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Abstract—Smart cities take advantage and exploit the most
advanced information technologies to improve and add value to
existing public services. The Internet of Things (IoT) paradigm
makes the Internet more pervasive where objects equipped with
computing, storage and sensing capabilities are interconnected
with communication technologies. Because of the widespread
diffusion of IoT devices, applying the IoT paradigm to smart
cities is an excellent solution to build sustainable Information
and Communication Technology (ICT) platforms. Having citizens
involved in the process through mobile crowdsensing (MCS)
techniques augments the capabilities of the platforms without
additional costs. For proper operation, MCS systems require
the contribution from a large number of participants. Simula-
tions are therefore a candidate tool to assess the performance
of MCS systems. In this paper, we propose and present the
design of CrowdSenSim, a simulator for mobile crowdsensing.
CrowdSenSim operates in realistic urban environments, which
makes it an excellent tool for analysis of smart cities services.
We demonstrate the effectiveness of CrowdSenSim for the most
popular MCS sensing paradigms, participatory and opportunistic
and we present its applicability to a popular community service
in cities, namely smart public street lighting.

Index Terms—Mobile crowdsensing, simulations, smart cities.

I. INTRODUCTION

WORLD population living in cities has experienced an
unprecedented growth over the past century. While

only 10% of the population lived in cities during 1900, nowa-
days this percentage corresponds to 50% and is projected to
further increase [1]. Sustainable development plays therefore
a crucial role in city development. While only 2% of the
world’s surface is occupied by urban environments, cities
contribute to 80% of global gas emission, 75% of global
energy consumption [2] and 60% of residential water use [1].
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Smart cities rely on Information and Communication Tech-
nology (ICT) solutions to improve citizens’ quality of life [3],
[4]. The application of the Internet of Things (IoT) paradigm
to urban scenarios is of special interest to support the smart
city vision [4]–[6]. IoT is envisioned as the candidate building
block to develop sustainable ICT platforms. With IoT, every-
day life objects are uniquely identifiable and “smart”, i.e., they
are equipped with computing, storage and sensing capabilities
and can communicate one with each other and with the users
to enable pervasive and ubiquitous computing [7]. Including
citizens in the loop with crowdsensing approaches augments
capabilities of existing infrastructures without introducing ad-
ditional costs and has been proved to be a win-win strategy
for smart city applications [8]–[10].

Mobile crowdsensing (MCS) has emerged in the recent
years, becoming an appealing paradigm for sensing data [11].
In MCS, users contribute data generated from sensors em-
bedded in mobile devices including smartphones, tablets and
IoT devices like wearables. Accelerometer, gyroscope, magne-
tometer, GPS, microphone and camera are just a representative
set of sensors which are nowadays employed to operate a
number of applications in many domains, including, among
the others, health care, environmental and traffic monitoring
and management [12]. To illustrate, Google exploits crowd-
sourced information about smartphones locations to offer real-
time view of congested traffic on roads. Moreover, Google has
recently released Science Journal, a new application which
permits to gather and visualize data coming from smartphone
sensors [13].

The aggregated information acquired through MCS plat-
forms is typically delivered to a collector in the cloud and
consumed according to a Sensing as a Service (S2aaS) model
(see Fig. 1). S2aaS makes available to the public data collected
from sensors. Consequently, companies have no longer the
need to acquire an infrastructure to perform a sensing cam-
paign. IoT and MCS are key enablers in the S2aaS model,
which in turn is envisioned to play are indispensable role in
smart cities. Efficiency of S2aaS models is defined in terms of
the revenues obtained selling data and the costs. The organizers
of a sensing campaign, such as government agencies, academic
institutions or business corporations, sustain costs to recruit
and compensate the participants for their involvement [14].
Also the users sustain costs while contributing data. These
costs are the energy spent from the batteries for sensing and
reporting data and, eventually, the data subscription plan if



IEEE ACCESS 2

S2aaS Cloud Collector

Participants

Mobile and IoT Devices

Data

LTE

WiFi

Accelerometer Gyroscope Microphone Dual Camera Temperature

Fig. 1. Cloud-based MCS system

cellular connectivity is used for reporting.
In MCS, data acquisition or collection, can be participatory

or opportunistic [12]. In opportunistic sensing systems, the
user involvement is minimal: sensing decisions are application-
or device-driven. In participatory sensing systems, users are
actively engaged in the sensing process. The users, also called
participants in the remainder of the paper, are recruited by a
central platform, which dispatches sensing tasks. Users can
then decide which request to accept and, after accepting, they
have to accomplish specified sensing and data reporting tasks.
On one side, opportunistic sensing lowers the burden of user
participation as devices or applications are responsible to take
sensing decisions. Conversely, participatory sensing systems
are tailored to crowdsensing architectures with a “central
platform”, which facilitates system control operations like task
assignment, user incentives and rewarding to compensate the
participants for their contribution.

In this paper, we propose CrowdSenSim, a new tool for
simulating mobile crowdsensing activities in realistic urban en-
vironments. CrowdSenSim is specifically designed to perform
analysis in large scale environments for both participatory
and opportunistic sensing paradigms. CrowdSenSim allows the
researcher to investigate the performance of MCS systems,
with a focus on data generation and participant recruitment,
which is a pillar step in participatory sensing paradigms. The
simulation platforms offers to the researcher the capability
to visualize in an unprecedented fashion on urban maps the
results on data generation. Moreover, it allows the researchers
to assess at a fine-grained level the energy cost the participants
spend both for sensing and reporting the produced data.

The contribution synopsis of this paper can be summarized
as follows:
• Proposal of CrowdSenSim, a simulation platform for

MCS systems deployed in realistic urban environments
and presentation of its design features.

• Validation of CrowdSenSim’s performance for oppor-
tunistic and participatory sensing systems.

• Application of CrowdSenSim for public street lighting,
an essential service in current and future smart cities.

The paper is organized as follows. Section II illustrates
existing tools for simulation of MCS activities. Section III
presents the design criteria of CrowdSenSim highlighting its

objectives and scenarios of applicability. Section IV details
CrowdSenSim’s architecture. Section V presents performance
evaluation and Section VI illustrates the use of CrowdSenSim
for smart lighting. Finally, Section VII concludes the work and
outlines future directions.

II. BACKGROUND ON CROWDSENSING

This section reviews works in the field of performance
evaluation of MCS systems through simulations. Currently,
the existing tools aim either to characterize and model com-
munication aspects or define usage of spatial environment [15].
This section provides a brief summary on this regard in the
following paragraphs.

Tanas et al. propose to exploit Network Simulator 3 (NS-
3) for crowdsensing simulations [16]. The objective is to
assess the performance of a crowdsensing network taking into
account the mobility properties of the nodes together with the
wireless interface in ad-hoc network mode. Furthermore, the
authors present a case study about how participants could re-
port incidents in the public rail transport. NS-3 provides highly
accurate estimations of network properties. However, having
detailed information on communication properties comes with
the cost of losing scalability. First, it is not possible to simulate
tens of thousands of users contributing data. Second, the
granularity of the duration of NS-3 simulations is typically
in the order of minutes. Indeed, the objective is to capture
specific behaviors such as the changes of the TCP congestion
window. However, the duration of real sensing campaigns is
typically in the order of hours or days.

In [17], Farkas and Lendák present a simulation environ-
ment developed to investigate performance of crowdsensing
applications in an urban parking scenario. Although the ap-
plication domain is only parking-based, the authors claim that
the proposed solution can be applied to other crowdsensing
scenarios. However, the scenario considers only drivers as type
of users and users travel from one parking spot to another one.
The authors consider humans as sensors that trigger parking
events. However, to be widely applicable, a crowdsensing
simulator has to take into account data generated from mobile
and IoT devices’ sensors carried by human individuals.

Mehdi et al. propose CupCarbon [18], which is a discrete-
event wireless sensor network (WSN) simulator for IoT and
smart cities. One of the major strengths is the possibility to
model and simulate WSN on realistic urban environments
through OpenStreetMap. To set up the simulation, the re-
searchers have to individually deploy on the map the various
sensors and the nodes such as mobile users, gas and media
sensors and base stations. The approach is not suitable for
large scale crowdsensing scenarios with thousands of users.

III. CROWDSENSIM: DESIGN PRINCIPLES

This section presents CrowdSenSim in a nutshell, high-
lighting the principles of the design, its objectives and the
scenarios of applicability. Performing simulations in complex
environments such as modern cities requires the simulation
platform to be scalable, in other words it does not have to limit
the researcher in the choice of important parameters such as
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the simulation period or the number of users. The scalability
requirement is essential and permits CrowdSenSim to mea-
sure performance of smart city applications. The following
paragraphs illustrate in more details the design criteria.

Scalability: For proper operation, MCS systems require a
large number of contributors. Therefore CrowdSenSim is
designed to take into account participants in the order of tens
of thousands that move a in wide realistic urban environment.
Each individual can potentially own several mobile and IoT
devices. The time dimension is also important. The duration of
a sensing campaign can range from hours to days and Crowd-
SenSim addresses this challenge efficiently. For instance, let us
consider 10 000 users producing data with a duration of only
30 minutes per day. Using commonly available sensors on the
market such as an accelerometer working at 50 Hz frequency
12 bits long samples, the total amount of generated data
by each user would be 1.35 GB. Considering the prolonged
duration of user contribution and additional sensors would
considerably augment this figure.

Realistic urban environment: CrowdSenSim relies on real-
istic urban environments, which makes the simulator flexible
and easy to be adopted in any city. Furthermore, it allows to
perform analysis that provide meaningful insights to munic-
ipalities to understand the feasibility and the potentiality of
public services employing MCS techniques. Simulations over
a grid or a square area as abstraction levels lower the complex-
ity, but do not allow to take into account important features
such as movements in real streets and physical obstacles such
as buildings. CrowdSenSim incorporates this feature allowing
users to include the layout of cities as input.

User mobility: Human mobility is defined as sequences of
spatiotemporal user movements. Understanding human mobil-
ity in an urban environments is crucial to design mobility pat-
terns that meet social behaviors and scale to the requirements
of modern smart cities [19]. CrowdSenSim includes a number
of human mobility patterns designed for pedestrian mobility
in urban environments.

Costs of Sensing: The sensing activity impacts on the energy
budget of the participants’ mobile devices. CrowdSenSim is
able to capture the energy directly spent for the sensing
tasks as well as the energy spent for communications. IoT
and mobile devices are equipped with several communication
technologies, including 3G/LTE, WiFi and Bluetooth. Each
communication technology drains battery of the devices differ-
ently and can have associated costs (e.g., users have a limited
monthly plan).

IV. CROWDSENSIM: THE ARCHITECTURE

The architecture of CrowdSenSim follows the design spec-
ifications illustrated in Section III implementing independent
modules to characterize the urban environment, the user mo-
bility, the communication and the crowdsensing inputs, which
depends on the application and specific sensing paradigm
utilized. Fig. 2 graphically shows the relations between the
modules, that are explained in details hereafter.

User MobilityList of Events

City Layout

SIMULATOR
CrowdSensing

Inputs

Results

Fig. 2. Main modules of CrowdSenSim

A. City Layout Module

The module in charge of defining the city layout allows
the researcher to input into the simulator the city where
simulations will be performed. Specifically, the layout of the
city is defined in terms of a set of coordinates C containing
information on <latitude, longitude, altitude>. The set of
coordinates compose the streets of the city where the users
will move during simulation runtime and can be obtained with
online tools like OpenStreetMaps or DigiPoint. In this version
of the simulator, we rely on Digipoint, which is a crowd-
sourced application providing free access to street-level maps
[20]. Fig. 3 shows the urban environments currently available
for simulations, namely the city center of Luxembourg (see
Fig. 3(a)), Trento (see Fig. 3(b)) and Madrid (see Fig. 3(c)).
The center of Luxembourg city covers an area of 1.11 km2

with a population of 110 499 inhabitants as of the end of 2015
and is the home of many national and international institutional
buildings. The city center of Trento has a population 117 317
inhabitants as of the beginning of 2016 and is the capital
of the homonym Province. The city center of Madrid covers
approximately an area of 5.23 km2 with a resident population
of 149 718 residing inhabitants.

The city layout module allows the researcher to define the
size of the city and the level of detail of the urban environment.
High resolution of the city layout, which corresponds to
choose a higher number of coordinates, increases the precision
of user movements at the cost of longer and more computa-
tionally expensive simulations. Viceversa, a coarse resolution
of the city layout makes the simulations to run faster, but
lowers the accuracy of users movements and precision of the
urban environment. The latter is important: having a high
resolution of the urban environment permits to characterize
places, e.g., to identify among the others bars, restaurants,
schools or hospitals.

B. User Mobility Module

The user mobility module defines the spatiotemporal prop-
erties of user movements in the urban environment, which
compose the so-called list of events (see Fig. 2). We define
an event as “the arrival of an user in a given coordinate at a
given instant of time.”
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(a) Luxembourg (b) Trento (c) Madrid

Fig. 3. Maps of cities obtained from DigiPoint

The module defines the following steps to determine the
spatiotemporal list of events:
• Inizialization: it characterizes the location and time of

user arrival.
• Mobility: it characterizes the user movements after arrival.
1) Initialization: This initial step is in charge of deter-

mining where and when each user starts moving in the city.
Each user arrival is therefore characterized by a coordinate
ca and time ta. In the current version of the simulator, the
location is randomly determined among the set of coordinates
C of the map. The design choice builds on the assumption
that each of the coordinates has the same relevance, i.e., it
does not exists a difference between popularity of places.
Future implementations will allows the researchers to choose
between random and popularity-driven assignment of user
location. The time of user arrival can be either randomized
or based on real-world traces, which are the results of a study
on pedestrian mobility and are public available on Crawdad
(ostermalm_dense_run2) [21]. For example, Fig. 4 shows the
probability density function of the user arrival resulting from
the study of the traces. In practice, to obtain the results
presented later in Section V-A2, the density computed in Fig. 4
was scaled to be adapted to an arrival time period between
8:00 AM - 1:40 PM for 20 000 users. The probability density
function of user arrival is indeed determined by two global
simulation inputs: the total number of users in the system
and the simulation period. In random user arrival modes, the
default probability density function is uniform, i.e., during
the simulation period each minute has the same probability
to be chosen as arrival time for each user. The researcher can
easily modify the user arrival time by changing the probability
density function. In the case study presented in Section VI, we
will present a modification of the probability density function
of user arrival suitable for the application of public street
lighting.

2) Mobility: In the default setting, each user moves over
the set of coordinates C for a predefined amount of time Tmove
which is uniformly distributed between [10, 20] minutes with
an average speed Smove uniformly distributed between [1, 1.5]
m/s. The default setting can be easily modified. After arrival in
ca and time ta, the next move makes the user to jump in cnext
and time tnext. The simulator choose cnext to be physically in
proximity of ca, i.e., it chooses a coordinate among C which is
on the same street or square with distance below a maximum
radius. Once determined cnext, the simulator computes tnext on
the basis of the physical distance between ca and cnext the
speed of the user. The distance is computed with the Haversine
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Fig. 4. User distribution of mobility trace “kth/walkers”

formula [22] and permits to compute the amount of time it
takes between the two points ttravel. Then, tnext is determined
as follows:

tnext = ta + ttravel, (1)

and the total amount of time the user is allows to travel Tmove
is updated as follows:

Tmove = Tmove − ttravel. (2)

The user stops moving when Tmove ≤ 0. It is worth to highlight
that during each movement the speed of the movement Smove
changes. The new value is generated again uniformly dis-
tributed between [1, 1.5] m/s to mimic the change of velocity
during walking.

In the current version, users move only once during the
simulation period and it is not possible yet to define a direction
of movement for each user. We plan to extend the simulator
to take into account this possibility as future work.

C. Crowdsensing Inputs Module

This module defines the inputs specific to crowdsensing
analysis. CrowdSenSim relies on two types of inputs. The first
set does not depends on the sensing paradigm employed and
comprises all the parameters related to sensing and commu-
nication operations. The second set includes parameters that
are specific to the participatory sensing paradigm. Unlike the
opportunistic sensing paradigm which does not have particular
input parameters, in participatory systems it is necessary to
define the concept of task and how to assign tasks to users.

Sensing and Communication Parameters: In CrowdSenSim,
data generation takes into account sensors commonly available
in current IoT and mobile devices. Table I presents de-
tailed information on sensors and communication parameters.
Specifically, CrowdSenSim generates sensing readings from
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TABLE I
SENSOR AND COMMUNICATION EQUIPMENT PARAMETERS USED FOR PERFORMANCE EVALUATION

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 50 Hz
Sample size 12 Bits
Current 35 µA

Temperature Sample rate 182 Hz
Sample size 16 Bits
Current 182 µA

Pressure Sample rate 157 Hz
Sample size 16 Bits
Current 423.9 µA

(a) Sensor Equipment

SYMBOL VALUE UNIT DESCRIPTION

ρid 3.68 W Energy in idle mode
ρt x 0.37 W Transmission power
ρr x 0.31 W Reception power
λg 1000 fps Rate of generation of packets
γxg 0.11 · 10−3 J Energy cost to elaborate a generated packet

(b) Communication Equipment

the FXOS8700CQ 3axis linear accelerometer from Freescale
Semiconductor [23] and the BMP280 from Bosch [24], which
is a digital pressure and temperature sensor. For a worst
scenario analysis, in the default settings the sensors keep
generating data according to their sampling frequency for the
entire period of users movements.

For communication purposes, the current version of the
simulator employs only WiFi technology. Based on the sample
resolution of the sensors, data is first organized in packets of
1 500 Bytes and delivered to the collector continuously during
users movements. Each user transmit data to the closes WiFi
Access Point (AP). The APs are characterized by <latitude,
longitude>, not necessarily from the set C. For the city of
Luxembourg, the precise location of WiFi APs was obtained
from an online tool1.

Parameters for Participatory Sensing Paradigm: Crowd-
SenSim defines the following properties for tasks: location,
time of deployment, duration and coverage. With the default
settings, all the parameters are randomly selected from the
set of coordinates C, uniformly distributed within the sim-
ulation period and as fraction of the simulation period for
location, time of deployment and duration respectively. The
task coverage defines the maximum radius where users can
actively contribute to the task and is fixed for all the tasks.
The researcher can also input to the simulator a file describing
the aforementioned properties.

D. Simulator and Results

CrowdSenSim during simulation runtime computes a num-
ber of statistics, including energy consumption and amount of
data generated and provides the researcher to a visualization
tool to display the results. For example, with the help of
Google Heatmap tool2, CrowdSenSim outputs on the real
maps the most populated tasks or WiFi APs.

The energy E spent for communication purposes is com-
puted as follows. E is consumed during a transmission time
τtx and is defined as:

E =
∫ τt x

0
Ptx dt, (3)

1Online: https://www.hotcity.lu/en/laptop/www/About/Wi-Fi-coverage
2Available on: https://developers.google.com/maps/documentation/

javascript/examples/layer-heatmap

TABLE II
SIMULATION SETTINGS FOR ANALYSIS OF PARTICIPANT RECRUITMENT

POLICY

PARAMETER VALUE

Number of users [10 000]
Overall evaluation period 8:00 AM - 2:00 PM
Time of travel per user Uniformly distributed in [10, 20] min
Average user velocity Uniformly distributed in [1, 1.5] m/s

Timeslot duration 1 minute
Task duration 30 timeslots
Number of tasks 25
Dmax 30 m

where Ptx is the power consumed for transmissions of WiFi
packets generated at rate λg [25]:

Ptx = ρid + ρtx · τtx + γxg · λg . (4)

V. PERFORMANCE EVALUATION

This section provides performance analysis of CrowdSen-
Sim. First, the results obtained for participatory and op-
portunistic sensing systems are illustrated, with a focus on
participant recruitment for the former sensing paradigm and
energy consumption and amount of data collected for the
latter sensing paradigm. Second, technical evaluation of the
simulator is shown, with a focus on CPU, processing time
and memory utilization.

For performance evaluation, the simulations are carried out
using a Unix machine equipped with Ubuntu 14.10. Further-
more, the machine supports a CPU Intel ®Core TM i3 at 2.27
GHz with a system memory of 1916 MiB.

A. Analysis of Participatory and Opportunistic Crowdsensing
Scenarios

1) Participatory Sensing Scenario: In participatory sensing
systems, we employ CrowdSenSim in the context of partici-
pant recruitment and implement a policy defining user recruit-
ment and task assignment [14]. Devising proper recruitment
policy is important. On one hand, it allows the organizer to
minimize the expenditure. On the other hand, it helps to choose
the users that will carry out the sensing task successfully.
For example, in the public safety context, it is essential
to select users to maximize the trustworthiness of collected
data [26], [27]. The policy can be employed in distance-based
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(a) SDRP Policy (b) DBRP Policy

Fig. 5. User recruitment for sensing tasks deployed in Luxembourg
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Fig. 6. Number of recruited users under SDRM and DBRM

recruitment mode (DBRM) or sociability-driven recruitment
mode (SDRM). In DBRM, the spatial distance between the
users and the sensing task is the discriminant factor defining
user eligibility. Users far from Dmax from the sensing task i
are never considered as potential contributors in that task. In
SDRM, the user sociability, defined as amount of data users
consume or the time they spend using mobile social network
applications is the discriminant factor for recruitment.

Table II lists the details of the simulation set-up. We employ
CrowdSenSim for demonstration purposes to visualize the
distribution of user recruitment and refer the reader for further
details on the results to [14]. Fig. 5 compares the number of
users recruited in SDRM and DBRM for all the deployed 25
tasks in Luxembourg city center using the Google Heatmaps
tool. Tasks with higher number of users recruited are marked
with a bigger radius and with more bright and intense colors.
Fig. 6 shows that SDRM outperforms DBRM as the number of
recruited users is higher for all the deployed tasks. Moreover,
for task with ID equal to 8, the SDRM is able to recruit users
where the DBRM fails.

2) Opportunistic Sensing Scenario: In opportunistic sens-
ing paradigm, users contribute continuously data even if they
do not receive a specific task. In this context, CrowdSenSim is
employed for evaluation of data generation in the city center of

Luxembourg having fixed the number of participants to 20 000,
which corresponds to more than one fifth of the population
of Luxembourg. The objective of the experiment is to assess
during the simulation period from 8:00 AM to 2:00 PM the
energy consumption due to sensing and reporting and the
amount of generated data under different user arrival pattern.
Users move according to the predefined settings illustrated in
Section IV-B. In the first user arrival pattern, the start time of
the walk is uniformly distributed between 8:00 AM and 1:40
PM to allow users starting moving towards the end of the
period to correctly end their journey at 2:00 PM. The second
arrival pattern is based on the data set with traces of pedestrian
mobility (ostermalm_dense_run2) [21].

Energy Cost for Sensing and Reporting: Fig. 7 presents
the distribution of users and their energy spent for sensing
with the uniform and traces-based user arrival patterns. As
expected, the user arrival pattern does not influence the energy
consumption, which only depends on the amount of time the
users generate data. As the users contribute data for time
periods as low as 10 minutes up to time periods of a maximum
of 20 minutes, the profiles of Fig. 7(b) and Fig. 7(a) follows a
normal distribution. Current drain of sensing operations is on
average 373.41 µAh and 368.80 µAh for uniform and traces-
based arrival patterns. In the worst case, few users experience
a cost that is nearly more than double with respect to the
average. Comparing to the battery capacity available in modern
smartphones, which is in the order of 2000 mAh, it is possible
to conclude that the energy cost for sensing is negligible with
respect to the energy spent for communications (see Fig. 7(b)).

Amount of Data Collected: The amount of information
reported by users devices is unveiled in the following experi-
ment, which evaluates the amount of data generated per single
sensor for the two different user arrival patterns.

Fig. 8 shows the total amount of data collected along with
the simulation period for the two user arrival patterns. As
expected, the amount of data is proportional to the sampling
frequencies of the three considered sensors. Recalling that
each user contributes only during a short period of time
(10 to 20 minutes), the amount of collected information is
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Fig. 7. Energy spent for sensing and communication

8:
00

8:
20

8:
40

9:
00

9:
20

9:
40

10
:0

0
10

:2
0

10
:4

0
11

:0
0

11
:2

0
11

:4
0

12
:0

0
12

:2
0

12
:4

0
13

:0
0

13
:2

0
13

:4
0

14
:0

0

0

0.2

0.4

0.6

0.8

Time

D
at

a
(G

iB
)

Accelerometer Temperature Pressure

(a) Arrival pattern with uniform distribution

8:
00

8:
20

8:
40

9:
00

9:
20

9:
40

10
:0

0
10

:2
0

10
:4

0
11

:0
0

11
:2

0
11

:4
0

12
:0

0
12

:2
0

12
:4

0
13

:0
0

13
:2

0
13

:4
0

14
:0

0

0

0.5

1

1.5

2

Time

D
at

a
(G

iB
)

Accelerometer Temperature Pressure

(b) Arrival pattern based on traces

Fig. 8. Amount of data generated

Fig. 9. GNOME System Monitor Make it full page otherwise difficult to
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considerable. For example, 20 000 users arriving according
to the uniform arrival pattern would generate 2.61797 GB,
12.71 GB and 10.96 GB for the accelerometer, temperature
and pressure sensors respectively. Fig. 8(a) shows the results
for the uniformly distributed arrival pattern. As expected, the
amount of contribution remains constant after the initial set
up as the amount of users arriving in a given time window
is constant along the simulation period. Fig. 8(b) illustrates
the results for the user arrival pattern based on the data set.
Unlike the previous case, the shape of the curve follows the
probability density function of the traces as per Fig. 4.

B. Performance of the Simulator

This section provides a technical evaluation of the simulator
performance. The metrics evaluated concern processing time,
CPU and memory utilization. The experiments are carried out
deploying CrowdSenSim in a Virtual Machine (VM) running
Ubuntu 14.10 with two different profile settings, namely 1024
MiB and 2048 MiB of memory. The setting allows us to profile
the performance of the simulator perceived by the end users.
The VM is equipped with GNOME System Monitor which
permits to verify the system performance. Fig. 9 shows an
example for a simulation with 20 000 participants in oppor-
tunistic sensing scenario.

Fig. 10 shows the profile of the CPU utilization expressed
in percentage obtained with the dstat tool3. The experiment
analyzes the performance in a scenario with a huge number
of users, 100 000, in the city of Luxembourg. The statistics
obtained have been filtered to spot the profile of the process
running the simulation. The resulting graph shows that the
CPU utilization can occupy as much as 25% of the available
resources and this happens at the beginning where most of the
computation occurs to process the events.

The next set of experiments aims at assessing the perfor-
mance of processing time and memory occupancy. Fig. 11
shows the results obtained Both experiments were performed
for the city of Luxembourg, with both VMs configurations

3Available on: http://dag.wiee.rs/home-made/dstat/
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Fig. 10. CPU utilization for a simulation run with 100 000 users

and with an increasing number of participants from the
set {1 000, 5 000, 10 000, 20 000, 50 000, 70 000, 100 000}. The
maximum number of users was selected consistently with the
population of the city. Fig. 11(a) analyzes the processing time,
which remains almost constant for a number of participants
lower than 10 000 and then it increases exponentially for both
the configuration settings. Fig. 11(b) analyzes the memory
consumption with a focus on the Resident Set Size (RSS),
which defines the amount of memory the process occupies
in the RAM. For both configurations of the VM, the RSS
remains almost identical for a number of participants lower
than 20 000, then the process tends to occupy as much as
possible all the available resources.

VI. CASE STUDY: SMART LIGHTING

CrowdSenSim is a candidate tool for analysis of smart
city services. This section presents a case study where the
simulator is employed to assess the performance of public
street lighting. However, the capabilities of the simulator
are not restrained to this particular application scenario. We
are currently working to extend the simulator capabilities to
include vehicles as contributors to the data collection process
and to analyze other important and challenging issues of
modern cities, e.g., waste management. Waste management in-
volves the whole process of monitoring waste locations, truck
routes, collection phases and waste disposal. In this context,
CrowdSenSim can verify the performance of a monitoring
system in which can actively cooperate in locating and rating
the situation of sites to identify where collection is urgent.

A. The problem of Smart Lighting in Modern Smart Cities

Public lighting is a traditional city service provided by
lampposts widely distributed in streets and roads. Lighting
causes nearly 19% of worldwide use of electrical energy
and entails a 6% of global emissions of greenhouse gases.
A decrease of 40% of energy spent for lighting purposes
is equivalent to eliminate half of the emissions from the
production of electricity and heat generation of the US [28].
Specifically, public street lightning, which is an essential com-
munity service, impacts for around 40% on the cities’ energy
budget. Consequently, in preparation of the EU commitments,

optimizing the lighting service is a primary objective for the
municipalities [29].

The street lighting solutions currently implemented in cities
are not energy efficient. Typically, every lamp operates at
full intensity 12 hours a day on average: 8 hours during
summer and 14 hours during winter period [29]. As a result,
the costs the municipalities sustain are high [28]. A number
of different types of lamps are applicable for public street
lighting, including High Pressure Sodium (HPS), Metal-halide
(MH) lamps, Compact Fluorescent lamps (CFL) and Light-
emitting diode (LED). LEDs have an average lifetime 4 times
longer than HPS lamps and 10 times longer if compared to
MH lamps. Installing LEDs is effective to reduce hardware,
installation and maintenance costs. Low wattage provides
significant energy savings and allows increasing the lamp
efficiency [30], [31]. The HPS lamps do not support dimming
and only LEDs can be employed to perform dimming properly.
The use of LEDs is gradually gaining popularity due to its
photo metric characteristics, such as low weighted energy
consumption (kW/1000hrs), high luminous efficacy (lm / W),
high mechanical strength, long lifespan and reduction of light
pollution. LED lamps can dim the light intensity by more than
50% modifying therefore the output level of light according
to the circumstances. For example, when traffic is low or in
rarely visited areas of the city, like the parks at night. The city
of Brittany in France, dims street lights by 60% between 11
PM and 5 AM to decrease waste energy [29].

We devise a smart lighting method for smart cities which
dims the light of lampposts in proportion to the number of
users in the vicinity. To detect the presence of users nearby
the lampposts a presence sensor like the SE-10 PIR motion
sensor is assumed to be installed on site [32]. With presence
sensors, every lamppost is able to recognize the presence of
citizens within a certain radius R like illustrated in Fig. 12.
Similarly to the solution adopted in Brittany, i.e., the minimum
light intensity level is 60% if no users are within the coverage
radius R and increases or decreases proportionally on the basis
of the passage of the users. In more details, if the number
of users is increasing, then the light intensity increases or
remains at 100%, while if the number of users reduces from
previous status, then the light intensity reduces until it reaches
the minimum level.

B. Evaluating Smart Lighting Solutions with CrowdSenSim

To evaluate the proposed smart lighting solution with
CrowdSenSim, a set of 537 lampposts has been deployed
according to their physical location in the streets and squares
of Luxembourg City. Fig. 13 details the position of each
lamppost given in terms of coordinates <latitude, longitude,
altitude>. Each lamp is equipped with LED technology and
at full light intensity consumes 82.7 kW/1000hrs.

The number of users moving in the city is set to 5 000.
Each of them walks for a period of time that is uniformly
distributed between [10, 20] minutes with an average speed
uniformly distributed between [1, 1.5] m/s. The users begin
walking according to a specific arrival pattern. During the
evaluation period, set between 9 PM and 7 AM, each user has
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a probability to start traveling that is defined by the probability
density function (PDF) illustrated in Fig. 14. In more details,
during 9 PM and 10 PM nearly one third of the total number of
users starts walking and at 7 AM all 5 000 users end traveling.

Fig. 15 shows the results of the lamppost activity obtained
through CrowdSenSim. On average, the smart lighting solution
with LED technology and light dimming saves nearly 68%
of energy consumption with respect to the current adopted
solution. Indeed, the set of lampposts consumes on average
298.5 and 927.4 kWh per day respectively.

VII. CONCLUSION

In this paper we presented CrowdSenSim, a simulation
platform for MCS systems. CrowdSenSim is tailored to assess
sensing activities in large-scale realistic urban environments
and is designed to output results on participant recruitment,
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Fig. 14. Probability density function of user mobility during the evaluation
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Fig. 15. Heatmap of lampposts activity
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data generation and the cost sustained for sensing and report-
ing from the users point of view. We also demonstrated the
suitability of the simulator for analysis of smart city services
with a case study on public street lighting.

For future work, we plan to implement a more sophisticated
and accurate communication model to analyze in details the
networking aspects of MCS systems and to exploit Crowd-
SenSim to investigate other important city services such as
smart waste management. Moreover, future efforts will be
devoted to extend CrowdSenSim to vehicular environment,
where vehicles contribute to the process of data generation in
addition to mobile devices. The current trend sees automotive
companies to increase on-board equipment of vehicles with
storage, computing capabilities and a growing set of sensors.
Data collected by these sensors is not only beneficial for the
operation of the vehicles and monitoring of their status, but
is projected to become a precious source of information for
municipalities as well.
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