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Linear Equilibrium Adsorbing Solute Transport in Physically 
and Chemically Heterogeneous Porous Formations 

2. Numerical Results 

WILLEM JAN P. BOSMA, • ALBERTO BELLIN, 2.3 SJOERD E. A. T. M. VAN DER ZEE, x 
AND ANDREA RINALDO 4 

Numerical Monte Carlo simulations were conducted to assess dispersion of reactive solutes in 
two-dimensional physically and chemically heterogeneous porous media, using random fields with 
assigned correlation structure for hydraulic conductivity and linear adsorption coefficient. Conditions 
under which linearization of adsorption is valid are discussed. Lognormal distributions of hydraulic 
conductivity and adsorption coefficient were assumed. Calculations have been performed for positive 
and negative correlation between hydraulic conductivity and adsorption coefficient, and for uncorre- 
lated cases. Effects of varying different properties including mean and average sorption coefficient, 
physical and chemical integral scale, and variance of hydraulic conductivity on dispersive behavior are 
shown. A larger mean sorption coefficient enhances plume spreading in uncorrelated and in negatively 
correlated cases. In positively correlated cases, counteracting effects of physical and chemical 
heterogeneity play an important role. The outcome of these counteracting effects depends on the 
mean, variance, and integral scales of the spatially variable properties. The analytical solutions, 
derived in paper 1 (Bellin et al., this issue), reveal a good agreement with the numerical results in a 
significant range of heterogeneities. The generally surprisingly good agreement of the analytical 
solutions with the numerically obtained results can possibly be attributed to opposing effects of 
nonlinearities neglected in the derivation of the analytical solutions. In the case of strong physical 
heterogeneity the analytical solutions perform slightly better than in the case of strong chemical 
heterogeneity. 

1. INTRODUCTION 

From an environmental point of view, solute transport and 
its implications are an important area of research. In recent 
years, much attention has been addressed toward character- 
ization of spatial variability of field-scale properties because 
of increasing evidence of its prominent role in field- and 
basin-scale transport. Experimental results have demon- 
strated the existence of heterogeneity of soil physical [Big- 
gat and Nielsen, 1976; Bresler and Dagan, 1983; Sudick3,, 
1986; Freyberg, 1986; Goltz and Roberts, 1986; Hess et al., 
!992] and soil chemical [Boekhold and van der Zee, 1992; 
Mackay et al., 1986a] parameters. Large solute transport 
experiments [Mackay et al., 1986b; Freyberg, 1986; Le- 
Blanc et al., 1991] have shown the impact of spatially 
variable parameters, which emphasizes the need for under- 
standing the effects of heterogeneity at local and regional 
scales [Dagan, 1986]. 

Considerable theoretical progress has been made with 
respect to flow and transport in physically heterogeneous 
porous media. Stochastic methods have been used to derive 
analytical expressions to describe flow and nonreactive 
solute transport in heterogeneous media by, e.g., Gutjahr 
and Gelhar [1981], Dagan [1984, 1988, 1989], Gelhar and 
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Axness [1983], Garabedian [1987], Neuman et al. [1987], 
Rubin [1990], and Rubin and Dagan [1992]. Use of a 
stochastic approach enables incorporation of uncertainty, 
resulting in expressions for first- and higher-order moments 
of the expected plume behavior. Various numerical studies 
have been performed to show the applicability of analytical 
approaches and to demonstrate the dispersive behavior of 
nonreactive transport in heterogeneous formations [e.g., 
Graham and McLaughlin, 1989; Rubin, 1990, 1991a, b; 
Tompson and Gelhar, 1990; Ababou et al., 1989; Bellin et 
al., 1992]. Numerical approaches based on stochastic theory 
often use uncoupled flow calculations and particle-tracking 
schemes to compute dispersion of a mass of solute in porous 
formations. This technique was used by Freeze [1975], 
Rubin [1990], Salandin and RinaIdo [1990], Valocchi [1989], 
and Bellin et al. [1992]. 

The above cited works primarily focused on heteroõeneity 
of physical parameters, usually incorporated in a lumped 
variable, e.g., hydraulic conductivity. Less frequently, het- 
erogeneity of soil chemical parameters has been taken into 
consideration. Examples where only spatial variability of 
chemical properties of the porous medium was taken into 
account are given by van der Zee [ 1990a], Chrysikopoulos 
et al. [1990, 1992], andBosma and van derZee [1993]. In the 
work by Chrysikopoutos et al. [1990, 1992], analytical ex- 
pressions were derived for linearly adsorbing solute trans- 
port in one- and three-dimensional porous media with spa- 
tially variable retardation factor. Van der Zee [ 1990a] and 
Bosma and van der Zee [1993] considered nonlinearly ad- 
sorbing solute transport in chemically heterogeneous porous 
media. Van der Zee [1990a] used a semi-two-dimensional 
approach, assuming that heterogeneity in the horizontal 
plane dominates the heterogeneity in the direction of flow, to 
derive analytical expressions for the redistribution of a 
solute initially present in the topsoil. Bosma and van der Zee 
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[1993] performed numerical Monte Carlo simulations to 
assess the effect of column scale heterogeneity on one- and 
semi-two-dimensional dispersive behavior. Both physical 
and chemical heterogeneity were taken into account by van 
der Zee and van Riemsd•jk [1987], Dagan [1989], Russo 
[1989a, b], Cvetkovic and Shapiro [1990], Destouni and 
Cvetkovic [1991], Kabala and Sposito [1991], and Bellin et 
al. [this issue]. The approaches used differ in the assumed 
correlation between physical and chemical properties, as 
well as in whether transport in multidimensional porous 
media was assumed, whether linear or nonlinear, equilib- 
rium or nonequilibrium adsorption was assumed, and 
whether first-order decay was assumed. Also, results were 
obtained either analytically or numerically. 

One- and semi-two-dimensional approaches were used by 
van der Zee and van Riemsd•7k [1987], Russo [1989a, b], 
and Destouni and Cvetkovic [1991]. Russo [1989a, b] 
examined the effect of spatial variability of physicochemical 
interactions on transport of NaYCa-chloride salts through a 
one-dimensional unsaturated soil. It was concluded that 

heterogeneity of soil properties in the unsaturated zone may 
enhance the heterogeneity of the field response. Van der Zee 
and van Riemsdijk [1987] derived analytical expressions for 
the penetration depth of a nonlinearly adsorbing solute, 
considering a semi-two-dimensional field with spatially vari- 
able water velocity, adsorption coefficient, and applied 
amount. The semi-two-dimensional field was modeled as an 

ensemble of noninteracting parallel stream tubes. Destouni 
and Cvetkovic [1991] showed double-peak behavior of the 
breakthrough of a kinetically linearly adsorbing solute in a 
semi-two-dimensional field with spatially variable water ve- 
locity and sorption rate coefficients. 

Fully two- and three-dimensional analytical approaches 
were given by Dagan [1989], Cvetkovic and Shapiro [1990], 
Kabala and Sposito [1991], and Bellin et al. [this issue]. 
Dagan [1989] derived the asymptotic behavior of dispersion 
of linearly adsorbing solutes in heterogeneous media with 
spatially variable retardation factor perfectly correlated with 
spatially variable hydraulic conductivity. Cvetkovic and 
Shapiro [1990] considered nonequilibrium linear adsorption 
and examined perfectly correlated and uncorrelated sorption 
rate coefficients and hydraulic conductivity. They averaged 
the position of the solute in the transverse direction to derive 
an expression for the arrival time at a plane perpendicular to 
the direction of transport. Kabala and Sposito [1991] exam- 
ined the behavior of a solute subject to spatially variable 
adsorption and first-order decay in a heterogeneous velocity 
field. They showed that the effective solute velocity differs 
from the ensemble average solute velocity. Bellin et al. [this 
issue] extended Dagan's [1989] theory for the dispersion of 
linearly adsorbing solutes in physically and chemically het- 
erogeneous porous media. They derived expressions for the 
second-order moments of transport under ergodic conditions 
to assess the longitudinal and transverse spreading behavior 
as a function of time. Perfectly correlated and uncorrelated 
cases were considered. 

This paper deals with numerical experiments to show the 
effect of spatially variable hydraulic conductivity in combi- 
nation with a spatially variable sorption coefficient. Param- 
eters that are used to describe the heterogeneities (i.e., mean 
sorption coefficient, correlation between physical and chem- 
ical properties, length of integral scales, variances of spa- 
tially variable parameters) are varied in the numerical calcu- 

lations. The numerical experiments are limited to a two. 
dimensional domain due to computational restrictions. 
Additionally, the performance and applicability of the ana- 
lytical solutions derived in paper 1 [Bellin et al., this issue] 
are shown for the cases considered. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We consider transport of a reacting solute in a chemically 
and physically heterogeneous two-dimensional porous me. 
dium. The physical heterogeneity is represented by a spa. 
tially variable hydraulic conductivity whereas the chemical 
heterogeneity is due to a spatially variable adsorption coef. 
ficient. Although basically heterogeneity of these parameters 
is deterministic and caused by spatially variable physical and 
chemical properties, the complexity of heterogeneous struc- 
tures and the problem of accounting for the variability and 
uncertainty call for a stochastic approach. Using such an 
approach, the spatially variable parameters are considered 
random space functions (RSF) with correlation IDagan, 
1989]. 

2.1. Heterogeneous Flow 

To assess water flow through heterogeneous porous for- 
mations, several physical properties can be assumed spa- 
tially variable. According to experimental resttits [Freeze, 
1975; Biggar and Nielsen, 1976; Warrick et al., 1977], 
physical properties may be modeled by a lognormal distri- 
bution. Numerous studies have been performed with a 
lognormally distributed hydraulic conductivity [e.g., Dagan, 
1984, 1988, 1989; Gelhar and Axness, 1983; Shapiro and 
Cvetkovic, 1988; Bellin et al., 1992] and a lognormally 
distributed scaling factor [e.g., Bresler and Dagan, 1979, 
1983]. 

In view of generally accepted concepts we assume a 
lognormally spatially variable hydraulic conductivity K(x), 
with x = (x 1 , x2). Similar to the procedure in paper 1 [Bellin 
et al., this issue] we assumed a normally distributed log 
conductivity Y, defined as Y(x) = In [K(x)], with constant 
mean (Y) and variance cr2r. To complete the necessary 
information of the stochastic variable Y, an isotropic expo- 
nential covariance function is assumed, defined as C ¾(r) = 
(Y'(x) r'(x + r)) with r'(x) = Y(x) - {Y) and given by 
[Black and Freyberg, 1987; Dagan, 1989; Bellin et al., 1992; 
Bosma and van der Zee, 1993; Bellin et al., this issue] 

where r is the planar distance vector between two positions 
in the heterogeneous domain and l r is the integral scale of 
the log conductivity. Equation (1) therefore describes the 
degree of correlation of two Y values at a distance Irl. 

Transport of reacting solute in heterogeneous porous 
media is governed by advection and diffusion. To describe 
advection of a moving solute, the water velocity at each 
point in the domain should be known. The random space 
function hydraulic conductivity causes the water velocity 
v(x) to be a RSF as well. To obtain a velocity field in a 
heterogeneous porous medium, Darcy's law in combination 
with the mass balance equation needs to be solved. The large 
difference in the characteristic times of flow and transport 
allows water flow to be considered in a steady state condi- 
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tion. Following this hypothesis the velocity at position x can 
be obtained from Dagan [1989]: 

v4, + vY. v4, = J-VY (2) 

ß (x) = -J' x + •b(x) (3) 

K(x) 
v(x) = -• V•(x) (4) 

where ß is the hydraulic head, -J is the mean head gradient 
j --- (J, 0), • is the random head fluctuation with zero mean, 
and 0 is the porosity. The statistical characterization of the 
velocity field viewed through (4) and (2) as a homogeneous 
random function is assumed complete with the knowledge of 
the first two moments, e.g., the mean (vi)(i = 1, 2) and the 
covariance function vij(r) = ((t;/i(x) -- (vi))(•;/j{x + r) - 
{vj))), where vi(x) is the ith component of the velocity at 
point x [Dagan, 1988; Rubin, 1990; Rubin and Dagan, 1992]. 

2.2. Sorption Model Formulation 

Sorption at relatively low solute concentrations is usually 
dominated by surface complexation and/or electrostatic ex- 
change. A recent review was given by Goldberg [1992]. At 
low levels, where the solute of interest hardly affects the 
equilibria for other compounds, the Freundlich equation, 
usually given as C* = KFC '• (with C and C* being the solute 
concentration in the liquid and in the solid phase, respec- 
tively, and KF and n being Freundlich parameters), and the 
linear model, C* = K dC, where K d is the sorption coeffi- 
cient, are particularly useful. Since the sorption of heavy 
metals and pesticides is commonly weak to moderately 
nonlinear [Calvet et al., 1980; Chardon, 1984], a lineariza- 
tion of the Freundlich equation is favored for low concen- 
trations. The cause for this is the non-Lipschitz behavior of 
C* = KFC n for C = 0 which is physicochemically unreal- 
istic. Recently, it was shown by Boekhold et al. [1993] that 
cadmium sorption by a sandy soil at low concentrations is 
practically linear. Although the assumption of linearity af- 
fects the transport behavior [van der Zee, 1990b; van Du•7n 
and Knabner, 1992], it is not a point of interest in this study. 

The parameter K d reflects all parameters that were not 
accounted for explicitly in the linear adsorption model, i.e., 
all but the concentration of the solute of interest. Because 

the adsorption maximum C*• for permeable (e.g., sandy) 
media commonly depends on fore, the organic matter con- 
tent, this is also the case for K d. In fact, this was often 
shown to be the case for pesticides [Boesten, !986]. 
Boekho!d et al. [1993] showed for Cd that Kd depended on 
fo,•, pH, and other ionic solutes that either form complexes 
with Cd or compete for sorption sites on the matrix surface. 
It is plausible that these parameters affecting Kd are random 
space functions [Beckerr and Webster, 1971]. A demonstra- 
tion was given by Boekhold et al. [1991] with regard tofo,,, 
and K a. They also showed that at larger concentrations 
(where n < 1) the Freundlich equation gave good predic- 
tions of spatially variable sorption when the dependence of 
KF on fore and pH was accounted for. The covariance 
functions Offo m and pH revealed different integral scales. 

To model heterogeneity of the adsorption coefficient Kd, 
similar to the hydraulic conductivity K, a lognormal distri~ 
bution is used. Because no a priori reasons exist to assume 
either negative or positive correlation between sorption 

parameters and the hydraulic conductivity [Destouni and 
Cvetkovic, 1991], several cases of correlation have been 
studied. 

Regarding the cross correlation of K a and hydraulic 
conductivity, generally valid statements are not easily made. 
For different solutes, different factors (e.g., pH, redox 
potential, ionic strength, matrix composition, cationic and 
artionic solution composition) may control the Ka value 
[Boekhold et al., 1993; Goldberg, 1992; Bolt, 1982]. Whereas 
some factors may be positively correlated with hydraulic 
conductivity (such as clay content), negative or zero corre- 
lations are also feasible. Although in most practical situa- 
tions the correlation between overall Ka and hydraulic 
conductivity may appear to be most likely in the range of 
negative to mildly positive [Robin et al., 1991], there are no 
a priori reasons to exclude perfect (positive or negative) 
correlations. 

If no correlation between K e and K is assumed, hetero- 
geneity of the adsorption coefficient can be described ac- 
cording to 

Kd(X) = Ka a exp [W(x)] (5) 

where K• is the geometric mean of Kd and W is a normally 
distributed random variable with zero mean and variance 

cr[v. The autocovariance of W, C w, is defined similar to (1): 

Cw(r) = 2 exp crw • l w / (6) 
with I w being the integral scale of W. 

We adopted a general functional model to describe perfect 
correlation between hydraulic conductivity and adsorption, 
given by 

Ka(x) = K•[exp (Y(x))] t• (7) 

We account for various extreme cases that encompass likely 
correlations that may be revealed experimentally in the 
future. These are as follows: Case A is perfect positive 
correlation (/3 > 0), and case B is perfect negative correlation 
(/3 < 0). For/3 = 0 we are dealing with the trivial case of 
homogeneous adsorption. With linear homogeneous adsorp- 
tion, behavior is similar to the nonreactive case [Dagan, 
1989; Bellin eta!., 1992] except for a rescaling in time. If the 
cases/3 --- - 1 and/3 = 1 are considered, (7) corresponds with 
the models used by van der Zee and van Riemsdijk [1987], 
Destouni and Cvetkovic [1991] and Bellin et al. [this issue]. 

Assuming a stationary velocity field and linear adsorption, 
transport of a reactive solute in a two-dimensional physically 
and chemically heterogeneous porous medium is described 
by the following equations: 

OC(x, t) oC*(x, t) 
• + = •7. [D d . VC(x, t)] 

at at 

- v(x). VC(x, t) (8) 

C*(x, t)= Ke(x). C(x, t) (9) 

where D a is the tensor of pore-scale dispersion and v(x) is 
the heterogeneous velocity field. 

Transport in heterogeneous porous media can be repre- 
sented in terms of spatial moments [Valocchi, 1989; Dagan, 
1989]. Assuming the ergodic hypothesis to be valid, the first- 
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and second-order spatial moments are equal to the statistical 
mean and variance of the particle trajectory, given by 

(Xj( t) > = f :• Xj( t) f (X) dX (10) 

Xit(t) = (Xj(t) - (Xj(t)))(Xt(t) - (Xt(t))) f (X) dX 

(!!) 

where X is the particle displacement and f(X) is the proba- 
bility density function of the trajectory X. 

Bellin et al. [this issue] extended Dagan's [1989] theory by 
deriving analytical solutions for the first and second longitu- 
dinal and transverse moments for the above correlated (for 
/3 = -1 and/3 = 1) and uncorrelated cases. Their solutions 
were based on the linearized flow equation and on first-order 
approximations of adsorption. Therefore the solutions are 
only valid for small or3 and * trfv. The assumptions correspond 
to those used by Dagan [!988, !989] to derive first-order 
analytical solutions for the nonreactive case. For easy ref- 
erence, the expressions derived in paper 1 [Bellin et al., this 
issue] for the second-order moments in the longitudinal 
(X•) and transverse (X22) directions are given here, i.e., 

(KdG)212 ( 
Y 

X•(r) = 2 (R)2 exp (cr}) [Ei(tr2•)- 7-In (tr2r)]r 

m 
rn 2rn ! m-m! 

rn--1 = 

4KdGl 2 Y 

rexp(cr•/2)[r-ln(r) +Ei(-r) 3'] 

+ cryIy 2r- 3 In (r) + •- 33, 

( exp (-r)(1 + r) - 1)] + 3 Ei(-r) + 2 (12) 
q- 

for the correlated cases (minus sign for positive correlation 
and plus sign for negative correlation), and 

Xll(r ) = 2 (K2)" (R)2 exp (trv)l v [Ei(trv) - y 

-ln(tr•v)]r+• 2m ' exp -m r - rn--I /T/ • m2m! ) 

+cr•l 2,-3 ln(,)+•-37 

+ 3(Ei(-r) + exp (-r)(1 + r).-1.)] •.2 
(13) 

for the uncorrelated cases. The expression for the transverse 
second-order moment is, for correlated and uncorrelated 
cases, given by 

2,[ X22 (r) = o' yl •, In (r) -- • + T -- Ei(-r) 

(• exp (-r)(1 + r).) + 3 2 (14) 

In (12)-(14), r is dimensionless time (r = tV/(R}Ir) ' 
y(•0.577) is Euler's constant and Ei(x) = .fS• exp (z)/z 
dz, for x > 0 is the exponential integral. Observe that the 
transverse second-order moment (!4) is influenced only by 
chemical heterogeneity through the mean retardation factor 
(R) in r. 

3. NUMERICAL EXPERIMENTS 

3.1. Monte Carlo Approach 

Numerical simulations of transport in heterogeneous po- 
rous media may conveniently employ a Monte Carlo ap- 
proach through which many independent realizations are 
generated, depending on the problem and the scale of 
heterogeneity. Bellin et al. [ 1992] demonstrated that as tr• > 
1 as many as 1500 realizations were necessary to stabilize 
the more sensitive transverse second moment. The approach 
utilized in this study is similar to the method used by Bellin 
et al. [ 1992]. 

For each case a series of Monte Carlo simulations was 

performed, using independent realizations of the same ran- 
dom fields. Four phases can be distinguished in each simu- 
lation: (1) generation of the random conductivity field, 
solution of the flow equation to obtain the heterogeneous 
velocity field, (3) generation of the random adsorption field, 
and (4) calculation of solute transport. 

The two-dimensional domain was discretized in triangular 
elements. Two adjacent elements contained the same value 
for the random variables. An efficient fast Fourier transform 

method [Gutjahr, 1989] was used to generate the random 
fields with prescribed correlation structure. The velocity 
field was obtained by solving the fully nonlinear flow equa- 
tion (2)-(4) by a Galerkin finite element method [Bellin et al., 
1992]. The generated random field of the adsorption coeffi- 
cient and the calculated heterogeneous velocity field com- 
bine to the retarded velocity field, vR(x) = v(x)/R(x), with 
R(x) being the spatially variable retardation coefficient given 
by R(x) = ! + K a(x). It is worthwhile noting that approx- 
imations used to derive the analytical solutions [Bellin et al., 
this issue] do not play a role in the numerical calculations. 

Once the retarded velocity field is available, transport can 
be calculated by a particle-tracking scheme. A particle, 
which represents a certain amount of mass injected in the 
area, moves according to [Hockney and Eastwood, 1988: 
Tompson and Gelhar, 1990; Bellin, 1992] 

X(t + At) = X(t) + vR[X(t)] - At {15! 

where X is the position of the particle. In (!5) we neglected 
both molecular diffusion and pore-scale dispersion because 
the latter is assumed to be of less importance than the effect 
of the heterogeneous velocity field [Dagan, 1989; Bellin et 
al., 1992]. 
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In each Monte Carlo realization the trajectory of only one 
single particle is recorded as a function of time. In contrast 
with numerical approaches in which many particles are 
tracked in one realization, the approach with one particle per 
realization guarantees independent trajectories of all parti- 
cles. Using this approach, the ergodic requirement [Dagan, 
1988, 1989] is fully satisfied. The statistical moments (mean 
trajectory and longitudinal and transverse second moments) 
represent the spatial moments of a plume traveling in a 
heterogeneous domain and injected in a source of a size 
which is much larger in the transverse direction than the 
scale of heterogeneity [Dagan, 1990; Bellin et al., 1992]. 

The statistical moments of the trajectories are calculated 
numerically according to 

1 MC 
(Xj(t)) = •-• Z Xj(t) 

i=1 

(16) 

MC 

Xij(t) = • • (Xj(t) - (Xj(t))) 2 (17) 
i--1 

where j denotes either the longitudinal (j = 1) or transverse 
(j = 2) direction and the number of Monte Carlo realizations 
is given by MC. The second-order moments Xj•, with j % l, 
have not been taken into account. An important aspect of 
this study deals with the ability of the analytical solutions for 
physical and chemical heterogeneous porous media (12)-(14) 
to describe Xl• and X22 calculated with (16)-(17) for differ- 
ent heterogeneous cases. 

3.2. Simulation Cases 

Although our interest is the effect of physical and chemical 
heterogeneity on displacement behavior of a solute plume, 
some attention is given to the circumstances under which 
either physical or chemical heterogeneity dominates the 
transport process. Randomness of the field parameters hy- 
draulic conductivity and sorption coefficient is considered. 
Spatially variable grain size distributions, organic matter 
content, pH, and microscopic mechanisms determine the 
heterogeneity of both physical and chemical parameters. 
From a transport point of view, heterogeneity of the hydrau- 
lic conductivity and the sorption coefficient results in a 
spatially variable flow field with a spatially variable retarda- 
tion factor. As was shown by a simple approximation 
[Dagan, 1989], the coefficient of variation of the longitudinal 
velocity (CVv), which represents the basic spreading mech- 
anism for the nonreactive case, depends only on try,. The 
relative importance of physical and chemical heterogeneity 
can be assessed quantitatively by comparing the coefficients 
of variation (CV) of the velocity and the retardation factor. 
These parameters are considered representative for physical 
and chemical heterogeneity, respectively. 

Bellin et al. [this issue] showed that for the reactive case 
the mean sorption coefficient plays an important role in the 
heterogeneity of the retarded velocity field. This is due to 
defining the retardation factor as 1 + Kd, which causes K• 
to remain in the expression for CVR, given for the uncorre- 
lated case by 

Ky[exp (0.5 tr•v)][exp (tr•v)- 1] 0'5 
CVR = 2 (18) 

1 + K• exp (0.5tr w) 

For the correlated cases, CVR is given by (18) with rr} 
instead of tr•v. Because the main spreading is the result of 
the random retarded velocity field, the variation coefficient 
of the velocity field should be compared with the variation 
coefficient of the retardation factor. Note that generally 
these variation coefficients are different from the variation 

coefficients of the field parameters K and K a. 
The mean sorption coefficient plays an especially impor- 

tant role if the solute is not strongly sorbed, i.e., if Ka a is 
small [Bellin et al., this issue]. Little sorption can be relevant 
in all kinds of environmental circumstances, depending on 
p H, organic matter content, and background electrolyte 
concentration. Calculations have been performed with three 
values of K a •, namely, 0.2, 1.26, and 10.0. These values 
were chosen to represent a small (K• = 0.2) and a large 
(Ka ø = 10.0) mean sorption coefficient and to include the 
intermediate case for which CVR = CV•, if cr• = Cr•v = 0.2 
(Ka ø = 1.26). The latter case describes the situation where 
physical and chemical heterogeneity are equal from a trans- 
port point of view. From the point of view of field parame- 
ters the condition for equal degrees of physical and chemical 
heterogeneity is met if the coefficients of variation of K and 
K a are the same. This condition is fulfilled if cr2r • = O'[v; the 
value of K• is not relevant. 

To show the effect of correlation and the performance of 
the analytical solutions (12)-(14), computations of correlated 
and uncorrelated cases have been performed. For the corre- 
lated cases, or3 = 0.2 has been used. Equation (7) was used 
to determine the spatially variable sorption field. Positive 
correlation was simulated with /3 = 1, whereas negative 
correlation was described with /3 = - 1. Positively and 
negatively correlated calculations were performed for Ka a = 
0.2, K] = 1.26, and Ka G = 10.0 (cry, = 0.2). 

The computations of the uncorrelated cases were used to 
study the effect of Ka ø , I r/lw, cr•v, and or3. A reference case 
with Ka a = 1.26, cr3 = 0.2, cr2w = 0.2, and It = l w was 
defined so that CV R = CVv. The effect of the mean sorption 
coefficient was obtained by varying Ka • of the reference case 
(Ka ø = 0.2, Ka a = 10.0). The effect of the integral scale was 
examined with respect to the reference case with an equal 
degree of physical and chemical heterogeneity. Cases with 
Iv = 0.51w, Iv = lw, and lr = 21w were simulated. For 
these cases, I r was kept constant and l w was varied. The 
effect of the degree of chemical heterogeneity was assessed 
for tr•v = 0.05, 0.2, 0.8, and 1.6. The remaining variables 
were similar to the reference case (K• = 1.26, cr•, = 0.2, 
l), = lw). 

A large degree of physical heterogeneity was simulated 
with cr•, = 1.6 for all three Ka ø values (0.2, 1.26, 10.0). The 
remaining variables for these calculations were Cr•v = 0.2 
and I r = l w. A complete overview of the simulated cases is 
given in Table 1. 

In addition to the above parameters, which determine 
heterogeneity of physical and chemical properties, other 
parameters were kept constant in all calculations. The size of 
the domain, expressed in integral scales, was 36/r in the X l 
direction and 18/r in the x2 direction. To minimize the 
effects of boundaries in the transport calculations, an inner 
core region was defined. The need for an inner core region, 
first detected by Rubin and Dagan [1989], is illustrated by 
Bellin et al. [1992], who showed the boundary effect on the 
velocity covariance. If a particle leaves the inner core, the 
realization is not taken into account. The size of the inner 
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TABLE 1. Simulation Cases 

Case K] cr• cr• l r/l w Correlation 

A1 0.2 0.2 0.2 1.0 no 
A2 0.2 0.2 1.0 + 
A3 0.2 0.2 1.0 - 
A4 0.2 1.6 0.2 1.0 no 
B1 1.26 0.2 0.2 1.0 no 
B2 1.26 0.2 1.0 + 
B3 1.26 0.2 1.0 - 
B4 1.26 0.2 0.2 0.5 no 
B5 1.26 0.2 0.2 2.0 no 
B6 1.26 0.2 0.05 1.0 no 
B7 1.26 0.2 0.8 1.0 no 
B8 1.26 0.2 1.6 1.0 no 
B9 1.26 1.6 0.2 1.0 no 
C1 10.0 0.2 0.2 1.0 no 
C2 10.0 0.2 1.0 + 
C3 10.0 0.2 1.0 - 
C4 10.0 1.6 0.2 1.0 no 

cal, and statistical properties, the results are compared with 
the analytical solutions (12)-(14), for both correlated and 
uncorrelated cases. Similar to discussions given by Bellin et 
al. [1992] with respect to physical heterogeneity, comparison 
with an analytical solution gives insight on the effect of the 
assumptions made to derive the first-order approximations 
for the cases with physical and chemical heterogeneity. 

In this paper we give full attention to plume spreading. 
The effect of physical and chemical heterogeneity on the 
mean position of the plume, denoted by its first-order 
moment, is not studied. The first-order approximation of the 
mean trajectory, expressed by (X•(t)) = Vt/(R), predicts 
only an effect of (R). Numerical results for both nonreactive 
and reactive cases show small deviations from the analytical 
solution [Bellin, 1992; Bellin et al., 1992]. Larger deviations 
are observed for larger degrees of heterogeneities. However, 
these effects cannot be decomposed from effects that can be 
attributed to numerical inaccuracies [Bellin et al., !992]. 

core (29/r x 111 r) was large enough to lead to only a few 
canceled realizations. The coordinates of the particle injec- 
tion point are given by x0 = (S/r, 91r). A sketch of the 
domain used is shown in Figure 1. 

In the calculations the time step was continuously modi- 
fied in order to prevent the particle's crossing the cell 
boundaries within the time step. Similar to the calculations 
performed by Bellin et al. [1992], the boundary conditions 
used were no flux at x2 = 0 and x2 = 181r and unit specific 
discharge in the x l direction at the nodes (0, x2) and (36/r, 
x2). The condition 4• = 0 is imposed for the node x = (0, 0). 
The dimensionless mean water velocity was 1 and 0 in the x • 
and x2 directions, respectively. 

4. RESULTS AND DISCUSSION 

Plume spreading of the cases given in Table 1 was as- 
sessed by calculation of the second-order moments, X• and 
X22, as a function of time given by (17). For the sake of 
comparison, X ll and X22 are shown in dimensionless form 
by dividing X i• and X22 by l •. Time is made dimensionless 
by multiplying t with V/(R)I r, where V is the mean Eulerian 
velocity and (R) is the mean retardation coefficient given by 
1 + Kff exp (cry/2). In the case of perfect correlation 
(positive or negative) (R) is given by 1 + K• exp (cry/2). 

In addition to the effects of variation of physical, chemi- 

4.1. Effect of the Mean Sorption Coefficient 

The effects of the mean sorption coefficient are illustrated 
in Figure 2. Values for X1 • and X22 as a function of time are 
plotted for the cases A1, B1, and C1. Case A1 represents the 
case of little sorption and C1 of strongly adsorbed solutes, 
and for case B1, K• is chosen such that (with designated 
and or}) the variation coefficients of R and v are of the same 
order. Additionally, the numerical results from Bellin et al. 
[1992] which describe the nonreactive case (with physical 
heterogeneity only) are shown. The effect of chemical het- 
erogeneity is apparent in Figure 2a. For K• = 0.2 a very 
small increase of plume spreading in the longitudinal direc- 
tion can be seen with respect to the nonreactive case. The 
effects of chemical heterogeneity are in that case dominated 
by physical heterogeneity effects. Longitudinal plume 
spreading is enhanced by chemical heterogeneity for larger 
Kff values. The case with equal degrees of physical and 
chemical heterogeneity reveals that chemical heterogeneity 
cannot be ignored. Values for X•i are in this case signifi- 
cantly larger than for the nonreactive case. For large K• 
values the chemical heterogeneity dominates the spreading 
process in the longitudinal direction. It is worthwhile men- 
tioning that in view of Figure 2 of paper 1 [Bellin et al., this 
issue], a continued increase of K• will not increase Xll due 
to insensitivity of CV a for K• if Kff > 10.0 (with unaltered 

3.5 lv 

3.51y I 
3.5 Ix, 

injection point 

(5 1 ¾,9 1 ¾) • 
11y 

3.5 I¾ 

181y 

(o,0) 

361y 

Fig. 1. Schematic representation of the two-dimensional transport domain. 
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•2 cases shown are equal, which is in agreement with the 
•0.2 theory. Despite some overestimation the analytical solutions 

• [Dagan, 1989; Bellin et al., this issue] describe the numerical I0 K•%1.26 
* c•' results reasonably well. 

<'ø• ø'ø a' An alternative way to describe the numerical and analyt- 
8 rl•o, mc•v•=s• -•' • ical results is given in Figure 3. We demonstrate here the /I o 
/[ Analyt. Kd=0.2 .g •*** ... macroscopic longitudinal dispersion coefficient obtained by 

6•1 ........ -= ...'C* _. -'"" 

/[A•ytK•=•.:6 e• •7 '•;•" a numerical derivative ofthe calculated variances (i.e., D• •yt•,%•0.0 =r r• '" 6x886•ø = 1/2 dX•/dt). Despite some sensitivity for fluctuations, 
4 • ':[_•2222z• • .,/,• _.<.X•o•- due to the calculation of the first derivative, the agreement / •'• • •..•x'x•õ½ eø" between the analytical and numerical results is very good. 

2• e•d....,a•$•o,• The results show that for K d • = 0.2 the limiting dispersion 
/ z•'•e*•.•-•6 • coefficient is slightly overestimated and that the agreement 
! _,,••o•- a improves as K• increases. •œ- I I ,, ,I ,I 

u • 5 10 15 20 

tV/<R>I¾ 4.2. Effect of Correlation 
0.5 - The results shown in Figures 2 and 3 were obtained for the 

uncorrelated case. To show the effect of perfect positive and 
negative correlation, results of cases A1, A2, A3, B1, B2, 

0.4 B3, C1, C2, and C3 are presented in Figure 4 for various 
mean sorption coefficients. We see that in the longitudinal 

oooo .o.,,,,,, ••o ,•0.3 ••___]t direction plume spreading is enhanced if K and K a are negatively correlated, as is expected from the theory. Large 

conductivities combined with low sorption on one hand, and 0.2 low conductivities combined with high sorption on the other, 
cause large solute spreading. This enhancement is stronger if 
the mean sorption coefficient Ky is large. In the case of 

o.• positive correlation between K and K d the effects are 
somewhat different. As expected, for all cases, plume 

b spreading in the longitudinal direction is smaller for the 
0 

0 5 10 15 20 

tV/<R>I¾ 

Fig. 2. Analytical (lines) and numerical (symbols) results of 
displacement in (a) the longitudinal and (b) transverse direction for 
various mean sorption coefficients (cases A1, B1, C1). 

rr2•). Figure 2b shows that the effects in the transverse 
direction are quite different. Corresponding to the analytical 
expression of the transverse second-order moment (14), X22 
is affected by chemical heterogeneity only by the scaling of 
time (division by (R)). The numerical results of the nonre- 
active case and the cases A1, B 1, and C 1 all follow the same 
pattern, which agrees with the analytical results of paper 1 
[Bellin et al., this issue]. The deviating behavior of X i• from 
the nonreactive case and the similar behavior of X22 causes 
a different expected plume behavior for nonreactive and 
reactive solutes. Such different plume shapes were found in 
field experiments described by, among others, Mackay et al. 
[•986bl. 

Figure 2 also contains the results from the analytical 
solutions (13)-(14). The longitudinal moments, X•, are well 
described by (13). First-order assumptions made in the 
derivations of (13)-(14) have a minor effect on X• for a 
relatively mild degree of heterogeneity (cr•v = 0.2). Inter- 
estingly, the agreement between analytical and numerical 
results improves as Kd a increases. Hence, Figure 2a sug- 
gests a possibly compensative effect of the neglected higher- 
o•er terms in the linear expansion of v(x)/R(x), used in the 
derivations of the analytical solutions (13)-(14), if K• values 
increase. 

In Figure 2b, the curves of the analytical solutions of the 

positively correlated case than for the uncorrelated case. 
However, the difference between the uncorrelated case and 
the positively correlated case is disproportionately different 
in the three cases considered (Kd • = 0.2, 1.26, 10.0). In 
fact, in Figure 5 one can infer that in the case of positive 
correlation X• is larger for Kd • = 0.2 than for the cases 
with Ky = 1.26 and Ky = 10.0. Since we are dealing with 
two opposing effects, caused by physical and chemical 
heterogeneity, it is important to realize their magnitude. In 
the case with Kd • = 0.2, the effect of chemical heterogeneity 
is quite small, and therefore physical heterogeneity is not 
strongly affected by the opposing chemical heterogeneity. In 

0.5 
K d=1.26 K•=10.0 

Analyt. K•=0.2 Analyt. K•=1.26 Analyt. K•=10.0 

0.4 - 
:• ,, ..• =:x• ...• .......... 

• a •: . m•- o ....... • ......... 
E 0.3 - ••'-" 

0.2 
0.1 

0 5 10 15 20 

tV/•>l 

Fig. 3. Dispersion coefficients obtained by numerical differentia- 
tion for various mean so•tion coefficients {cases AI, B1, C1). 
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0 5 10 15 20 0 5 10 15 20 

tV/<R>I¾ tV/<R>I¾ 

Fig. 4. Analytical (lines) and numerical (symbols) results of displacement in (a, c, e) the longitudinal and (b, d, f) 
transverse direction for positively correlated, negatively_ correlated and uncorrelated cases. In Figures 4a and 4b, 
K• = 0.2 (cases A1, A2, A3); in Figures 4c and 4d, K• -- 1.26 (cases BI, B2, B3); in Figures 4e, 4f, Ka G = 10.0 
(cases C1, C2, C3). 

the case of equal physical and chemical heterogeneity (K] 
- 1.26), the effects are more balanced, and plume spreading 
in the longitudinal direction is relatively small. If chemical 
heterogeneity is larger than physical heterogeneity (Kff = 
10.0), X1] is slightly larger than if K] = 1.26. Effects of 
physical heterogeneity are countered, but effects of the 
relatively large mean sorption coefficient remain, with the 
resulting increase in the longitudinal plume spreading. The 

chemical heterogeneity itself enhances longitudinal spread- 
ing if Kff increases. Part of this enhancement is reduced by 
the positive correlation, causing large velocities at positions 
with strong adsorption and low velocities at positions with 
weak adsorption. Similar to the results of Figure 2, correla- 
tion (positive or negative) does not have an effect on 
spreading in the transverse direction. 

The above results show that correlation between physical 
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tV/<R>lv tV/<R>I¾ 

Fig. 5. Analytical (lines) and numerical (symbols) results of' 
displacement in the longitudinal direction for (a) negatively corre- 
lated and (b) positively correlated cases for various mean sorption 
coefficients (Figure 5a: cases A3, B3, C3; Figure 5b: cases A2, B2, 
C2). 

and chemical parameters cannot be ignored. Although per- 
fect correlation is unlikely to be found in the field, the results 
imply that moderate correlation may have a distinct effect as 
well. In Figures 4 and 5 the analytical solutions for the 
various cases are also shown. It can be seen that in the 

longitudinal direction, in general, the analytical results 
match the numerical results. Considering the negatively 
correlated cases, the analytical solution slightly overesti- 
mates the numerically calculated values. Although the per- 
formance of' the analytical solution does not improve as K• 
increases, as was observed for the uncorrelated case (Figure 
2), the deviations of X•i for larger K• are relatively small. 
This may also be attributed to the compensative effect of the 
neglected higher-order terms in the derivation of the analyt- 
ical solutions. Errors due to these effects may be enhanced 
by the negative correlation between K and K d. Higher K• 
values cause a slight increase of the overestimation of the 
analytical solution. 

If K and K d are positively correlated, the effects are 
opposite. An increase of K• causes, compared with the 
uncorrelated case, a decrease of the analytical solution with 
respect to the numerical results, resulting in an underesti- 
mation for K• > 1.26. Nevertheless, the deviations on an 
absolute scale are small (observe the scale in Figure 5b), 

Fig. 6. Analytical (lines) and numerical (symbols) results of 
displacement in (a) the longitudinal and (b) transverse direction for 
various ratios of integral scales (Ir/lw) (cases B1, B4, BS). 

because positive correlation reduces the solute spreading. 
The better agreement of the analytical and numerical results 
for K• = 0.2 can be explained with the minor role of 
chemical heterogeneity if K• is small. 

4.3. Effect of Integral Scales 

The integral scale is an important parameter to describe 
the spatial structure of a spatially variable property. In 
combination with the mean and variance, it influences the 
effect of the heterogeneous variable. The integral scale is 
intuitively defined as a measure for the distance between two 
points beyond which the property is practically uncorrelated 
IDagan, 19891. 

The effect of' the integral scale of the spatially variable 
chemical parameter can be revealed with cases B 1, B4, and 
B5. The integral scale could not be multiplied by a factor 
larger than 2, due to limits of the domain size. Figure 6 
shows numerical and analytical results of the cases B 1, B4, 
and B5 and the numerical results of the nonreactive case 

[Bellin et al., 1992]. As expected, in Figure 6a we show that 
a decrease of the chemical integral scale (l w) reduces 
spreading in the longitudinal direction. This reduction can- 
not continue beyond the lower limit represented by the 
nonreactive case (i.e., no chemical heterogeneity). On the 
other hand, an increase of l w enhances plume spreading in 
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the longitudinal direction. A larger chemical integral scale 
generally increases the distance between large and small 
adsorption coefficients and therefore between quickly and 
more slowly moving particles. This results in larger 1ongitu- 
dina! second-order moments. The results of the analytical 
solution show that for larger l w the numerical results are 
described well. For cases with lower chemical integral scales 
(i.e., Ir/Iw -- !, Ir/I w -- 2), the analytical solution some- 
what overestimates the results of the numerical calculations. 

The second-order moment in the transverse direction, 
X22, is not sensitive to a change of the chemical integral 
scale (see Figure 6b). The transverse dispersion is deter- 
mined by physical heterogeneity only, which was not altered 
in these cases. These results agree with derivations of Bellin 
et al. [this issue], who showed no functional relationship 
between X22 and lw. 

4.4. Effect of cr• and cr•v 
The parameter which has been given the most attention in 

studies regarding transport in heterogeneous porous media is 
the variance of the spatial variable log conductivity, rr• 
IDagan, 1988, 1989; Bellin et al., 1992; Shapiro and Cvet- 
kovic, 1988; Cvetkovic and Shapiro, 1989; Valocchi, 1989; 
Rubin, 1990; Selroos and Cvetkovic, 1992]. This parameter is 
used to describe the degree of physical heterogeneity. Due to 
the properties of the lognormal distribution, the variation 
coefficient of Y is a function of try, only (CVr = [exp (cr•,) - 
1] 0'5 [van der Zee and Boesten, 1991]). Similarly, the 
parameter cr•v determines the degree of chemical heteroge- 
neity. Results from Figures 2-6 show that chemical hetero- 
geneity may have a large impact on spreading in the longi- 
tudinal direction. Therefore to demonstrate the effect of the 

degree of heterogeneity, several values of tr•v and cry, have 
been used. Cases B 1, B6, B7, and B8 have been computed to 
demonstrate the effect of various degrees of chemical heter- 
ogeneity. Additionally, the effect of a large degree of phys- 
ical heterogeneity (try, = 1.6) is considered for three sorp- 
tion levels (cases A4, B9, and C4). 

Figure 7 reveals the longitudinal and transverse second- 
order moment for four degrees of chemical heterogeneity, 
obtained by changing tr•v with Ka c = 1.26. From the results 
in the longitudinal direction it can be seen that indeed 
different tr2w values modify the spreading behavior. A strong 
increase of X• values is the result of a relatively mild 
increase of Cr•v. For the case with cry, = 0.2 (valid for all 
cases shown in Figure 7) and tr•v = 1.6, chemical heteroge- 
neity dominates the spreading process. On the other hand, 
Figure 7b once again demonstrates the independence of 
transverse spreading from chemical heterogeneity. It can be 
seen that the numerical results in the transverse direction are 

not as smooth as the X• results. Bellin et al. [1992] already 
noticed slower convergence for the moments in the trans- 
verse direction in the nonreactive case. 

The analytical results in Figure 7a show that if Cr•v 
increases, larger deviations occur between the numerical 
results and the analytical solution. Errors due to first-order 
approximations are enhanced if the degree of heterogeneity 
increases. Apparently, if Ka c = 1.26 and tr•v = 1.6, the 
higher-order effects are not strong enough to compensate for 
the overestimation of the analytical solution. Smaller devia- 
tions are observed in Figure 8 where results are shown for 
cases A4, B9, and C4, with cry, = 1.6, cr•v = 0.2 and K 7 = 

,• =0.05 ,•, ---0.2 ,:5 •).8 ,• =1.6 
Analyt.,2 =0.05 Analyt.,2 =0.2 Analyt.,2 --0.8 Analyt.,• --1.6 

/.. 

/"/"/' Cl Cl 

/"/ C1 [] •L '•l•l[' /' n -a7 a,: 

lO I -••'• ../" [] 

•J ................ ! 

0 5 10 15 20 

tV/<R>I¾ 

0.5 -- 

0.4 

0.2 

0. I 

b 
0- 

•>.30 

20 

0 5 I0 15 20 

tV/<R>I¾ 

Fig. 7. Analytical (lines) and numerical (symbols) results of 
displacement in (a) the longitudinal and (b) transverse direction for 
various degrees of chemical heterogeneity (Cr•v) (cases B I, B6, B7, 
BS). 

0.2, 1.26, and 10.0. Figure 8a illustrates that the analytical 
solution performs better for large cr2r than for large 
values. With cry, = 1.6, plume spreading in the longitudinal 
direction is more profound compared with cases where rr•. = 
0.2 (Figures 2-6). Interestingly, varying the Ka c values has 
only a minor impact on spreading in the longitudinal direc- 
tion. Physical heterogeneity dominates, and only changes in 
cr2w will enhance front spreading due to chemical heteroge- 
neity. This agrees with results of Figure 2 in paper 1 [Bellin 
et al., this issue], which show that CV•/CV•, is hardly 
affected by Ka ø if tr[, = 1.6 and tr•v = 0.2. However, 
whether spreading in the longitudinal direction is dominated 
by either physical or chemical heterogeneity cannot be 
determined only by taking into account the chosen values for 
try, and tr•v. Previous sections have illustrated that the 
impact of correlation and of integral scales cannot be ig- 
nored. 

Figure 8b shows that an increase of try, influences the 
amount of spreading in the transverse direction. The 
values are significantly higher compared with cases com- 
puted with cry, = 0.2 (e.g., Figure 2b). Again, changing K•[ 
has no effect on X22. Results from the analytical solution 
demonstrate that an increasing degree of physical heteroge- 
neity hardly affects the applicability of the solution. The 
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Fig. 8. Analytical (lines) and numerical (symbols) results of 
displacement in (a) the longitudinal and (b) transverse direction 
with large physical heterogeneity (cr• = 1.6) for various mean 
sorption coefficients (cases A4, B9, C4). 

deviations found in all figures between the analytical solu- 
tions derived by Bellin et al. [this issue] and the actual 
numerical results are not significantly larger than the corre- 
sponding deviations for the nonreactive case [Rubin, 1990; 
Bellin et al., !992]. This justifies the use of the analytical 
solution for correlated and uncorrelated cases with physical 
and chemical heterogeneity in the parameter range consid- 
ered herein. 

5. CONCLUSIONS 

Numerical simulations were performed to assess the ettbct 
of physical and chemical heterogeneity on reactive solute 
transport. Physical heterogeneity was modeled by assuming 
a random variation with spatial correlation of the hydraulic 
log conductivity. Chemical heterogeneity was described in a 
similar manner assuming a random variation of the natural 
logarithm of the sorption coefficient. The results of the 
numerical Monte Carlo calculations were compared with 
analytical solutions for uncorrelated and for correlated cases 
(correlation between the hydraulic conductivity and the 
adsorption coefficient). Several values of the sorption coef- 
ficient, different ratios of chemical and physical integral 
scales, and several values for cry, and cr• v were considered. 
Solute spreading was described in terms of the second-order 

moments in the longitudinal and the transverse direction. We 
conclude from the results that stronger sorption (larger K•) 
enhances the spreading in the longitudinal direction, for 
cases with both uncorrelated and correlated sorption coeffi- 
cient and hydraulic conductivity. In the case of positively 
correlated Kd and K, longitudinal spreading is reduced with 
respect to the uncorrelated and negatively correlated case. 
The parameters K•, • cr[v, lw, crp, and I¾ determine the 
contribution of chemical and physical heterogeneity. If both 
contributions are of equal magnitude, a minimal degree of 
solute spreading is observed. Increasing the chemical inte- 
gral scale enhances longitudinal solute spreading due to a 
larger distance between quickly and slowly moving particles. 
As expected, enhanced longitudinal spreading is also ob- 
served with larger coefficients of variation of either the 
hydraulic conductivity or the sorption coefficient (by in- 
creasing cry, and o'•v). In agreement with analytical findings 
in paper 1 [Beitin et al., this issue], chemical heterogeneity 
only influences the time scale of' the transverse solute 
spreading. Differences in correlation K•, , crrv, and integral 
scale do not increase or decrease values of the transverse 
second-order moment. Moreover, we conclude that the 
analytical solutions can describe solute displacement in 
physically and chemically heterogeneous porous media for a 
wide range of parameter values. An increase of the mean 
sorption coefficient generally improves the performance of 
the analytical solution, due to a compensative effect of the 
neglected higher-order terms as Ka a increases. If o'3 and o'•v 
increase, the analytical solution overestimates the numeri- 

2 ca!ly obtained results. However, with (r w up to 0.8 and o'• 
up to 1.6, the analytical solution still agrees well with the 
numerical calculations. Despite some overestimation the 
numerical results of the transverse second-order moment are 

all well described by the analytical solution. 
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