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Abstract This chapter presents an analysis of the current status and of the challenges
in change detection techniques for the analysis of multitemporal SAR images. After
a brief review of the recent literature on general change detection methods, the
chapter investigates the specific problem of change detection in SAR images. The
main properties of the change detection problem in SAR images are explored and
discussed. Then, recent change detection techniques for high resolution (HR) and
very high resolution (VHR) SAR data are presented and critically analysed from
the theoretical viewpoint. Finally, examples of application of these techniques to
real problems are presented by using simulated image pairs and Enhanced Spotlight
COSMO-SkyMed images.

1 Introduction

Change Detection (CD) in remote sensing is defined as the process of identifying
changes in the features of the scene by means of the joint analysis of pair of images
acquired at different times over the same geographical area. CD has several applica-
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tions in environmental monitoring, such as damage assessment or urban expansion
monitoring.

Applications of change detection form spaceborne platforms progressively mi-
grate from slowly changing phenomena (land-cover dynamic analysis, deforestation
control) to rapidly mapping observations of natural or anthropic disasters, like land-
slides, floods, earthquake damages, fires, oil pollution, etc. Polar orbiting satellites,
however, do not provide adequate revisit time to monitor unpredictable and ex-
ceptional events. Therefore, making a direct comparison between post-event and
pre-event data having identical acquisition parameters is almost unfeasible [29].
Hence, change detection is performed by comparing the first available data acquired
after the event and previously archived acquisitions of the same scene.

One of the main challenges for a change detection algorithm is that the changes
produced by the event under observation cannot be easily modeled. Actually, the
same kind of event exhibits different signatures, depending on the region where it
occurred, e.g., an urban or an agricultural area, and on the characteristics of the
imaging sensor. Furthermore, when the time interval between two observations is
large, changes to be identified are often mixed to seasonal or incidental changes that
may be the majority, even if they usually have a minor extent and are often less
relevant from the application viewpoint.

Several different approaches to change detection have been proposed in the literat-
ure [4], [10]-[151,[17],[19]-[22], [18, 16][24]-[271,[26, 28, 30], [34]-[36], [43]-[46],
[48]-[50], [54]-[56].[58]-[60], [63],[65]-[70].

Several examples can be found of (semi)supervised [20, 22, 18, 49, 65, 66,
70], and unsupervised [4], [10]-[17],[19],[21] methods as well. Labeled samples
for each or some of the considered multitemporal acquisitions are required when
supervised or semi/partially supervised methods are considered, whereas they are
not for unsupervised approaches. Thus the possibility to gather reference samples
for the training phase is an element that drives the kind of method to employ.
Since the training sample collection is complex or even unfeasible, unsupervised
approaches are often preferred. On the other side application requirements should
be considered as well. In fact, unsupervised methods do not provide a “from-to”
information about the kind of change. Further, unsupervised methods are specifically
designed to handle multitemporal images acquired from either active SAR sensors
[4, 11, 14],[25]-[27],[30, 34, 36, 43, 46, 48, 56, 58, 63], or optical passive ones
[12,10, 13,19, 17,21, 16, 35, 44, 50, 54, 55, 59, 60].

Other methods are more general and are able to handle multisensor information
[15, 20, 22, 18, 49, 50], [65]-[70]. However, due to the scarce sensitivity of SAR to
atmospheric and weather conditions, the available post-event data are likely to be
SAR images [37]. Furthermore, the potentials of SAR sensors in change detection
applications are strengthened by the high spatial resolution and the short revisit time
provided by the new generation SAR-based missions, such as COSMO-SkyMed
(CSK), TerraSAR-X (TSX), RadarSat 3 and Sentinel-1. The improvement in spatial
resolution, which can reach 1m for Spotlight products, is of fundamental importance
in case of urban or suburban scenes [57]. In addition, the four-satellite constellation
of the CSK system increases the possibility of monitoring the temporal evolution of
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an environmental disaster effectively. A worst-case minimum revisit time of 12 h is
guaranteed.

This chapter starts with an analysis of state of the art that considers change detec-
tion methods for both optical passive and SAR active images. After that, attention
is devoted to recent change detection techniques for high resolution (HR) and very
high resolution (VHR) SAR, with specific attention to the trade-off between effective
speckle reduction from SAR data (see also Chapters 4 and 5) and good preserva-
tion of the fine spatial details provided by the new generation of spaceborne SAR
missions. Both simulated data and COSMO-SkyMed image pairs are considered
for experimental evaluation and performance comparison among single-scale and
multiscale approaches.

2 State of the Art

2.1 Change Detection in Multitemporal Spaceborne Images

As mentioned in the introduction, the literature is plenty of methods for change
detection both for optical passive and active SAR images. At a given level of ab-
straction, most of them follow similar philosophies. However, they strongly differ
in the implementation details. This is because the statistical model of the two kind
of data is different: optical passive image processing relies on an additive Gaussian
noise model, whereas SAR image processing relies on a multiplicative speckle noise
model.

Among supervised methods three macro groups can be identified: Post Classi-
fication Comparison [66], Supervised Direct Multidate Classification [49, 66], and
Compound Classification [20, 22, 23, 65, 70]. Post Classification comparison (PCC)
(also referred to as delta classification [66]) performs change detection by com-
paring the classification maps obtained by classifying two images independently.
Multitemporal images are independently classified, thereby minimizing the problem
of radiometric calibration, but ground truth is required for each of them. Although
PCC has been used in several applications extensively, its performance strongly de-
pends on the classification accuracy of the classifiers applied to each single image.
Supervised Direct Multidate Classification (DMC) [49, 66] characterises pixels by
stacking the feature vectors related to the images acquired at the two different times.
Each class transition is considered as a single class thus the training pixels should
represent the proportions of all the transitions in the whole area of interest accur-
ately. This represents a serious drawback as, in real applications, it is difficult to
obtain training sets with such characteristic. A more realistic approach is Compound
Classification (CC) [22], since it allows the temporal correlation between images to
be considered in the change-detection process. When ground truth is not available
for each multitemporal acquisition partially-supervised classifiers can be used. They
are able to update the classifier parameters estimated according to the ground truth
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available for one multitemporal image and match them to the statistical properties
of multitemporal images for which the ground truth is not available. These methods,
recently referred to as Domain Adaptation (DA) methods [18, 24, 31], have been in-
vestigated with novel interest because of the use with active learning (AL) [38]-[40].
All the aforementioned methods are based on classifiers like for example Maximum
Likelihood classifier [42, 62], Neural Networks [23, 51], Fuzzy Classifiers [9, 39],
and Support Vector Machines [71, 33], which are either the most widely used or
the most effective ones (the reader is referred to the literature for more details on
the behaviour and mathematical details of each single classifier. An example of
multitemporal classification of optical images is shown in Chapter 7.). Because of
this, such approaches are intrinsically suitable to process data acquired from either
passive optical and active SAR systems as well as to solve multisensor/multisource
data problems. This becomes even more true when distribution-free non-parametric
classifiers are considered.

Unfortunately, in several situations and applications ground truth information
cannot be collected or the process becomes too expensive. In such situations, unsu-
pervised methods become the only opportunity. This is the reason why the scientific
community is still very active on this topic even if the literature is extensive. Once
multitemporal images have been radiometrically and geometrically corrected, unsu-
pervised change detection information extraction requires mainly 2 steps: i) image
comparison, that results in a change feature (CF). This step aims at highlighting the
presence of change and accounts for the temporal correlation among acquisitions;
and ii) analysis of the change feature. This step aims at isolating the change from the
no change information. The first step is the one that mostly depends on the kind of
considered data.

When dealing with optical passive sensor images, comparison mainly relies on
the difference operator. This is because the noise model in optical images is additive
and the natural classes tend to have a Gaussian distribution. The simplest way to use
the difference operator is to apply it to one or multiple corresponding spectral bands
from multitemporal images [66]leading to the definition of Spectral Change Vectors
(SCVs). The latter option is referred to as Change Vector Analysis and has been
effectively employed with multispectral and hyperspectral images, and low to high
resolution images as well [12, 19, 16, 54, 55]. Under the assumption of Gaussian
distributed natural classes and being the difference a linear operator, classes of
change and no-change in the SCV feature space result to be Gaussian distributed as
well [12]. Non-linear features are commonly extracted from SCVs [12, 55, 54, 73]
like the magnitude and direction variables. The magnitude of changed samples
presents significantly higher values than those of pixels associated to unchanged
areas [19, 66]. Thus, the magnitude allows for a simple binary detection between
change and no-change. On the other side, the direction variable is highly relevant
to distinguish among different kinds of changes as they assume preferred directions
[12, 55, 54, 66]. The difference operator can be applied in feature spaces other than
the original spectral band one. Examples can be found that apply it to posterior
probabilities [28], vegetation indexes [66], Tasselled Cap Transformation features
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[67], Multivariate Alteration Detection features [60], non-linear combinations of
spectral bands, etc.

2.2 SAR change detection

When dealing with SAR images the commonly accepted noise model is multiplicat-
ive. Under this assumption, it is possible to show that after subtraction the statistical
distribution of the resulting image depends on both the relative change between the
intensity values in the two images and a reference intensity value (i.e., the intensity
before or after the change). This leads to a higher change-detection error for changes
occurred in high-intensity regions of the image than in low-intensity regions. Thus
the ratio operator (Image Rationing) [66] is more indicated for SAR multitemporal
image comparison since its distribution depends only on the relative change in the
average intensity between the two dates and not on a reference intensity level [61, 8].
Further, it allows to reduce common multiplicative error components[61]. In the lit-
erature, the ratio image is usually expressed in a logarithmic scale. Thus the log-ratio
operator is typically preferred [8, 30, 36, 61, 63]. Another set of comparison operat-
ors widely used with SAR (but valid for optical data as well [58]) is the one based on
the use of information theoretical similarity measures: the Kullback-Leibler (KL) di-
vergence [48]; the Mutual Information [4]; and combinations of them. More recently
the multi-scale/-resolution concept has been introduced in the multitemporal image
analysis. This need emerged because of the complexity of SAR data and because of
the intrinsic multiresolution information available in the images acquired by the new
generation high spatial resolution sensors. To properly model multi-scale/-resolution
information different approaches have been used. Among the others we recall the
Wavelet decomposition [11, 27], the Contourlet transform [52], and multiscale fea-
ture profiles computed on varying windows size (Sect. 2.3.3), multiscale segments
[10, 45], and morphological profiles [35, 44]. More sophisticated approaches to the
representation of multiresolution information have been developed when very high
spatial resolution (VHR) images are analysed. They model the high level semantic
information in VHR images at a higher level of abstraction [14, 16, 50] and thus
become intrinsically suitable for multisensor analysis [15].

The typical methodological approach for SAR images considers a direct pixel-
based comparison of the two images, that generates a change feature (CF), which
is taken as input for the decision step. Typically, many approaches in the literature
consider an unsupervised thresholding of CF [4],[27]. Nevertheless, the analysis
is affected by the multiplicative speckle noise present in the SAR images and its
compensation implies a degradation in terms of spatial resolution. In order to deal
with this issue, CD methods were designed that achieve different trade-offs in terms
of both accuracy by the compensation of the speckle effect and preservation of the
high-resolution geometrical information.

Scale-driven analysis [11],[48], among them, considers different scale levels in
the CD analysis. It is based on the multiscale decomposition of the CI image,
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on the selection of the reliable scales for each pixel and subsequent image fusion
and decision. In particular, the multiscale decomposition considers the use of two-
dimensional filtering (e.g., stationary wavelet transform) on the image which applies,
in both row-wise and column-wise, either low-pass or high-pass filtering.

2.3 Change Detection Methods for VHR SAR Images

Concerning VHR remote sensing images, the high geometrical information content
requires an accurate definition and modeling of the concept of change which is often
associated with the specific goal of the application. The complexity is increased
by the need to take into account all the specific issues related to the properties of
VHR data. Standard unsupervised change-detection techniques in the remote sensing
literature often do not perform a detailed analysis of the concept of change. Usually
they compare two images acquired on the same geographical area at different times
by assuming that their radiometric properties are similar except for the presence of
changes occurred on the ground [16].

When application-oriented prior information is not available, change can be de-
tected from the image radiometric properties only. For VHR amplitude SAR images,
a single scale approach is rarely effective, while a multiscale approaches can improve
the detection performance through the analysis of different scales of representation of
the change signal, where each scale is characterised by a different trade-off between
speckle reduction and preservation of geometrical details [11].

Let us consider two SAR images X, of size I X J, acquired over the same
geographical area at two different times #;, with k=1,2. Let us assume that the
bi-temporal images are co-registered, geo-referenced and radiometrically corrected.
Let wyc, we be the set of classes associated with unchanged and changed pixels,
respectively.

Here, we investigate the capabilities of both single-scale and multiscale ap-
proaches in detecting changes in bi-temporal SAR acquisitions X; and X,. Three
selected algorithms are described in the following subsections.

2.3.1 Information-theoretic feature

The mean-shift information-theoretic change detection (MS-ITCD) method relies
on a feature capturing the structural change between X; and X,. It is robust to the
statistical change that may be originated by speckle and co-registration inaccuracies.
The method starts from the scatterplot of the amplitude levels in the two images and
applies the mean-shift (MS) algorithm to find the modes of the underlying bivariate
distribution [4].
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The rationale of the algorithm is that the negative of the logarithm of the
probability of a mean amplitude level in one image conditional to the mean
amplitude level of the same pixel in the other image measures the amount of
information associated to the pixel change and hence the amount of change,
which may be related to the conditional information of couples of symbols
emitted by two information sources [32].

Letx;(i, j) and x,(i, j) be the symbols emitted by the two information sources
X1 and X», respectively, where i = 0,...I — 1 and j = 0,...J — 1. The average
information content of the two sources is given by their entropy, H(X;) and H(X>).
In general, a part of such information is common to the two sources. This com-
mon information is called mutual information and is a measure of the statistical
dependency between X; and X, i.e.,

I(Xy1; X2) = H(X1) — H(X1|X?2) (D
or, equivalently,
1(X1; X2) = 1(X2; X1) = H(X2) — H(X2|X1) 2

where H(X,|X)) is the conditional entropy of X, to X and represents the fraction
of H(X,) that cannot be inferred from the knowledge of the reference source X,
because it is due to unpredictable changes.

Given the conditional information between x;(m, n) and x; (m, n), that is,

1(x2 (i, Plx1 (G, j)) = —log [p(xzlx1)] 3)

the conditional entropy is the expected value of (3),

HXG1X1) 2 = 3" 3" plri, x2) log [p(xalxy)] “

X1 X2

where p(x1, x2) and p(x»|x;) are the joint probabilities of x; (i, j) and x(i, j) and
the conditional probabilities of x; (i, j) to x (i, j), respectively.

The method, which features a fast version of Mean Shift (MS), and its earlier
version are summarised in the following procedure:

1. Given two co-registered amplitude SAR images x; (i, j) and x» (i, j) taken on the
same scene at different times, estimate their local means at each pixel, x; (7, j)
and X, (i, j), over a (2r + 1) X (2r + 1) sliding window with Gaussian weighting.

2. Cross-calibrate X, over X| by matching the global mean and variance of the former
to those of the latter; hereafter, let X, denote the histogram-matched version of
X).

3. Scale the values of both X; and X, by max,, ,{Xi, X2}; hereafter, let x| and X,
denote the scaled version of the former x; and X,.
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. Draw the scatterplot of X, (i, j) against X1 (i, j); thus, the scatterplot is contained

in a square of unity side and unchanged pixels lie along its main diagonal.

. Multiply ¥ and X, by an integer L, which will denote the size of the 2D histogram

obtained from the binning of the scatterplot. Hereafter, (X1, X2) € {[0, L] x[O0, L]}.

. Calculate the L x L joint histogram h(m,n),m =0,...,.L—-1,n=0,...,L -1,

by counting all points (X1, X») suchthatn-L <Xy < (n+1)-Landm-L < X <
(m+1)-L.

. Estimate the discrete joint probability density function (PDF), p(m,n) =

p(Lx2], L X1]), by normalizing h(m, n) to the overall number of points and con-
volving it by a normalised triangular kernel of length (27 + 1), according to Parzen
window method.

. Divide p(im, n) by its maximum along ¥, max; p(m, n), so that its value is one,

and hence the logarithm is zero (no change) when p(m, n) attains its maximum
over j:
p(n)

PULE) o (mlny - :
Pmax,, (m)

max; p(m,n) B

q(mln) = ®)

. Pre-calculate a LookUp Table (LUT) of the information-theoretic change detec-

tion (ITCD) feature for each pair of (i, j) that indexes g(i|j) as:
C(m,n) = —log{q(m|n)} (6)

To calculate a map of plain ITCD feature, for each pixel (i, j), calculate X; =
X1(i, j) and Xy = X2(i, j), as in Step 5, then ITCD(, j) = C(Lx2], LX1]).

To calculate a map of MS-enforced ITCD (MS-ITCD) feature, the MS clustering
algorithm is applied to the “binned” scatterplot obtained at the end of Step 5, with
a uniform kernel of radius R,

» perform migration of the scatterpoints belonging to an original bin (m, n): start
from the center of the bin and move all scatterpoints at the same time toward
the center of the attracting cluster.

* Let (m, n) denote the integer valued stop coordinates of MS applied to the bin
(m, n); the change feature C(m, n) is associated to all scatterpoints originally
belonging to (m, n);

 for each pixel (i, j), calculate the bin (m, n) in which the pixel falls, replace
(m, n) with (m, n) found through MS, set MS-ITCD(, j) = C(m, n).

The effect of MS is moving the scatterpoints contained in each bin towards the

attracting center corresponding to a mode of the underlying PDF, as defined at Step
7. Unchanged pixels produce scatterpoints that are likely to be moved toward one
of the modes along the main diagonal; conversely, changed pixels will be moved
towards one of the modes far from the main diagonal.

The main difference of the MS-enforced ITCD, originally introduced in [3] from

its earlier version, ITCD, [5, 6, 2], is that the presence of MS makes the novel feature
to follow a clustered approach: the information-theoretic feature is calculated from
the values of conditional probabilities roughly corresponding to the modes of the
joint PDF.
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The resulting MS-ITCD feature is considered and tested here in two configur-
ations: as an example of high-performance single-scale change feature, and as the
change feature adopted by the multiscale strategy described in the next Section.

2.3.2 Multiscale CD strategy based on wavele decomposition

A detailed description of the scale-driven CD approach, originally presented in [11],
is provided in this section. The technique takes as input X; and X, and consists in
four main steps: i) change features extraction by means of image comparison; ii)
multiresolution decomposition; iii) adaptive scale identification on the basis of local
statistics of both the full and lower resolution data; iv) adaptive fusion based on the
optimal scale level and generation of the final CD map. A general block scheme of
the approach is represented in Fig. 1.

X;SAR Image
(pre-event time 7;)

|

Xir
imh:lgtlézzp;rglon i Multiscale i Xz Scale-driven |~ Change-detection
(i.ge,, log—ga tio) decomposition ‘ i -1 fusion map (M)

. .| Adaptive scale
X>SAR Image selection
(post-event time 7,)

Fig. 1 Block scheme for the wavelet-based approach

In the first step image comparison is performed to compute a Change Feature
(CF) that highlight backscattering variations. Among the operators presented in
the literature, the log-ratio Xy g (see eq. (7)) is used here to illustrate the method
[11, 8, 64]. However the method can be applied to other CFs as well (e.g., ratio [7],
KL divergence [48], difference) . Accordingly, in the experiments results will be
illustrated both on the log-ratio image and on the ITCD feature.

X
XLR =10gX—?=10gX2—logX1. @)

This choice allows to reduce the effect of the speckle noise and to have a statistical
distribution of the CF centered on the zero value, with the two classes of interest
assuming each a more symmetrical distribution.

The multitemporal information in the X g is still affected by residual undesired
speckle. Therefore, the second step aims at reducing the residual speckle effect
on the log-ratio image, while preserving the geometrical details. For this reason,
a decomposition of the log-ratio image at different scale levels is computed by
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creating a set of images Xys = {X}] . ... Xz}, where X} . indicates the n-th
level decomposition level, n = 0,1, ..., N—1. To this end, a dyadic decomposition is
applied, so that the scale corresponding to each resolution level is given by 2" and
the image for n = 0 corresponds to the original log-ratio image. Among the possible
approaches presented in the literature for the two-dimensional image decomposition,
such as Laplacian pyramid decomposition [47] or recursively upsampled bicubic
filter [41], we consider the Two-Dimensional Stationary Wavelet Transform (2D-
SWT), by following [11, 27].

This filtering approach applies level-dependent filters to the considered signal at
each resolution level, by working separately along rows and columns, respectively.
Typical filters for this kind of applications are 4th-order Daubechies filters.

This approach presents the advantage of avoiding down-sampling and possible
aliasing impairments. At each step of the 2D-SWT, the image of the low-resolution
components is taken as input and filtered, both row-wise and column-wise, with low-
pass and high-pass filters, in order to separate lower resolution components (LL) and
detail components on vertical (LH), horizontal (H L) and diagonal (H H) direction,
which are defined as:

D"-1D"-1

LL(n+l)(l ) = Z Z " p]ln[q]XLL(n)(l +pj+q) (8)
p=0 ¢=0
D"'-1D"-1

XpR G = 30 Y Ppig X" G+ pi+ @) ©)
p=0 ¢=0
D"—-1D"-1

X)) = R IQXEE D (i 4 pj + g) (10)
p=0 ¢=0
D"-1D"-1

Xpe Dy = 3 WX R G+ p.j + q) (11)
p=0 ¢=0

At level 0, the low-resolution component corresponds to the original log-ratio
image. The filter coefficients at level n + 1 are obtained with a dilation of the
coefficients of the filter at level n by a factor of 2. After the decomposition and by
skipping the high resolution components, the approximation images at each scale
level are retrieved by applying the inverse two-dimensional stationary wavelet (2D-
ISWT) transform. Because of both the assumption on the additive noise model in
the logarithmic scale and the computational cost of the processing, the wavelet
strategy is applied directly on the log-ratio image, generating the set of images

= (XD . XN

Each of the wavelet output is used for generating a corresponding CD map,
where the thresholds can be selected either manually or automatically, i.e., Bayesian
approach based on the EM algorithm (see also Chapters 4, 5, and 9), or Kittler-
Illingworth thresholding which is a computationally efficient solution to the problem
of minimum error thresholding for normally distributed variables.
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The final step of the algorithm is the fusion of the information in the products
at different wavelet scales and the generation of the final CD map. Different fusion
strategies are available in the literature, applying the fusion at the decision level and
considering different choices for the thresholds. Fusion at the feature level on all re-
liable scales (FFL-ARS) [11] considers a reliable scale depending on the individual
pixel and operates a fusion at feature level. Conversely, the fusion at the decision
level on all reliable scales (FDL-ARS) [11] still considers a reliable scale depending
on the individual pixel, but it operates the fusion at the decision level. The literature
has proven that the best performance in terms of overall accuracy is obtained by
the FFL-ARS approach, because of the best trade-off between the reduction of the
speckle level and the details preservation. This fusion strategy is based on the gen-

- —0 —N-1
eration of a new set of images, namely X,,,5 = {X wXms | derived from X5,

o
. . . v . e
in which each image X, is computed as an average of the wavelet decomposition

up to the level n, as described in (12):

—n 1 o
Xm5=n+th_OXLR, n=01,...,N-1 (12)

In the FFL-ARS approach, for each pixel, reliable scale levels are determined
according to whether the considered pixel belongs to either an edge or a non-
homogeneous region. In particular, for each of the scales it evaluates two
coefficients: a global coefficient of variation (CV"), defined on the whole
image, and a local coefficient of variation (LCV"(i, j)), defined on sliding
window of user-defined size centered on the pixel (i, j).

These coefficients are expressed as:

a" (i, J)

LCV"(i,j) = ——= 13)
p G, )
cvr =2 (14)
u

The coefficient of variation cannot be computed on the multiscale log-ratio im-
ages, so the computation of these two coefficients is done on the multiscale ratio
image sequence, derived by inverting the logarithm operation for each of the scale
levels. For a general pixel (i,/), the decomposition scale R;; is defined as reliable if
the following condition is satisfied for all the resolution levels (I = 0, 1, ..., R;;):

M(i,j) € wp © MRi(i,j) € wp k € {c,nc}, S < N-1 (15)

M'(i,j) € wp & LCV'(i,j) < CV' (16)
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The final CD map is obtained from the set of multiresolution maps by applying
a standard thresholding procedure to the fused images and recombining them by
selecting the most reliable scale level for each pixel, as

Wne  ifx=Xpnd (i, j) < TR

“ms 17
we  ifx=XRU ) > TR an

M(i,j)={

where TRii is the decision threshold optimised for the considered fused image fﬁl"’
and (i, j) is the spatial position of the considered pixel.

For the set X,,,, the value at the reliable scale Yff; (i, j) and the related threshold

Ri ise . . . . . .
T,,s (i, j) are associated for each pixel (i, j). As described above, the threshold values,
derived for the different wavelet levels, can be either manually or automatically set,
according to any of the different strategies in the literature.

2.3.3 Combination of multiscale change features

Let r,, denote the bounded ratio image (0 < r,, < 1) computed from two co-
registered amplitude SAR images X and X, acquired on the same scene at different

dates: ) —(w)
ry = min , (18)

+W)” =)

Xy X

where Y,(CW) indicates the k-th image averaged over a w X w sliding window.

The bounded ratio image is computed for different odd window sizes in the interval
S = [Wmins Wmax], and the resulting Ny, = (Wiax — Wimin)/2 + 1 multiscale features
are finally combined into the single geometric-mean bounded-ratio (GMBR) change
feature Ryg:

1/N,,
Rs = (]_[ rw) . (19)

weS

The GMBR feature Rg has the important property of being intrinsically norm-
alised, which is convenient for unsupervised clustering, it is easy to compute,
robust to speckle impairments, and shows good capability of spatial detail
preservation, thanks to its multiscale nature.

The interval S of the window sizes should be selected according to the number
of looks of the SAR images (or equivalently, their resolution), and possibly to the
expected size of the regions of change. Typical values are S = [5, 25] for 1-look data
and S = [3, 11] for 4-look data.

The GMBR feature can be properly clustered into the two classes of unchanged
pixels, w,¢, and changed pixels, w., by applying the unsupervised K-means al-
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gorithm with K = 2. An example of Ry is reported in Fig. 4(b) and the resulting
change map obtained by K-means clustering is shown in Fig. 10(d).

3 Experimental Results

This section presents the experimental results obtained on two different datasets, a
simulated and a real one. In the next subsections, each dataset is described and the
performance analysis on four different change detection strategies is derived:

1. The MS-ITCD feature is first tested with optimal window size w and radius
R (i.e., w = 9 pixels, R = 30 quantised amplitude levels) for best change
mapping performance (see steps 1 and 11 of the MS-ITCD algorithm) by
means of two-class k-means clustering.

2. The GMBR feature is computed and then clustered for change mapping.

3. The wavelet-based approach adopting the FFL-ARS fusion strategy driven
by the log-ratio change feature, referred as FFL-ARS1 (see Fig. 1), is tested.

4. The FFL-ARS fusion strategy driven by the MS-ITCD feature with smaller
window and radius (w = 5 pixels, R = 10 quantised amplitude levels),
referred as FFL-ARS?2, is finally applied.

3.1 Simulated data

We have considered two different datasets of SAR images, on which different change
events were simulated. In particular, these changes are related to four regions of
backscattering increase and one of backscattering decrease. Two synthetic image
pairs with known patches with different shapes, sizes and change levels have been
produced from an optical remote sensing image, a panchromatic Ikonos image of
Toulouse, France, with 12-bit dynamic range. Nakagami-distributed speckle patterns
[1] have been generated with different equivalent number of looks L and spatial
correlation values py, specifically, L = 1 and p; = 0.3 for the first dataset, and L = 4
and p; = 0O for the second dataset. It should be recalled that Nakagami-distributed
speckle in the SAR amplitude domain is equivalent to Gamma-distributed speckle
in the SAR intensity domain (see also Chapters 4 and 5). The first dataset has 1m
spatial resolution and 1m pixel spacing, thus simulating a CSK Enhanced Spotlight
image pair, while the second dataset simulates Sentinel-1 Stripmap Mode images
having 9m spatial resolution and 4m pixel spacing.

The two datasets represent the same geographical area of about 0.5 km?, through
a 720 x 720 image pair for the 1-look dataset (Fig. 2), and a 180 x 180 image pair for
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Fig. 2 (a), (b): Simulated 720 x 720 1-look image pair; ground truth change image (c).

the 4-look dataset (Fig. 3). The simulated change patches are regions with modified
backscattering, specifically a 30% reduction of the amplitude level in the second
date with respect to the first date in the R1 region, deterministic cover changes
through pasting image values in the R2, R3 and R4 regions, and a constant increase
of 80 amplitude levels on the RS region (see Fig. 2(c); corresponding regions are
represented in Fig. 3(c)).
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(2) (b) (©)

Fig. 3 (a), (b): Simulated 180 x 180 4-look image pair; ground truth change image (c).

3.1.1 Quantitative Performance Assessment

The four change detection strategies are first compared in terms of the Receiver
Operator Characteristics (ROC). MS-ITCD and GMBR are directly compared in
order to give evidence to the different characteristics of single-scale MS-ITCD and
multiscale GMBR features (Fig. 4,5).

FFL-ARS1 and FFL-ARS?2 are not reported in the same graph since they cannot
be considered as CD features, but as fusion strategies of multiple wavelet features.
As previously stated, the FFL-ARSI strategy relies on the log-ratio computation,
while FFL-ARS?2 is based on the MS-ITCD change index.

On the other hand, all the four CD methods can be straightly compared in terms
of final binary CD maps, as reported in Sect. 3.1.2.

& -4

8-
X

d-mq ’\..

(a) (b)

Fig. 4 Change features for the 1-look image pair: MS-ITCD (a); GMBR (b).

Fig. 6 shows that MS-ITCD outperforms GMBR only for high values of False
Positive Rate (FPR). However, since the optimal change maps, corresponding to the
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(b)

Fig. 5 Change features for the 4-look image pair: MS-ITCD (a); GMBR (b).

highest values of the Cohen’s kappa coefficient (20), are obtained for lower values
of FPR, as evidenced by Fig.7, the best mapping performance for both 1-look and
4-look image pairs are provided by GMBR.

o o o
~ © ©

True Positive Rate

o
[

o
3

o

107 1072 107

False Positive Rate
(a)

10°

I o o
~ 0 ©

True Positive Rate

o
=

o
3

S
%)

102 107
False Positive Rate

()

Fig. 6 ROC of the MS-ITCD and GMBR change features for the 1-look (a) and 4-look (b) simulated
data. The asterisks highlight the optimal operating points (see also Fig. 7).
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By comparing Figs. 6(a) and 6(b), the GMBR ROC curve for the 1-look case is
quite surprisingly higher than the ROC curve for the 4-look case (red curves in the
two figures). This is due to the characteristics of GMBR which is more sensitive to
the degradation of the spatial resolution rather than to the signal-to-noise reduction
due to speckle.

For FFL-ARS1 and FFL-ARS2 experiments ROC curves obtained at different
wavelet decomposition levels are reported in Fig. 8 and Fig. 9, respectively. In
order to have a suitable number of pixels at all decomposition levels, maximum
decomposition levels N = 5 and N = 3 have been considered for the analysis of the
1-look and the 4-look image pairs, respectively.

0.9 =
——MS-ITCD e N Ak

0.8 - — GMBR VN
07t |
0.6} S
0.5 /

0.4 /
031 f
0.2

0.1r

Threshold

0.9 %
——MS-ITCD K,

0.7 \

061 S
05t

0.4r

Threshold

Fig. 7 Cohen’s kappa of the feature-based change map with respect to the true change map as a
function of the threshold applied to each feature. Top: 1-look; down: 4-look simulated data. The
asterisks indicate the maximum values obtained by applying k-means clustering with K = 2 to
GMBR (in red) and MS-ITCD (in blue).

For the FFL-ARS I strategy, the set of images X s, i.¢., starting from the log-ratio
image, has been derived. Each image in X ,,,; has been separately thresholded and the
CD performance of each decomposition level has been evaluated by tracing ROCs.
Fig. 8 shows the ROC curves obtained at the different wavelet decomposition levels of
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Fig. 8 ROC of the multiscale change feature used by FFL-ARS] for the 1-look (a) and 4-look (b)
simulated data.

the log-ratio feature. It should be noted that for the single-look case in Fig. 8(a), as the
wavelet decomposition level n increases, the ROC curves show higher True Positive
Rate (TPR) and better CD performance, with an optimal number of decomposition
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Fig. 9 ROC of the multiscale change feature used by FFL-ARS?2 for the 1-look (a) and 4-look (b)

simulated data.

levels equal to 4. This can be explained by the inclusion of the low resolution
information in the average products X,,s. In this image components, the speckle
effect is mitigated and classification over homogeneous areas is improved.
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At the highest decomposition level N = 5 this trend is not confirmed, due to an
extreme degradation of the spatial resolution. Fig. 8(b) shows that, for the 4-look
case, by using only 2 or 3 levels of decomposition, depending on the required false
positive rate, we get good CD performance. This is because of the loer geometric
resolution of the 4-look image with respect to the 1-look one. Thus higher level
of decomposition show a too low geometrical resolution, with a degradation of the
overall CD capabilities.

Concerning the FFL-ARS?2 strategy, the set of images X ., i.¢., starting from the
MS-ITCD feature, has been derived. Again, each X, image has been separately
thresholded to produce a ROC curve. Fig. 9 shows the ROC curves obtained at
different wavelet decomposition levels by this method. For the single-look case in
Fig. 9(a), as the wavelet decomposition n increases, the ROC curves show higher
TPR and better CD performance, with best performance for N = 5. Similarly to the
FFL-ARSI strategy, also for the FFL-ARS2 approach Fig. 9(b) shows that, for the
4-look case, 2 or 3 levels of decomposition provide the best performance, depending
on the required false positive rate. Therefore, the FFL-ARS algorithm can benefit
from the different characteristics of the CD features at different scales.

Since the ground truth is available for the two simulated scenarios, the confusion
matrix C can be computed to provide a quantitative performance assessment. The
columns of the matrix represent the instances in the predicted classes (w,,., i.e., no
change, in the first column, and w?., i.e., change, in the second column), while the
rows represent the instances in the true classes (wy. or w.).

Starting from the confusion matrix, it is possible to compute the Cohen’s kappa
which compares the accuracy of the classification system to the accuracy of a random
system:

_Po —Pe _ 1—-po
K= =1-

1 = pe 1= pe
where p, is the overall accuracy and p, is the accuracy of a random classifier.
Differently from the confusion matrix, « is a unique scalar value that provides
a straightforward comparison among change maps obtained by different change
detection algorithms.

For the 1-look image pair, we have:

(20)

497292 2337 498287 1342] @1

Cus-rrep = [ 2696 16075] Camer = [ 2114 16657

c _ [497672 1957 _ [493331 6298
FFL-ARST = | 9412 9359 FFL-ARS2 = | 2478 16293

corresponding to the Cohen’s kappa values reported in Table 1.

We recall that the MS-ITCD result has been obtained with optimal window size
and radius (w = 9 pixels, R = 30 quantised amplitude levels) for best change mapping
performance by means of two-class k-means clustering, while the FFL-ARS?2 fusion
strategy on a 3 X 3 window has been driven by the MS-ITCD feature obtained with
smaller window and radius, i.e., w = 5 pixels and R = 10 quantised amplitude levels.
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Table 1 Cohen’s kappa values of the CD maps obtained from the 1-look image pair.

Algorithm Cohen’s kappa
MS-ITCD 0.860
GMBR 0.903
FFL-ARS1 0.612
FFL-ARS2 0.779

For the 4-look image pair, we have:

31025 198] 31097 126] 22)

Cus-rep = [ 196 981 GMBR = [ 223 954

C _|31154 69 C _|31089 134
FFL-ARS1 = 510 667 FFL-ARS2 = 318 859

corresponding to the Cohen’s kappa values reported in Table 2.

Table 2 Cohen’s kappa values of the CD maps obtained from the 4-look image pair.

Algorithm Cohen’s kappa
MS-ITCD 0.826
GMBR 0.840
FFL-ARS1 0.689
FFL-ARS2 0.798

The best performance, i.e., the highest x values, are provided by the GMBR
algorithm for both 1-look and 4-look data, thanks to an outstanding capability of
rejecting false alarms with respect to FFL-ARS1 and, to a lesser extent, with respect
to FFL-ARS2 and MS-ITCD. This advantage of GMBR is confirmed by Fig. 7,
which also shows that the K-means clustering provides the optimal threshold values
corresponding to the maximum values of «.

Concerning the FFL-ARS method, detection performance depends on the choice
of the window size parameter for the CV computation. In particular, for the FFL-
ARSI case, the overall performance increases, both in terms of « coeflicient and
misclassified pixels for large windows, while for FFL-ARS2 a small window size is
preferred. In general, the FFL-ARS strategy aims at keeping the edge information of
the changed regions. This is clear by observing the left central change in Fig. 10(d)
when compared to the ground truth region R2 in Fig. 2(c).

The advantage of adopting a robust change feature such as MS-ITCD instead of
the log-ratio image in the FFL-ARS fusion strategy is evident for both 1-look and
4-look data, as shown by numerical and visual results.
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3.1.2 Qualitative Performance Assessment
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Fig. 10 Change maps for the 1-look case: MS-ITCD (a); GMBR (b); FFL-ARS1 (c); FFL-ARS2
(d).

Figures 10(a) and (b) show the final change maps computed by clustering, through
K-means with K=2, the single-scale feature MS-ITCD (Sect. 2.3.1) and the multi-
scale feature GMBR (19), respectively. Both maps confirm the objective evaluation
given by the confusion matrices and the « values, with excellent detection capabilities
in the 1-look case. The multi-scale nature of GMBR also provides an outstanding
false alarm rejection, as shown in Fig. 10(b).
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The comparison between the change detection maps obtained with FFL-ARS1
and FFL-ARS2 (with w = 5 and R = 10) (Fig. 10(c) and (d)) points out that the
former one presents several misclassification errors, while the latter is much more
accurate. An interesting characteristic of the FFL-ARS?2 approach is its capability
of preserving the spatial details of the changed regions, even better than the best
performing GMBR algorithm.

Similar considerations apply for the change maps in the 4-look case reported
in Fig. 11. The GMBR method provides the best change maps and shows very
good false-alarm rejection, while MS-ITCD seems to suffer from the poor spatial
resolution of 4-look data. FFL-ARS, in its MS-ITCD driven version, FFL-ARS2,
can provide a good quality CD map, as in Fig. 11(d), although at the expense of an
increased false alarm rate.

¢ ]
° *’le .’
P
(a) (b)
g o .a .
% e °

© (d)

Fig. 11 Change maps from the 4-look image pair: MS-ITCD (a); GMBR (b); FFL-ARSI1 (c);
FFL-ARS2 (d).

3.2 COSMO-Skymed Images

For the real data set two COSMO-Skymed images have been considered and pro-
cessed for assessing change detection capabilities in a true scenario. The considered
change between the two acquisitions (April 5th, 2009 in Fig. 12(a) and September
12th, 2009 in Fig. 12(b), i.e., before and after the destructive earthquake on April
9th) is the construction of a tent camp set up for earthquake survivors near a shopping
mall about 7 km West of the city center. Both 1-look acquisitions have been taken
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with right look-side, ascending pass, HH polarization, and 58 deg incidence angle.
The two images have 1m? pixel size and are 1000 x 1000.

A manually generated ground truth of the tent camp built after the earthquake is
reported in Fig.12(c).

(a) (b)

Fig. 12 Original pre- and post-event Spotlight acquisitions of L’Aquila test site: (a) April 5th, 2009;
(b); September 12th, 2009; manually generated ground truth of change, (c).

The MS-ITCD and GMBR change features computed on the image pair of Fig. 12
are reported in Fig. 13 showing similar responses to structural and statistical changes,
but different dynamic ranges.

The final change maps obtained by applying MS-ITCD, GMBR, FFL-ARS1, and
FFL-ARS?2 are shown in Fig.14. The two original images have been pre-processed
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Fig. 13 Change features from the CSK image pair of Fig. 12: (a) MS-ITCD; (b) GMBR.

(b)

to equalise their histograms and the analysis has been focused on the regions with
increased backscattering at the second date. All methods provide a clear description
of the changed region with different results in terms of detection capability, false
alarm rejection, and geometrical accuracy.

The analysis of the confusion matrices and the Cohen’s kappa values provides an
objective assessment of the characteristics of the three algorithms. The confusion
matrices are the following:

Cwyvs-Tep = [

CFFL-ARS2 = [

934874 17202
12799 35125

936092 11581
18827 33500

] CFFL-ARSI =

| com-|

30054 22273

922963 24710
15780 36547

[940501 7172

which can be synthesised by the unique index « in Table 3.

Table 3 Cohen’s kappa values of the CD maps obtained from the CSK image pair.

Algorithm Cohen’s kappa
MS-ITCD 0.685
GMBR 0.622
FFL-ARS1 0.527
FFL-ARS2 0.672

|

(23)
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Fig. 14 Change maps obtained from the L’Aquila test site: (a) MS-ITCD; (b) GMBR; (c) FFL-
ARSI; (d) FFL-ARS2.

The relatively low « values are due to inaccuracies of the ground truth which
reports changes in the tent camp area only.

FFL-ARS2 and MS-ITCD show the highest « values, thanks to the MS-ITCD
accurate detection of distributed scatterers, which provides a very good preservation
of small spatial features in the changed regions. FFL-ARS1 suffers from severe miss-
detection due to its underlying log-ratio feature, while GMBR, although its change
map appears clean and accurate at a first sight, is not capable of precisely locate the
small distributed scatterers which characterise the change regions of the tested CSK
image pair.
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4 Concluding Remarks

The capabilities of both single-scale and multiscale approaches of detecting changes
from two-date SAR acquisitions have been investigated and experimentally assessed
on 1-look and 4-look simulated images and on COSMO-Skymed Spotlight SAR data.
It has been shown that when application-oriented prior information is not available
for modeling different kinds of changes, multiscale approaches can be profitably
applied to detect changes directly from the image radiometric properties at different
dates. Among the tested algorithms, the single-scale MS-ITCD method has shown
very accurate detection of distributed scatterers, the multiscale FFL-ARS algorithm,
when driven by advanced change features such as MS-ITCD, has evidenced good
shape preservation, while the multiscale GMBR algorithm has demonstrated the best
tradeoff, for both simulated and true data, between speckle reduction and preservation
of geometrical details.
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