Tw2Th

a4

� �
for Tw � Th

d51 for Tw < Th

8><
>: (3)

where Th [H] is the reference value of deep water tempera-

ture. Equations 2 and 3 together are solved numerically by

using the Crank-Nicolson numerical scheme, which is

implicit, second-order accurate, and unconditionally stable.

The equation is solved using a daily time step (i.e., dt 5 1

day), so that daily LSWT is predicted. The second release of

the air2water model is available at https://github.com/spic-

colroaz/air2water, where the source code (written in Fortran

90/95), the precompiled executable files (Linux/Windows), a

readme file, and an example application are freely

Table 1. Details of air and lake surface water temperature data utilized in this study for Lake Tahoe.

Dataset Abbreviation Data type

Height/depth

and resolution

Geographic

coordinates

Time

interval Frequency

Lake surface water temperature (LSWT)

NASA buoy radiometric data NASA buoy in situ water surface/skin

point location

Buoy 1: 39.1558 N

120.0048 W

Buoy 2: 39.1098 N

120.0118 W

Buoy 3: 39. 1108 N

120.0758 W

Buoy 4: 39.1558 N

120.0718 W

1999–2014 5-min

UC Davis long-term,

off-shore monitoring station

Off-shore UC Davis in situ water surface/�1 m

depth point location

39.1508 N

120.0338 W

1969–2014 Monthly

measurements

Air temperature (AT)

NASA buoy meteorological

station

NASA buoy in situ �3 m height

(above water)

point location

See above 2002–2014 5-min

NOAA meteorological station

(USC00048758, Tahoe City)

Shoreline (NOAA) in situ �3 m height

(above ground)

point location

39.1678 N

120.1438 W

1969–2014 Daily (maxima

and minima)

SNOTEL meteorological station

(809, Tahoe City Cross)

Forest (SNOTEL) in situ �5 m height

(above ground)

point location

39,1678 N

120.158 W

2072 m a.s.l.

1999–2014 Daily means

Climate Research Group

(CRU) TS3.21

CRU Gridded

Observations

Equivalent height �2 m

0.5830.58 grid cell

39.258 N

120.258 W

1999–2005 Monthly means

CMIP5-CCSM4 (downscaled) CMIP5-CCSM4 Gridded GCM Equivalent height �2 m

1.0831.08 grid cell

39.1108 N

120.0008 W

1999–2100 Monthly means

Piccolroaz et al. On the predictability of lake surface temperature

247

https://github.com/spiccolroaz/air2water
https://github.com/spiccolroaz/air2water


downloadable (the code is published under the Creative

Commons Attribution-ShareAlike 3.0 license).

The air2water model can be classified as a hybrid model

(Toffolon and Piccolroaz 2015), which combines a

physically-based equation with a stochastic calibration of

model parameters. In this way, the data directly inform

model parameters, whose values can provide insight into the

thermal behavior of the lake due to the physically based

structure of the governing equation. Model parameters a1 to

a6 are calibrated using Monte Carlo techniques that exploit

an optimization algorithm, with RMSE as the relevant met-

ric. In addition, the following indexes are used for model

performance evaluation: Nash-Sutcliffe Efficiency index

(NSE) as a normalized metric, the mean error (ME) as a mea-

sure of the bias of simulated LSWT compared to observa-

tions, and the maximum absolute error (MaxAE) as a very

stringent index particularly sensitive to outliers (see Appen-

dix for details).

In this study, calibration is performed using high-

frequency water temperature from NASA buoys aggregated at

monthly mean time scales (to be consistent with the resolu-

tion of AT used in the analysis) for the target LSWT time

series, resulting in an optimal set of parameters for each of

the air station/water station pairs considered. The following

analysis is aimed at evaluating the suitability of the model

for use in future climate change studies.

Application of the model to Lake Tahoe

Daily AT is required by the model, but some of the con-

sidered datasets (see Table 1) provide only monthly averages.

In order to allow for consistent comparisons among the dif-

ferent datasets, all AT time series are aggregated to a

monthly resolution and then reconstructed to daily

resolution (as required by the model) through linear interpo-

lation. An iterative procedure is used, which adjusts the data

points while preserving the monthly averages (e.g., Harzallah

1995). We note that linear reconstruction does not provide

the most realistic description of AT evolution, and more

sophisticated, nonlinear interpolation techniques could be

used instead. However, the calibration target is monthly

mean LSWT, so the use of more complex procedures to

reconstruct daily AT is not necessary. Additionally, the sim-

plest approach is preferred here to test the performance, ver-

satility, and robustness of air2water in the most general case.

For each of the considered AT datasets, future projections

for the period 2006–2100 are determined based on the

CMIP5-CCSM4 dataset. This is accomplished by using the

“change factor method” or “delta method” (Diaz-Nieto and

Wilby 2005; Minville et al. 2008;), which is a downscaling

technique that allows for constructing future projections of

a climate variable for which observations are available during

a historical period (h). As such, the change in a climate vari-

able predicted by the climate model is simply added to

observed values from the same baseline period, h, to obtain

the future reconstructed value:

Ty
a5�T

h
a1 T

y
a;mod 2 �T

h
a;mod

� 	
; (5)

where T
y
a and T

y
a;mod are the predicted daily AT series in year

y for the generic observational dataset and for the climate

model, respectively, and �T
h
a and �T

h
a;mod are the observed and

modeled climatological mean annual cycles (on daily time-

scales) for the same historical period h, respectively. In this

case T
y
a is the projected future AT for the generic observa-

tional dataset considered in the analysis, y spans the period

2006–2100, the reference historical period h is 1999–2005,

and Ta;mod is provided by CMIP5-CCSM4.

The parameters of the air2water model are calibrated for

different air station/water station pairs. The purpose of

applying the model across different AT datasets is twofold:

(1) to show how different sources of AT data affect the per-

formance of the air2water model in simulating LSWT (see

model performance during historical periods section), and

(2) to examine the robustness of the air2water model as a

predictive tool for evaluating future projections of LSWT (see

effectiveness of air2water as a predictive tool for climate

change scenarios section). Additionally, thanks to the exis-

tence of a long, historical record of measurements, the abil-

ity of the model to capture long-term historical trends and

interannual dynamics is also tested (see model simulation of

interannual variability and long-term trends section).

Results

Model performance during historical periods

The performance of the model in simulating LSWT is pre-

sented in Fig. 3, which shows the hysteresis curves between
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Fig. 2. Long-term monthly mean AT (continuous lines) and LSWT
(dashed lines), averaged across 1999–2005 for the range of datasets

used in the analysis (see Table 1).
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Fig. 3. Hysteresis cycles between observed AT and observed (NASA buoy) and simulated (air2water) LSWT. Observed AT belongs to a variety of data-
sets: (a) NASA buoy, (b) shoreline (NOAA), (c) forest (SNOTEL), (d) CRU, and (e) CMIP5-CCSM4. Each observed-simulated LSWT pair is connected by

a segment. [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


measured AT and both measured and simulated LSWT (see

also Fig. S1 in the Supporting Information for the same com-

parison, but shown as a time series). The different shapes of

the hysteresis curves in Fig. 3 further highlight the differences

among the various AT datasets, which were already discussed

above for Fig. 2. Table 2 summarizes the statistics of the model

performance and the values of model parameters for different

datasets. Note that there is no validation for the last two cases

(CRU and historical CMIP5-CCSM4 datasets), because there

are no available AT data beyond the calibration period (1999–

2005). In all cases, the model provides satisfactory results with

small values of RMSE, MaxAE, and ME and high values of NSE,

both in calibration and validation (Table 2). We emphasize

that the calibration/validation exercise in this case study is a

fairly demanding test for the model because: (1) only a 7-yr

period is used for calibration, and the model is validated over

a longer time period (when available), (2) daily AT is linearly

reconstructed from monthly averages, as described in section

Application of the model to Lake Tahoe, and (3) aside from

AT, no other forcing variables are used to drive the model.

It is important to note that the values of model parameters

are different for the different datasets, because they implicitly

adjust to differences in the sources of information. Importantly,

the predictive performance of the model is also quite similar in

the five cases considered (see Table 2), with the RMSE between

simulated and observed monthly LSWT ranging from 0.458C to

0.588C during the calibration period. As expected, slightly

higher performance is achieved when using AT measured at the

same location as where LSWT is measured (e.g., NASA buoy

RMSE 5 0.458C). Conversely, larger errors (albeit still relatively

small RMSE 5 0.588C), are obtained when the model is forced

with the AT time series simulated by the CMIP5-CCSM4 model.

In all cases, ME is negligible (i.e., lower than about 1E-3 in abso-

lute value), indicating that there is no bias between simulated

and observed LSWT. RMSE and ME increase in the validation

period, but are still consistently lower than roughly 18C and

0.18C, respectively. NSE is always close to 1, and the MaxAE is

on the order of 18C, both in calibration and validation., These

values are fully comparable with those of more complex deter-

ministic models (Toffolon et al. 2014).

For comparison, we evaluated the performance of a linear

regression model using the different AT datasets considered

here, and the same calibration and validation periods as above.

Model performances are listed in Table S1 in the Supporting

Information, and show an evident worsening, with RMSE and

MaxAE increasing up to about 28C and 48C, respectively, and

NSE decreasing to about 0.8. These values suggest the inade-

quacy of simple linear regression models to properly simulate

LSWT, confirming previous results by Piccolroaz et al. (2016).

Model simulation of interannual variability and long-

term trends

The suitability of the air2water model as a simple and reli-

able predictive tool to capture interannual variability and T
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long-term trends in LSWT is examined here using the lon-

gest datasets of LSWT. Since 1969, the University of Califor-

nia at Davis has measured LSWT at an offshore site (see

Fig. 1) at monthly frequencies. We calibrate the model using

this long-term time series of monthly LSWT as the target

series, but with the model forced by daily AT measured at

NOAA land-based weather station on Lake Tahoe’s shoreline

(station ID: USC00048758). Since LSWT measurements are

only available at monthly resolution (spot measurements), it

is not possible to calibrate the model to match the monthly

means as done for the previous simulations. Model parame-

ters are therefore calibrated by minimizing the RMSE

between simulated and observed LSWT, but only on days of

the month when measurements are available. Consistent

with the previous analysis (see model performance during

historical periods section), the model is calibrated during the

7-yr period 1999–2005 and validated during 1969–1998 and

2006–2014. Calibrated model parameters and model perfor-

mance are shown in Table 2. Although NSE and ME values

are comparable to those obtained in the previous analysis

(both in calibration and validation) a worsening of RMSE

and MaxAE is noticeable. This is mainly due to two reasons:

(1) errors in this case are not evaluated on monthly means

of LSWT but on a few, daily values (84 values total during

the 7-yr calibration period, i.e., one measurement per

month); (2) AT and predicted LSWT are daily means, while

observed LSWT corresponds to a series of sporadic samples

that may differ from the daily means depending on the time

of day when the measurement has been taken. It should also

be noted that air2water may be limited when dealing with

changes in water transparency (as has been the case for Lake

Tahoe during the last 50 yr, Jassby et al. 1999; Tahoe Envi-

ronmental Research Center 2016), which likely modify the

parameter governing the stratification dynamics (i.e., d). In

addition, the effect of other factors such as changes in solar

brightening or wind forcing during the validation period

(compared to the calibration period) cannot be directly cap-

tured by the simple structure of the model (except, indi-

rectly, through their potential effect on AT), despite the fact

that they have been shown to be important in some lakes

(Schmid and K€oster 2016; Woolway et al. 2017). These con-

siderations undoubtedly challenge the application of the

model. However, the performance of the model is still satis-

factory (RMSE lower than 18C, both in calibration and vali-

dation), confirming that the main thermal dynamics are well

captured and that the model can be reasonably used to pre-

dict LSWT in periods other than the one used for

calibration.

Results presented in Fig. 4 show interannual to interdeca-

dal variability, as well as long-term trends in seasonal-mean

LSWT for the seasons of January-February-March (JFM,

approximately corresponding to northern hemisphere win-

ter), April-May-June (AMJ, spring), July-August-September

(JAS, summer), and October-November-December (OND,

autumn). Given the monthly resolution of the measure-

ments, seasonal means for observed LSWT are evaluated

only if at least three values are available (i.e., one spot mea-

surement per month in each month of the season). The cor-

responding seasonal means of simulated LSWT are evaluated

by only averaging over the days when observed LSWT is

available. Therefore, the resulting averaged values of LSWT

should not be considered as true “seasonal means” in a strict

sense. However, they suffice in providing an indication of

interannual and long-term variability, which is what the

model is being tested to reproduce.

Figure 4 shows that both interannual variability and long-

term trends in seasonal-mean LSWT are generally well cap-

tured, although some discrepancies can be noted. Examples

of discrepancies include (1) differences between observed

and predicted AMJ long-term trends, and (2) generally stron-

ger interdecadal variability in the observed LSWT time series,

compared to air2water model simulations. On the other

hand, although the model is driven by AT alone, it is able to

effectively reproduce the long-term trend of LSWT even

when it is substantially different from or opposite in sign to

that of AT (e.g., AMJ). This is made possible by the fact that

air2water includes all the major physical processes driving

LSWT dynamics (albeit in an implicit, simplified form), most

importantly the role of thermal stratification.

The use of long-term linear trends may obscure the identi-

fication and interpretation of interannual fluctuations,

anomalous interdecadal warming/cooling periods, and

regime shifts (North et al. 2013; Van Cleave et al. 2014;

Woolway et al., 2017). This suggests that linear regressions

should be used with caution to avoid the risk of oversimpli-

fying the true temperature dynamics. For this reason, the 10-

yr running means of observed AT, observed LSWT, and mod-

eled LSWT are also shown in Fig. 4, which provides evidence

of the existence of significant interannual fluctuations and

decadal-scale variability. The figure shows that air2water is

able to capture most of these interdecadal dynamics, which

are substantially different in the four seasons. Importantly,

RMSE is relatively constant among the different seasons and

on the order of roughly 0.58C, suggesting the absence of any

significant seasonal biases in LSWT modeling.

For comparison, Fig. 4 also shows the results of a linear

regression model, calibrated and validated with the same

data and over the same periods as for the air2water model.

This model clearly fails to describe LSWT dynamics, as indi-

cated by the significantly poor performance summarized in

Supporting Information Table S1 (i.e., RMSE of more than

28C, NSE around 0.7, large biases, and MaxAE of about 68C)

and noticeably illustrated in Fig. 4. By definition, the linear

regression model is not able to reproduce the AT-LSWT hys-

teresis cycle, providing substantial overestimates and under-

estimates of LSWT during the warming (JFM and AMJ) and

cooling (JAS and OND) periods of AT, respectively. In addi-

tion, long-term trends and interannual fluctuations of LSWT
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inevitably follow those of AT. Although the undeniable inad-

equacy of the linear regression model is probably obvious to

many, we believe that it is important to explicitly show the

comparison here. Deep flaws of such a simple but widely

used approach, compared to the performance of a similarly

simple but not oversimplified model (the air2water model),

Fig. 4. Comparison of mean JFM, AMJ, JAS, and OND AT and LSWT (observed at the off-shore station maintained by the University of California,
Davis and simulated by the air2water model and by a linear regression model) during the period 1969–2014. Also shown are the 10-yr moving aver-

ages (solid lines) and long-term trends (linear regression; dashed lines). [Color figure can be viewed at wileyonlinelibrary.com]
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should definitely discourage the use of purely regression-

based approaches and support the use of more robust, physi-

cally based models.

The air2water model is also compared with the process-

based one-dimensional hydrodynamic Lake Clarity Model

(1D-LCM, black dots, Sahoo et al. 2013) in Fig. 5, which

Fig. 5. Scatterplot between observed LSWT (off-shore UC Davis) and LSWT simulated using the air2water and the 1D Lake Clarity Model (1D LCM
Sahoo et al. 2013) in the different seasons. Continuous lines identify linear regressions. Dashed lines identify perfect agreement (1 : 1 line). [Color fig-

ure can be viewed at wileyonlinelibrary.com]

Piccolroaz et al. On the predictability of lake surface temperature

253

http://wileyonlinelibrary.com


shows the scatterplot between observed and predicted LSWT

in the two cases. The 1D-LCM model solves the heat and

hydrologic budgets of the lake and requires that all incoming

and outgoing quantities be estimated with sufficient accuracy.

Since this model has been successfully applied to Lake Tahoe

(see e.g., Sahoo et al. 2010; Sahoo et al. 2013), it has been

identified as particularly relevant and appropriate for a com-

parison in this study. To allow for a fair comparison, air2water

results over the same simulation period are shown with differ-

ent color and symbols. The results of air2water generally show

less scatter and better alignment along the 1:1 line than 1D-

LCM, despite the fact that the latter is relatively more com-

plex and requires additional input variables (e.g., precipita-

tion, shortwave radiation, wind speed, longwave radiation,

and vapor pressure). However, we should note that 1D-LCM

is calibrated not just for LSWT but also to reproduce the

entire temperature profile, thermocline depth, water budget,

water clarity, etc. In both cases, JFM seems to be the most dif-

ficult season for the two models to predict LSWT.

The results presented in Figs 4, 5 provide objective evi-

dence of the predictive ability of the air2water model and of

its potential to be used to analyze the long-term response of

LSWT to evolving external conditions using only AT as input

information.

Effectiveness of air2water as a predictive tool for climate

change scenarios

In this section, we extend the previous historical analysis

by testing the suitability of air2water to be used for predict-

ing future LSWT. To this end, we run the model using cli-

mate change scenarios (RCP4.5 and RCP 8.5) defined for

each AT dataset in Table 1 by means of the change factor

method described in section Application of the model to

Lake Tahoe. The model is run using different sets of calibra-

tion parameters (see model performance during historical

periods section and Table 2) for the different AT datasets.

Since model parameters are always calibrated assuming the

NASA buoy series of LSWT as the target (see Table 2), the

expectation is that LSWT prediction under future climate

scenarios is not dependent on the AT dataset used to force

the model. This result is far from trivial and, if achieved,

would provide confidence in the suitability of air2water to

Fig. 6. Projected seasonal averages of AT and LSWT for the period 2006–2100 under the scenarios RCP 4.5 (a–d) and RCP 8.5 (e–h). Thickness of

the curves represents the interval of variability of AT and LSWT corresponding to the different air temperature datasets: NASA buoy, shoreline (NOAA),
forest (SNOTEL), CRU, and CMIP5-CCSM4. [Color figure can be viewed at wileyonlinelibrary.com]
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analyze scenarios where the external forcing (i.e., AT) goes

beyond the range of variability typical of historical/current

conditions.

Figure 6 presents future projections of AT and LSWT for

each of the four seasons and for the two climate change sce-

narios (RCP 4.5 and RCP 8.5). (Annual mean results are shown

in Supporting Information Fig. S4.) In all cases, future projec-

tions of LSWT show a narrow interval of variability, regardless

of the AT dataset used. In fact, the interval of variability

(� 0.18C) is much narrower than that of the five AT datasets

used to force the model (� 2.58C; see Table 3). A slightly larger

uncertainty is obtained when predicting LSWT under the RCP

8.5 scenario compared to the RCP 4.5 (see Table 3), but the

interval of variability is still on the order of just a few tenths

of a degree Celsius. This result can only be attained because

air2water is able to provide a physically reasonable description

of the main processes involved and succeeds in reproducing

the actual thermal behavior of the system.

Conversely, purely regression-based models (linear or

nonlinear) that are not based on physical phenomena are

likely to produce relatively large uncertainty bands in the

predicted LSWT under future conditions. For example, pro-

jections of LSWT obtained from the same linear regression

models discussed in model performance during historical

periods section show a much wider interval of variability,

especially in AMJ and JAS, despite the fact that the model is

always forced to match the same, observed LSWT dataset

during the calibration process. In addition, the future long-

term trends of LSWT are significantly different than those

obtained with air2water, consistent with the results discussed

in model simulation of interannual variability and long-term

trends section and shown in Fig. 4. Results are summarized

in Supporting Information Figs. S5, S6, as well as in Table S2

in the Supporting Information, indicating that a linear

regression model cannot provide a reliable description of the

future evolution of LSWT in Lake Tahoe. We refer the reader

to Piccolroaz et al. (2016) for a similar exercise focused on

river water temperature modeling, where a cross-validation

exercise was employed to compare the performance of stan-

dard regression models with those of air2stream, a hybrid

model similar to air2water.

We note that the width of the interval of variability of AT

is the same for the two climate scenarios (RCP 4.5 and 8.5)

since, by definition, the change factor method used to con-

struct the future scenarios (see section 2.5) preserves the vari-

ance of the five historical datasets. The lowest uncertainty

(narrow interval of variability) in the prediction of LSWT is

achieved during the JAS season. One possible explanation

for this is that the lake is strongly stratified during JAS

(Tahoe Environmental Research Center 2016), reducing the

lake’s effective thermal inertia such that LSWT responds

quickly to external forcing (Toffolon et al. 2014; Piccolroaz

et al. 2015). Overall, this reduces the complexity of the ther-

mal dynamics of the lake, making the modeling of LSWT

easier, to the extent that some studies opt to use the equilib-

rium LSWT (i.e., the temperature at which the net heat flux

at the lake surface is zero) as a good alternative for predict-

ing the actual LSWT (see, e.g., Schmid et al. 2014). Con-

versely, the largest uncertainty in the width of the

confidence band of LSWT is in the autumn period (OND),

when it is nearly three and two times larger than that of the

other seasons for the RCP 4.5 and RCP 8.5 scenarios, respec-

tively. Part of the reason for this is that the lake rapidly

moves from strongly stratified to non-stratified conditions in

autumn (Tahoe Environmental Research Center 2016), intro-

ducing significant nonlinearities to its thermal behavior and

making LSWT modeling very sensitive to the external forc-

ing. Similar considerations, though to a lesser extent, are

also valid when the lake moves from weak to strong stratifi-

cation during the AMJ period.

Table 3. Average width of the interval of variability of AT (wAT) and LSWT (wLSWT) projected for the period 2006–2100 under the
two climate change scenarios (RCP 4.5 and RCP 8.5) and shown in Fig. 6 (see also Supporting information Fig. S3 for the same analy-
sis but considering annual averages of AT and LSWT). wAT and wLSWT are evaluated for the four seasons and for the whole year. Lin-
ear trends of AT (tAT) and LSWT (tLSWT) are also reported.

Scenario Period

wAT

(8C)

wLSWT

(8C)

tAT

(8C decade 21)

tLSWT

(8C decade 21)

RCP 4.5 JFM 2.30 0.14 0.10 0.04

AMJ 2.79 0.17 0.12 0.07

JAS 2.46 0.13 0.23 0.11

OND 2.52 0.40 0.09 0.04

Year 1.97 0.07 0.14 0.07

RCP 8.5 JFM 2.30 0.18 0.35 0.16

AMJ 2.79 0.22 0.39 0.21

JAS 2.46 0.17 0.62 0.29

OND 2.52 0.42 0.42 0.19

Year 1.97 0.10 0.45 0.21
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Discussion

The results presented here can be used to gain insight

into the expected thermal behavior of Lake Tahoe in the

future. In response to an annual AT warming rate of 0.14

and 0.458C decade21 during the 21st century for the RCP 4.5

and RCP 8.5 emission scenarios, respectively, the air2water

model predicts mean annual LSWT to increase by 0.07 and

0.218C decade21 (i.e., roughly half the rate of AT warming).

JFM LSWT is expected to increase the least (0.04 and 0.168C

per decade21 for the RCP 4.5 and RCP 8.5 emission scenar-

ios, respectively), while JAS LSWT will increase the most

(0.11 and 0.298C decade21 for the RCP 4.5 and RCP 8.5 emis-

sion scenarios, respectively). JAS AT is expected to increase

at a rate of 0.23 and 0.628C decade21 for the RCP 4.5 and

RCP 8.5 emission scenarios, respectively (Table 3; Fig. 6).

Interestingly, JAS shows AT warming more rapidly than

LSWT, during both the historical period (1967–2014, see Fig.

4) and the future period (2005–2100, see Fig. 6; Table 3).

These results are in contrast to recent findings by O’Reilly

et al. (2015) that performed a global analysis of in situ and

satellite-derived LSWT data, observing that Lake Tahoe LSWT

warmed at a much more rapid rate of 0.54 to 0.718C decade21

in summer. Schneider et al. (2009) found an even larger rate of

summer LSWT warming for Lake Tahoe of 1.38C decade21,

which is approximately twice as fast as the rate of AT warming.

However, they considered nighttime LSWT and minimum

daily AT, and, more importantly, analyzed a different (and

shorter) time period from 1991 to 2008. This period was

indeed characterized by a rapid warming of LSWT that was

much stronger than the concurrent warming of AT. However,

this was an exceptional warming episode not representative of

the longer time period, as is clearly shown in Fig. 4.

Overall, these varying results lead to the conclusion (ini-

tially discussed in model simulation of interannual variabil-

ity and long-term trends section) that the use of linear

trends to describe temperature dynamics must always be

contextualized and analyzed with critical awareness to avoid

misinterpretation. Linear trends evaluated over a historical

period may not necessarily be generalized to a different

period, and they do not necessarily provide a comprehensive

overview of the actual dynamics. For example, linear fitting

is generally not able to detect the occurrence of interannual

fluctuations or regime shifts, and is likely to provide substan-

tially different trends depending on the period considered in

the analysis. While these considerations may seem trivial, it

is critical to bear this point in mind, especially when com-

paring results from different studies. In this sense, one

should be cautious when stating, for example, that a lake is

“warming faster than air temperature,” as such a statement

may be an overgeneralization based on a relatively limited

time period of study.

As a consequence of the larger long-term warming trend

of AT relative to LSWT during JAS (in the current study), it

is interesting to note that air2water predicts a progressive

convergence of LSWT towards AT, which is more pro-

nounced in the RCP 8.5 scenario (see Fig. 6). The two tem-

perature time series tend to converge starting in the 2050s,

and eventually AT is expected to become coincident and

even exceed LSWT on a regular basis (in the RCP 8.5 sce-

nario) by the end of the 21st century. This behavior follows

from the fact that summer AT warming is rapid compared to

the other seasons, while summer LSWT warming is restricted

by an increase in evaporative cooling (Lenters et al. 2005)—a

feedback that eventually leads to compensation via a down-

ward flux of sensible heat (i.e., air warmer than water; Fig.

6). In addition, the equilibration of LSWT to AT is relatively

easy in summertime due to strong stratification (i.e., low

thermal inertia of the upper mixed layer; Toffolon et al.

2014; Piccolroaz et al. 2015), the duration of which gets pro-

gressively longer as LSWT increases and the onset of thermal

stratification occurs earlier (as a consequence of a warming

AT).

The main limitation of the air2water model, embodied in

its structure, is that it does not explicitly account for the

effects of external forcing other than AT (e.g., wind speed,

solar radiation, and air humidity). Rather, such effects are

only indirectly included through their potential influence

on AT. Changes in water clarity, which may affect the sur-

face mixed layer depth, are not considered in the model. As

a result, the values of model parameters inevitably depend

on the lake and climate conditions during the calibration

period and in principle may (slightly) change if considering

a different calibration period. All these aspects necessarily

introduce some uncertainties, which can be discussed via ref-

erence to Fig. 4, together with the main strengths and limi-

tations of the air2water model. Despite the short calibration

period (7 yr, from 1999 to 2005) and the fact that the model

is required to reproduce sparse spot measurements sampled

at monthly frequency, interannual variability and long-term

trends in LSWT are well captured. This is also true during

the validation period, when water clarity was significantly

higher relative to the calibration period (Tahoe Environmen-

tal Research Center 2016). This is a direct confirmation that

the model is able to explain much of the LSWT variability

using AT alone, including cases when lake and climate con-

ditions differ from those in the calibration period. The

strong warming of LSWT that occurred in the 1990s is also

captured, but with an evident underestimate of the intensity

of warming. This indicates that other factors besides the

mere warming of AT may have contributed to this intense

LSWT warming period, whose effect cannot be simulated by

the model. Likely changes include solar brightening (e.g.,

changes in cloud cover) and the consistent degradation of

water clarity during summer (Tahoe Environmental Research

Center 2016).

However, one may still wonder whether model perfor-

mance may have been different, possibly lower, if we had
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considered a different calibration period. In order to dispel

any misgiving about this point, the same historical period is

simulated considering four different 12-yr calibration win-

dows (1969–1980, 1981–1992, 1993–2004, and the shorter

2005–2014). The four simulations are fully comparable with

each other, the maximum difference of RMSEs evaluated

over the whole 46-yr period being very small and equal to

0.058C, and the mean RMSE being equal to 0.928C, coherent

with the values in Table 2. A Fig. 4, but for the four calibra-

tion windows, is shown in the Supporting Information (Fig.

S7). The figure shows some bias between the four model

runs, which however is smaller (about one half) than the

RMSE between simulated and observed LSWT. More impor-

tantly, besides this bias, the shape and slope of the curves

are essentially coincident, suggesting that the simulation of

LSWT dynamics is basically independent of the calibration

period and thus supporting the robustness of the model.

A natural extension of the model, which could partially

overcome some of the aforementioned limitations, would be

coupling with atmospheric circulation or weather forecasting

models. This would allow one to directly simulate funda-

mental lake-climate interactions, thus improving the simula-

tion of both lake processes and regional climate. Recent

attempts in this direction have been made to adopt one-

dimensional lake models (e.g., Goyette and Perroud, 2012;

Zhong et al. 2016; Sugiyama et al. 2017), which however

require an entire set of meteorological variables, causing a

potentially larger propagation of uncertainties and errors

typical of climate models. An example is given by the com-

parison between air2water (Piccolroaz et al. 2015) and a cou-

pled RCM-lake model (Zhong et al. 2016) for the case of

Lake Superior (U.S.A.-Canada), where the latter model is

characterized by larger errors, with many cases being statisti-

cal significant.

A more in-depth quantification of climate change effects

on LSWT would require a detailed analysis on at least

monthly time scales in order to properly describe the com-

plex system of feedbacks among AT, thermal stratification,

and LSWT. Furthermore, an analysis of additional climate

scenarios and the use of an ensemble of GCMs/RCMs and

lake models (e.g., lakeMIP project, Thiery et al. 2014) would

be recommended. This would allow for evaluating the propa-

gation of uncertainty stemming from different levels of the

modeling chain, coherent with the concept of the “cascade

of uncertainties” introduced by Wilby and Dessai (2010).

Although this goes beyond the scope of the present study,

these new results provide an important first step toward

such an approach. Having demonstrated that air2water is

suitable for predicting the response of LSWT to climate

change, future work will focus on the application of this tool

for climate change predictions in other lakes where interest-

ing dynamics have been observed (e.g., Laurentian Great

Lakes, Western lakes in the U.S.A., North European Lakes,

Alpine Lakes, etc.; see e.g., O’Reilly et al. 2015).

Conclusions

The main objective of the paper is to test the suitability of a

simple, but mechanistically based model (air2water) as a pre-

dictive tool for studying the impacts of climate change on lake

temperature and related thermal structure. As shown by the

results in results section, the predictive ability of the model is

tested (explicitly) for Lake Tahoe by comparing simulated and

observed long-term surface water temperature during a histori-

cal period. The consistency of the model’s ability to analyze

future scenarios of climate change is also validated by analyz-

ing results obtained from different sources of input AT data. In

the first case, our results show that air2water is able to accu-

rately predict long-term trends of LSWT, and reasonably cap-

tures interannual and interdecadal fluctuations, even when

seasonal trends and variability differ substantially from one

season to another. In the latter case, our results indicate that

the model is able to provide coherent predictions of LSWT

independent of the AT dataset used to force the model, includ-

ing when applied to AT ranges beyond the limits of the series

used for model calibration. Although this is a desirable result,

it is not entirely expected, and is an indirect confirmation that

air2water provides a physically realistic description of the

lake’s thermal dynamics, preventing the propagation and

amplification of errors when used as a prognostic tool.

The results of this study indicate a warming of summer

(JAS) LSWT of up to 1.18C (RCP 4.5) and 2.98C (RCP 8.5) by the

end of the 21st century, with summer being the season that is

expected to warm the most (for both AT and LSWT). In con-

trast, LSWT in winter is expected to experience the least

amount of warming. This follows from the fact that AT will

undergo a milder warming in winter, but it is also due to the

higher thermal inertia of the lake during this season (the water

column is well mixed), which causes winter LSWT to respond

slowly to changes in winter AT, thereby propagating some of

the thermal response into subsequent seasons.

We conclude by returning to the question “can we predict

long-term trends of lake surface temperature based on AT

alone?” The answer to this question is inherently dependent

on the modeling tool used for the analysis, and one can expect

reasonable predictions of LSWT from AT only when using a

tool that is able to encapsulate most of the fundamental physi-

cal processes controlling the thermal dynamics of a lake. In

this regard, we posit that the air2water model certainly repre-

sents an attractive option. We also propose, however, that a

hierarchy of additional, more complex, and physically based

mechanistic models be used to fully evaluate the capabilities

(and weaknesses) of simpler, hybrid models such as air2water.

Appendix
Model calibration and performance evaluation

Model calibration is based on Monte Carlo simulation

techniques in which a large number of parameter combina-

tions is evaluated in terms of a given metric of model
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performance. In this work, the evolutionary and self-

adaptive Particle Swarm Optimization algorithm (Kennedy

and Eberhart 1995) is used as a stochastic optimization tech-

nique for automatic model calibration. According to the

physically based derivation of Eq. 3, reasonable a priori

ranges of variation of model parameters can be defined (see

Piccolroaz et al. 2013 and Piccolroaz 2016 for details about

the derivation of the model, the definition of model parame-

ters, and the Particle Swarm Optimization algorithm).

Automatic model calibration is performed using the Root

Mean Square error (RMSE) between simulated (TwÞ and

observed (T̂ wÞ LSWT as optimization metric:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i51
Tw;i2T̂ w;i

� 	2
r

; (4)

where n is the length of the observational time series. In this

way, the best set of parameters is identified as the one that

minimizes RMSE. Model performance is also tested using

other statistical indices:

The Nash Sutcliffe Efficiency index (NSE, Nash and Sut-

cliffe 1970)

NSE512
RMSE2

1
n

Pn
i51 T̂ w;i2�T w

� 	2
; (5)

where �T w is the mean of observed LSWT. NSE provides a

normalized measure (-1,1) of model performance by evalu-

ating the relative magnitude of the residual variance com-

pared to the variance of observations. In particular NSE51

indicates perfect model fitting, while NSE50 indicates that

the model performs as good as assuming the overall mean of

observed LSWT as a predictor.

The Maximum Absolute Error (MaxAE)

MaxAE5maxjTw;i2T̂ w;ij (6)

where the vertical bars j j denote the absolute value opera-

tor. This metric is extremely stringent as it is sensitive to the

presence of outliers.

The Mean Error or bias (ME)

ME5
1

n

Xn

i51
Tw;i2T̂ w;i

� 	
; (7)

which can be used to estimate whether the model produces

under- or over-estimation.
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