
Turk J Math
(2018) 42: 1698 – 1710
© TÜBİTAK
doi:10.3906/mat-1711-103

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On the numerical range of square matrices with coefficients in a degree 2 Galois
field extension

Edoardo BALLICO∗

Department of Mathematics, University of Trento, Povo, Trentino, Italy

Received: 28.11.2017 • Accepted/Published Online: 28.03.2018 • Final Version: 24.07.2018

Abstract: Let L be a degree 2 Galois extension of the field K and M an n × n matrix with coefficients in L . Let
⟨ , ⟩ : Ln × Ln → L be the sesquilinear form associated to the involution L → L fixing K . We use ⟨ , ⟩ to define the
numerical range Num(M) of M (a subset of L), extending the classical case K = R , L = C , and the case of a finite
field introduced by Coons, Jenkins, Knowles, Luke, and Rault. There are big differences with respect to both cases for
number fields and for all fields in which the image of the norm map L → K is not closed by addition, e.g., c ∈ L may
be an eigenvalue of M , but c /∈ Num(M) . We compute Num(M) in some cases, mostly with n = 2 .
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1. Introduction
For any integer n > 0 and any field L let Mn,n(L) be the L -vector space of all n×n matrices with coefficients
in L . Let K be a field and L a degree 2 Galois extension of K . Call σ the generator of the Galois group
of the extension K ↪→ L . Thus, σ : L → L is a field isomorphism, σ2 : L → L is the identity map, and
K = {t ∈ L | σ(t) = t} . For any u = (u1, . . . , un) ∈ Ln , v = (v1, . . . , vn) ∈ Ln set ⟨u, v⟩ :=

∑n
i=1 σ(ui)vi . The

map ⟨ , ⟩ : Ln×Ln → L is sesquilinear, i.e. for all u, v, w ∈ Ln and all c ∈ L we have ⟨u+v, w⟩ = ⟨u,w⟩+⟨v, w⟩ ,
⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u,w⟩ , ⟨cu, w⟩ = σ(c)⟨u,w⟩ , and ⟨u, cw⟩ = c⟨u,w⟩ . Set Cn(1) := {u ∈ Ln | ⟨u, u⟩ = 1} .
For any M ∈ Mn,n(M) set Num(M) := {⟨u,Mu⟩ | u ∈ Cn(1)} . Since Cn(1) ̸= ∅ , we have Num(M) ̸= ∅ .
As in the classical case when K = R , L = C , and σ is the complex conjugation the subset Num(M) of L is
called the numerical range of M [4–6]. When K is a finite field the numerical range was introduced in [1, 3].
In particular [3] built a bridge between the classical case and the finite field case and at certain points we will
duly quote the parts of [3] that we adapt to our set-up.

Assume for the moment L = K(i) with K ⊂ R and σ the complex conjugation. In this case, calling
Num(M)C ⊂ C the usual numerical range of M , we have Num(M) ⊆ Num(M)C and hence Num(M) is a
bounded subset of C . However, even in this case there are many differences, in particular as for number fields
not every element of K is a square. The main differences come from the structures of the sets ∆ and ∆n

defined below.
Let ∆ ⊆ K be the image of the norm map NormL/K : L → K , i.e. set ∆ := {aσ(a) | a ∈ L} ⊆ K .
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If a ∈ K , then σ(a) = a and hence NormL/K(a) = a2 . Thus, ∆ contains all squares of elements of K . In
particular, 0 ∈ ∆ and 1 ∈ ∆ . Since the norm map NormL/K is multiplicative, ∆ is closed under multiplication.

If c ∈ ∆̂ := ∆\{0} , say c = σ(a)a for some a ∈ L\{0} , then 1/c = σ(a−1)a−1 and hence ∆̂ is a multiplicative
group. For any integer n > 0 let ∆n be the set of all sums of n elements of ∆ . If K = R , then ∆ = ∆n = R≥0

for all n ≥ 1 . If K = Fq is a finite field, then ∆ = Fq , because in this case the norm map is surjective ([1,
Remark 3]); hence, K = ∆ = ∆n if K is a finite field. If K = Q and L = Q(i) , then ∆ ⊊ ∆2 (Example 2).

For any δ ∈ ∆n set Cn(δ) := {u ∈ Ln | ⟨u, u⟩ = δ} . We have Ln = ⊔δ∈∆n
Cn(δ) and Cn(δ) ̸= ∅ for all

δ ∈ ∆n .
For any M = (mij) ∈ Mn,n(L) let M† be the matrix M† = (nij) with nij = σ(mij) for all i, j . We

have (M†)† = M and ⟨u,Mv⟩ = ⟨M†u, v⟩ for all u, v ∈ Ln . We say that M is unitary if M†M = In,n
(where In,n is the identity n × n -matrix), i.e. if M† = M−1 . For any U,M ∈ Mn,n(L) with U unitary, we
have Num(U†MU) = Num(M) . In the case n = 1 , say M = (m11) , we have Num(M) = {m11} . We have
Num(cIn,n) = {c} for every c ∈ L . For any µ ∈ L and c ∈ ∆ , the circle with center µ and squared-radius c is
the set of all z ∈ L such that σ(z − µ)(z − µ) = c . This set is never empty, since it contains the points µ+ b ,
where b ∈ L is such that σ(b)b = c (two points, b and −b , if char(K) ̸= 2 and b ̸= 0). If c = 0 , then the
circle is just {µ} , the center. If c ∈ ∆̂ , then b ̸= 0 and hence (assuming char(K) ≠ 2) this circle has at least
two points, µ + b and µ − b . Hence, if c ̸= 0 , this circle is a smooth conic and (if K is infinite) it contains
infinitely many points (Lemma 1 and, if char(K) = 2 , Example 4). See Section 2 for more and in particular
for its description if K = Q and so L is a quadratic number field.

For any integer n > 0 let ∆̂n denote the sum of n elements of ∆̂ . Note that 0 ∈ ∆̂2 if and only if there
is a ∈ ∆̂ with −a ∈ ∆̂ . In the case n = 1 each matrix is a diagonal matrix and each numerical range is a
singleton. The case n > 1 is more complicated and interesting. We prove the following results.

Proposition 1 Assume char(K) = 0 . If M ∈Mn,n(L) and Num(M) = {c} for some c ∈ L , then M = cIn×n .

In the classical case any eigenvalue of M ∈ Mn,n(C) is in its numerical range. When either 0 ∈ ∆̂2 or
∆2 ̸= ∆ , then this is not always the case, as shown by Theorems 1 and 2.

Theorem 1 Assume 0 ∈ ∆̂2 and take c ∈ L and µ ∈ L∗ . Then there is M ∈ M2,2(L) with c an eigenvalue

of M , c /∈ Num(M) , and Num(M) = c+ µ∆̂ .

See Proposition 6 for a description of the matrices M giving Theorem 1. We have 0 ∈ ∆̂2 for some real
quadratic number fields (Lemma 5).

If M has an eigenvalue a with eigenvector u with ⟨u, u⟩ ∈ ∆̂ , then a ∈ Num(M) (Remark 6).
Part (a) of the following result is an adaptation of [3, Theorem 1.2 (c)].

Theorem 2 Assume n = 2 and that M has a unique eigenvalue, c . Assume that c has an eigenvector v with
δ := ⟨v, v⟩ ̸= 0 and that M ̸= cI2,2 .

(a) c ∈ Num(M) if and only if δ ∈ ∆ .
(b) Assume δ ∈ ∆ . There is µ ∈ L∗ such that (Num(M)− c)/µ is the union of {0} and all all circles

C(k(1− k), 0) with k ∈ ∆̂ ∩ (1− ∆̂) .
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For any δ ∈ ∆2 \ {0} and v ∈ L2 with ⟨v, v⟩ = δ the set of all M as in Theorem 2 is exactly the matrices M
such that Ker(M − cI2×2) = Im(M) = Lv .

In Section 5 we consider the case M ∈Mn,n(K) . Set

Cn(1,K) := {(x1, . . . , xn) ∈ Kn | x21 + · · ·+ x2n = 1}.

Note that Cn(1,K) := Cn(1) ∩Kn . Note that Cn(1,K) ̸= 0 (e.g., take xi = 1 and xj = 0 for all j ̸= i). The
K -numerical range Num(M)K of M is the set of all ⟨u,Mu⟩ with u ∈ Cn(1,K) . We have Num(M)K ⊆ K .
The case char(K) = 2 is quite different from (and easier than) the case char(K) ̸= 2 .

Proposition 2 Assume char(K) ̸= 2 . Take M ∈ Mn,n(K) , n > 1 . We have Num(M)K = {c} if and only if
the matrix M − cIn×n is antisymmetric.

Proposition 3 Assume char(K) = 2 and take M = (mij) ∈Mn,n(K) .
(a) We have Num(M)K = {c} for some c ∈ K if and only if mii = c for all i and mij = mji for all

i ̸= j .
(b) If ♯(Num(M)K) ̸= 1 and K is infinite, then Num(M)K and K have the same cardinality.

2. Circles

Let L be an algebraic closure of L . In this section we assume that K is infinite and that char(K) ̸= 2 (see
Example 4 for the case char(K) = 2). With these assumptions there is α ∈ K , which is not a square and with
L = K(

√
α) . Fix β ∈ L such that β2 = α . In L the equation t2 = α has β and −β as its only solutions.

L is a 2 -dimensional K vector space over K with 1 and β as its basis. Hence, for any z ∈ L there are
uniquely determined x, y ∈ K such that z = x+ yβ . Since σ(β) = −β and σ(t) = t for every t ∈ K , we have
σ(z) = x− yβ and hence σ(z)z = x2 − y2α . Take k, µ ∈ L . The map z 7→ z − µ induces a bijection between
the set {z ∈ L | σ(z − µ)(z − µ) = k} and the set G(k, 0) := {z ∈ L | σ(z)z = k} . Hence, it is sufficient to
study the circles with center 0 ∈ L . By the definition of ∆ , if k /∈ ∆ , then G(k, 0) = ∅ , while if k ∈ ∆ we
have G(k, 0) ̸= ∅ . We have G(0, 0) = {0} , because σ(z)z = 0 if and only if z = 0 . Write z = x + yβ and
hence σ(z) = x − yβ and σ(z)z = x2 − αy2 . Thus, G(k, 0) = {(x, y) ∈ K2 | x2 − αy2 = k} . Now assume
k ∈ ∆̂ = ∆ \ {0} . Write k = σ(c)c for some c ∈ L∗ . Note that σ(z)z = c if and only either z = c or z = −c .
Since char(K) ̸= 2 , the set G(k, 0) contains at least two points, −c and c .

Lemma 1 If k ∈ ∆̂ the circle G(k, 0) ⊂ L = K2 is a smooth affine conic over K . If K is infinite, then
G(k, 0) and K have the same cardinality.

Proof Write k = σ(c)c for some c ∈ L∗ . We saw that G(k, 0) contains the points c and −c and in particular
G(k, 0) ̸= ∅ . See x, y, z as homogeneous variables of P2(K) , with the line ℓ∞ = {z = 0} as the set P2(K)\K2 .
Let D(k, 0) ⊂ P2(K) be the conic with g(x, y, z) := x2−αy2−kz2 as its equation. The linear forms 2x , −2αy ,
and −2kz are the partial derivatives of g(x, y, z) . Set D(k, 0)K := {(x : y : z) ∈ P2(L) | g(x, y, z) = 0} . Since
α ̸= 0 , k ̸= 0 and char(K) ̸= 2 , the partial derivatives of g(x, y, z) have no common zero in P2(L) . Thus,
g(x, y, z) is irreducible and D(k, 0)L is a smooth conic. Hence, D(k, 0) is a smooth conic defined over K . Since

1700



BALLICO/Turk J Math

D(k, 0) has a K -point, c , D(k, 0) is isomorphic to P1
K (use the linear projection from c) and in particular (for

infinite K ), K and D(k, 0) have the same cardinality. The set D(k, 0) ∩ ℓ∞ has at most two points, because
g(x, y, z) is irreducible and so ℓ∞ is not a component of D(k, 0) . Thus, (since K is infinite) G(k, 0) and K

have the same cardinality. 2

Remark 1 Take ℓ∞ , D(k, 0) , and g(x, y, z) := x2 − αy2 − kz2 as in the proof of Lemma 1. We saw that
G(k, 0) = D(k, 0) \ ℓ∞ ∩ D(k, 0) . Here we check that ℓ∞ ∩ D(k, 0) = ∅ , i.e. G(k, 0) = D(k, 0) . We have
ℓ∞ ∩ D(k, 0) = {(x : y : 0) ∈ P2(K) | x2 − αy2 = 0} . Since α is not a square in K , if (x, y) ∈ K2 and
x2 = αy2 , then x = y = 0 .

Example 1 Take K = Q . Hence, L is a quadratic number field. There is a unique square-free integer
d /∈ {0, 1} such that L = Q(

√
d) ([7, Ch 13, §1]). Take k ∈ ∆̂ . If d > 0 , then G(k, 0) is a hyperbola with

infinitely many points and it is unbounded. If d < 0 , then G(k, 0) is an ellipsis and in particular it is bounded;
hence, each ∆n is bounded.

3. Lemmas and examples

For any field F set F ∗ := F \ {0} . Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the standard basis of Ln .
For any M ∈Mn,n(L) let Num0(M) ⊆ L be the union of all ⟨u,Mu⟩ with ⟨u, u⟩ = 0 .

Remark 2 Take M = (mij) ∈ Mn,n(L) . Since mii = ⟨ei,Mei⟩ , all diagonal elements of M are contained in
Num(M) .

Remark 3 Fix δ ∈ ∆n and a ∈ ∆ \ {0} . Take b ∈ L such that a = bσ(b) . For any u ∈ Ln we have
⟨bu, bu⟩ = a⟨u, u⟩ and hence Cn(aδ) = bCn(δ) .

Remark 4 Since σ(x) = x for all x ∈ K , ∆ contains all squares in K .

Remark 5 For any M ∈Mn,n(L) and any c, d ∈ L we have Num(cM + dIn×n) = d+ cNum(M) .

Lemma 2 Fix c ∈ ∆n \ {0} . Then 1/c ∈ ∆n .

Proof If c = σ(a1)a1 + · · ·+ σ(an)an with ai ∈ K , then 1/c = σ(a1/c)a1/c+ · · ·+ σ(an/c)an/c . 2

Lemma 3 For any M ∈Mn,n(L) we have Num(M†) = σ(M) .

Proof For any u ∈ Cn(1) we have ⟨u,Mu⟩ = ⟨M†u, u⟩ = σ(⟨u,M†u⟩) . 2

Lemma 4 Fix u ∈ Ln and assume δ := ⟨u, u⟩ ̸= 0 . There is t ∈ L∗ such that ⟨tu, tu⟩ = 1 if and only if
δ ∈ ∆ .

Proof First assume the existence of t ∈ L∗ such that ⟨tu, tu⟩ = 1 . We have ⟨tu, tu⟩ = σ(t)tδ . Since t ̸= 0 ,
σ(t)t ∈ ∆̂ . Remarks 4 and 2 give δ ∈ ∆ . Now assume δ ∈ ∆ . Since δ ̸= 0 , we have 1/δ ∈ ∆̂ (Remark 2).
Write 1/δ = σ(t)t for some t ∈ L∗ . We have ⟨tu, tu⟩ = 1 . 2
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Remark 6 Take M ∈ Mn,n(L) with an eigenvector v (say Mv = cv ) such that ⟨v, v⟩ ∈ ∆̂ . Lemma 4 gives
c ∈ Num(M) :

Lemma 5 Assume char(K) ̸= 2 and take L = K(
√
α) with α not a square in K , but α the sum of two

squares in K . Then 0 ∈ ∆̂2 .

Proof Note that 0 ∈ ∆̂2 if and only if there is a ∈ ∆̂ with −a ∈ ∆̂ . Write α = u2 + v2 with u, v ∈ K∗ .
Take a := u2 = −(v2 − α) . 2

Lemma 6 Fix integers n > m > n/2 > 1 and assume ∆n = ∆ . Let M ⊂ Ln be an m-dimensional L-linear
subspace. Then there are f1, . . . , f3m−2n ∈M such that ⟨fi, fi⟩ = 1 for all i and ⟨fi, fj⟩ = 0 for all i ̸= j .

Proof Take any basis u1, . . . , um of M and complete it to a basis u1, . . . , un of Ln . Since the sesquilinear
form ⟨ , ⟩ is nondegenerate, the matrix E = (aij) with aij = ⟨ui, uj⟩ has rank n . Hence, among the first m
rows of E , at least 2m − n are linearly independent. Hence, the m × m matrix (aij) , i, j = 1, . . . ,m , has
rank at least 3m− 2n . Permuting u1, . . . , um we may assume that the matrix (aij) , i, j = 1, . . . , 3m− 2n , is
nonsingular. Let W ⊂ M be the linear span of u1, . . . , um . Since the matrix (aij) , i, j = 1, . . . , 3m − 2n , is
nonsingular, the restriction ⟨ , ⟩W of ⟨ , ⟩ to W is nondegenerate. Hence, there is g1 ∈ W with ⟨g1, g1⟩ ̸= 0 .
Since ∆n = ∆ , there is t ∈ L such that ⟨tg1, tg1⟩ = 1 (Lemma 4). Set f1 := tg1 . If 3m − 2n > 1 set
W1 := {w ∈W | ⟨f1, w⟩ = 0} . W1 is a codimension 1 linear subspace of W and the restriction of ⟨ , ⟩ to W1

is nondegenerate. Therefore, there is g2 ∈W1 with ⟨g2, g2⟩ ̸= 0 . Take z ∈ L such that ⟨zg2, zg2⟩ = 1 (Lemma
4) and set f2 := zg2 . If 3m− 2n > 2 set W2 := {w ∈W1 | ⟨f2, w⟩ = 0} and continue in the same way. 2

The definitions of numerical range and of unitary direct sum immediately give the following lemma.

Lemma 7 Fix integers n > x > 0 , A ∈ Mx,x(L) , and B ∈ Mn−x,n−x(L) . Set M := A ⊕ B ∈ Mn,n(L)

(unitary direct sum). The set Num(M) is the union of all points a + b of L with a = ⟨u,Bu⟩ , b = ⟨v,Av⟩ ,
u ∈ Lx , v ∈ Ln−x , and ⟨u, u⟩+ ⟨v, v⟩ = 1 .

When ∆ = ∆n we may improve Lemma 7 in the following way.

Proposition 4 Fix integers n > x > 0 , A ∈ Mx,x(L) , and B ∈ Mn−x,n−x(L) . Set M := A ⊕ B ∈ Mn,n(L)

(unitary direct sum). Assume ∆ = ∆x = ∆n−x . Then Num(M) is the union of {Num0(A) + Num(B)} ∪

{Num(A) + Num0(B)} and all tc+ (1− t)d with t ∈ ∆̂ ∩ (1− ∆̂) , c ∈ Num(A) , and d ∈ Num(B) .

Proof Fix u ∈ Lx , v ∈ Ln−x with ⟨u, u⟩ + ⟨v, v⟩ = 1 . Set t = ⟨u, u⟩ . Hence, ⟨v, v⟩ = 1 − t . If t = 0 (resp.
t = 1), then 1− t = 1 (resp. 1− t = 0) and hence {Num(A)0+Num(B)}∪{Num(A)+Num(B)0} ⊆ Num(M) .
Now assume t ∈ ∆ \ {0, 1} . Since ∆ = ∆x = ∆n−x , we have t ∈ ∆̂ ∩ (1 − ∆̂) . Since {t, 1 − t} ⊂ ∆̂ ,
there are c, d ∈ L∗ with σ(c)c = 1/t and σ(d)d = 1/(1 − t) . Set α := ⟨u,Au⟩ and β := ⟨u,Bu⟩ . We have
⟨cu, cu⟩ = ⟨dv, dv⟩ = 1 and hence ⟨cu, cAu⟩ ∈ Num(A) and ⟨dv, dBv⟩ ∈ Nm(B) . Thus, α/t ∈ Num(A) and
β/(1− t) ∈ Num(B) . We get ⟨u+ v,M(u+ v)⟩ = tx+(1− t)y with x ∈ Num(A) and y ∈ Num(B) . The same
proof done backwards gives the other inclusion. 2

Proposition 4 is analogous to [3, Proposition 3.1]. Fix c, d ∈ L . The set of all tc + (1 − t)d with
t ∈ (∆̂ ∩ (1 − ∆̂)) is called in [3] the open segment with c and d as its boundary points and we denote it
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with ((c; d)) . When (as in the case of char(L) = 0) the set (∆̂ ∩ (1 − ∆̂)) is nonempty (Lemma 8) we have
((c; c)) = {c} for all c ∈ L .

Lemma 8 Assume char(K) = 0 . Then ∆̂ ∩ (1− ∆̂) is infinite.

Proof For any δ ∈ ∆ there are x, y in K such that x2 − αy2 = δ . Note that 1− δ ∈ ∆ if and only if there
are w, z ∈ K such that 1 − δ = w2 − αz2 . Take coordinates (x, y, w, z) on K4 . Set T := {(x, y, w, z) ∈ K4 |
x2 + w2 − α(y2 + z2) = 1} . We take homogeneous coordinates x, y, w, z, t in P4(K) with H∞ = {t = 0} and
K4 = P4(K) \ H∞ . Let E ⊂ P4(K) the projective quadric with equation {x2 + w2 − α(y2 + z2) − t2 = 0} .
We have E \ E ∩ H∞ = T . Since char(K) ̸= 2 and α ̸= 0 , taking the partial derivatives of the polynomial
x2+w2−α(y2+z2)−t2 we get that the point O := (1 : 0 : 0 : 0 : 1) is a smooth point of T . Let M ⊂ P4 be the
hyperplane with equation x− t = 0 . Note that M is the tangent space to E at O . Hence, E ∩M is a quadric
cone of M , which is the union of all lines of P4 contained in E and passing through O . Let H ⊂ P4(K) be
any hyperplane defined over K and with O /∈ H . The latter condition implies H ̸=M and hence N := H ∩M
is a codimension two linear subspace of P4 . Let ℓ : P4 \ {O} → H denote the linear projection from O . The
morphism ℓ is defined over K , because O and H are defined over K . Hence, for each P ∈ H(K) the line
L(O,P ) spanned by O and P is defined over K . Since O ∈ T , the intersection T ∩ L(O,P ) is either O with
multiplicity 2 or the entire line L(O,P ) or the union of O and another point OP ∈ E defined over K . The
first two cases imply L(O,P ) ⊂ M . Since O ∈ M and O /∈ H , we have L(O,P ) ⊂ M if and only if P ∈ N .
Hence, whenever we take P ∈ H \N the point OP ∈ E \ {O} is defined over K . Since H \N is 3 -dimensional
affine space over K , we get that E is infinite. E \ T = E ∩H∞ . We have O /∈ H∞ and hence O /∈ H∞ ∩ E .
Thus, ℓ(H∞ ∩ E) is a quadric hypersurface of M . If P ∈ M \ (ℓ(H∞ ∩ E)) , then OP ∈ T . ℓ(H∞ ∩ E) ∪ N
is the union of a quadric and a hyperplane of M . Since K is infinite, the Grassmannian of all lines of M(L)

defined over K is Zariski dense in the Grassmannian of all L -lines of M(L) . Since K is infinite, restricting
to lines defined over K and contained neither in ℓ(H∞ ∩ E) nor in N we get that M \ (N ∪ ℓ(E ∩ H∞)) is
infinite. Hence, E is infinite.

(a) Assume that L has a field embedding j : L ↪→ C . We omit j and hence see L as a subfield of C .
First assume that K is dense in C with respect to the euclidean topology. Hence, K4 (resp. P4(K))

is dense in Cn (resp. P4(C)) for the euclidean topology. The topological space N(C) is the closure of N in
N(C) with respect to the euclidean topology. Since E ∩H∞ has corank 1 with vertex O ∈ P4(K) , the closure
of E ∩H∞ in the euclidean topology contains a neighborhood of O in (E ∩H∞)(C) . Since (E ∩H∞)(C) is a
cone with vertex O , it is the closure of E ∩H∞ for the euclidean topology and (ℓ(H∞ ∩E))(C) is the closure
of ℓ(H∞ ∩ E) for the euclidean topology. ℓ(H∞ ∩ E) ∪ N is the union of a quadric and a hyperplane of M .
We get that E(C) is the closure of E with respect to the euclidean topology. ∆̂ ∩ (1 − ∆̂) is infinite if and
only if ∆∩ (1−∆) is infinite. Assume that ∆∩ (1−∆) is finite, say ∆∩ (1−∆) = {a1, . . . , as} with ai ∈ K .
Set Gi := C(ai, 0) and Fi := C(1 − ai, 0) . We get E = ∪s

i=1Gi × Fi . Hence, ∪s
i=1Gi(C) × Fi(C) is dense in

E(C) for the euclidean topology. Since E(C) has complex dimension 3 , while each Gi(C)×Fi(C) has complex
dimension 2 , we get a contradiction.

Now assume that K is not dense in C for the euclidean topology. Since Q is dense in R for the euclidean
topology, the closure of K for the euclidean topology contains R . Since this closure is a field, R is the closure of
K for the euclidean topology. We use E(R) instead of E(C) . Since O is a smooth point of E and O ∈ E(R) ,
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E(R) is a nonempty topological manifold of dimension 3 . Hence, E(R) cannot be the union of finitely many
topological 2 -manifolds Gi(R)× Fi(R) .

(b) By a theorem of Steinitz two algebraically closed fields with characteristic zero are isomorphic if and
only if they have transcendental basis over Q with the same cardinality [8, Theorem VIII.1.1], [10, page 125].
There are real closed fields with a transcendental basis over Q with arbitrary cardinality (use that every ordered
field has a real closure [2, Theorem 1.3.2] and give an ordering of Q(tα)α∈Γ with Γ a well-ordered set and tα

bigger than any rational function in the variable tγ , γ < α) and for any real closed field R the field R(i) is
algebraically closed [2, Theorem 1.2.2]. Hence, there is an embedding j : L ↪→ R(i) for some real closed field R .
The euclidean topology on Rn is the topology for which open balls form a basis of open subsets [2, Definition
2.19]. The field C := R(i) inherits the euclidean topology. The sets Rn , Cn , T (R) , T (C) , Pr(R) , Pr(C) ,
E(R) , and E(C) have the euclidean topology. Repeat the proof in step (a) with R and C instead of R and
C . 2

Remark 7 Assume char(K) = 0 . Lemma 8 says that C2(1) is infinite. Hence, Cn(1) is infinite for all n ≥ 2 .

We recall that a field F is said to be formally real if −1 is not a sum of squares of elements of F . If F
is formally real, then char(F ) = 0 .

Proposition 5 Assume that K is formally real but that L is not formally real. Then 0 /∈ ∆̂n for any n > 1 .

Proof Write L = K(
√
α) for some α ∈ K . Since K is formally real but L is not formally real, there is an

ordering ≤ on K with α < 0 [2, Theorem 1.1.8 and Lemma 1.1.7]. Take z = x + yα ∈ L with x, y ∈ K and
(x, y) ̸= (0, 0) . Since σ(z)z = x2 − αy2 > 0 , a > 0 for every a ∈ ∆̂ . Thus, b > 0 for every b ∈ ∆̂n . 2

Example 2 Here we give a simple example with ∆2 ̸= ∆ and 0 /∈ ∆̂ . Take K = Q and L := Q(i) . For
any z = x + iy ∈ L we have zσ(z) = x2 + y2 . Hence, ∆ is the subset of Q≥0 formed by the sums of two
squares. Every positive integer is the sum of 4 squares by a theorem of Lagrange and hence ∆2 = Q≥0 . There
are positive rational numbers that are not the sums of 2 or 3 squares, e.g., 7 is not the sum of 3 squares of
rational numbers, because for any n ∈ {1, 2, 3} a positive integer is the sum of n squares of rational numbers
if and only if it is the sum of n squares of integers [9, Ch. 7]. Proposition 5 gives 0 /∈ ∆̂ .

Example 3 Assume char(K) = 0 , i.e. assume K ⊇ Q . We have ∆n ⊇ Q≥0 for every n ≥ 4 , because every
nonnegative integer is the sum of 4 integers by a theorem of Lagrange and ∆n \ {0} is a multiplicative group.

Lemma 9 Assume char(K) = 0 . Then there are infinitely many m ∈ ∆ such that 1 −m is a square in K

and m = σ(z)z with z ∈ L \ (K ∪K
√
α) .

Proof Take z = x+ y
√
α ∈ L2 with x, y ∈ K . Consider the equation in K3 :

x2 + w2 = αy2. (1)

As the proof of Lemma 8 we get that (1) has infinitely many solutions (x, y, w) ∈ K3 with y ̸= 0 and
x ̸= 0 and that the set of these solutions has infinite image under the projection K3 → K onto the third
coordinate. 2
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Example 4 Assume char(K) = 2 . We also assume that K is infinite. There is ϵ ∈ K such that L = K(β) ,
where β is any root of the polynomial t2 + t+ ϵ . Note that 1 + β is the other root of the same polynomial and
hence σ(β) = 1 + β (note that σ2(β) = 2 + β = β ). We use 1, β as a basis of L as a 2-dimensional K -vector
space. Take z = x + yβ ∈ L . We have σ(z) = x + y + yβ and hence (since xy + yx = 0 and β2 + β = ϵ)
σ(z)z = x(x+ y) + y2ϵ . For any c ∈ ∆ the affine conic {x2 + xy + y2ϵ+ c = 0} ⊂ K2 is the circle with center
0 and squared-radius c . If c = 0 , then this circle is the singleton {0} . Now assume c ∈ ∆̂ . Take homogeneous
coordinates x, y, z in P2(L) . Fix any c ∈ K∗ . Set g(x, y, z) := x2 + xy + y2ϵ + cz2 . The projective conic
T := {g(x, y, z) = 0} ⊂ P2(L) is smooth, because ∂

∂x
g = y , ∂

∂y
g = x , ∂

∂z
g = 0 and hence the common zero-set of

the partial derivatives of g(x, y, z) is the point (0 : 0 : 1) /∈ T . Hence, if c ∈ ∆̂ any circle {σ(z−µ)(z−µ) = c}
is an affine smooth conic with at least one point P (because c ∈ ∆). Taking the linear projection from P we
see that this circle is infinite and with the cardinality of K .

4. The proofs and related results

Proof of Proposition 1. Taking M − cIn×n instead of M and applying Remark 5 we reduce to the case
c = 0 . Assume Num(M) = {0} and M ̸= 0In×n . In particular we have n > 1 . Write M = (mij) . Since
every diagonal element of M is contained in Num(M) by Remark 5, we have mii = 0 for all i . Hence, there is
mij ̸= 0 with i ̸= j . Taking M† instead of M if necessary and applying Lemma 3 we reduce to the case i < j .
A permutation of the orthonormal basis e1, . . . , en is unitary and hence it preserves Num(M) . Permuting this
basis we reduce to the case i = 1 and j = 2 . Taking (1/m12)M instead of M and applying Remark 5 we reduce
to the case m12 = 1 . Set b := m21 . Take u = (x, y) ∈ L2 such that σ(x)x+σ(y)y = 1 and set u := (a1, . . . , an)

with a1 = x , a2 = y and ai = 0 for all i > 2 . We have ⟨u,Mu⟩ = bσ(x)y + σ(y)x . Since b ̸= 0 , it is sufficient
to prove the existence of x, y ∈ L∗ such that f(x, y) := σ(x)x+ σ(y)y = 1 and g(x, y) := bσ(x)y + σ(y)x ̸= 0 .
We first take x, y ∈ K and so σ(x) = x and σ(y) = y . Hence, g(x, y) = 2(b + 1)xy . Since char(K) ̸= 2 ,
the affine conic D := {x2 + y2 = 1} ⊂ K2 is smooth. Since K is infinite and (1, 0) ∈ D , D has infinitely
many K -points (use the linear projection from (1, 0)). Hence, we may find (x, y) ∈ D with g(x, y) ̸= 0 , unless
b = −1 . Now assume b = −1 . Write y = tx . We have g(x, y) = 0 if and only if either xy = 0 or t ∈ K . By
Lemma 9 there is y ∈ L \ K , so that 1 − σ(y)y is a square in K∗ and so there is x ∈ K∗ , y ∈ L \ K with
1 = σ(y)y + x2 . 2

Proposition 6 Take M ∈M2,2(L) with a unique eigenvalue c ∈ L with an eigenvector v ̸= 0 with ⟨v, v⟩ = 0 .

Then 0 ∈ ∆̂2 and either M = cI2,2 or there is µ ∈ L∗ such that Num(M) = c + µ∆̂ and in the latter case
c /∈ Num(M) .

Proof Write v := (a1, a2) . By assumption (a1, a2) ̸= (0, 0) and σ(a1)a1+σ(a2)a2 = 0 . Hence, 0 ∈ ∆̂2 . Since
v ̸= 0 and ⟨v, v⟩ = 0 , e2 and v are not proportional and so they form a basis of L2 . Since ⟨ , ⟩ is nondegenerate
and ⟨v, v⟩ = 0 , we have ⟨v, e2⟩ ̸= 0 . Taking a multiple of v if necessary we reduce to the case ⟨v, e2⟩ = 1 .
Thus, ⟨e2, v⟩ = 1 . Assume M ̸= cI2,2 . Taking M − cI2,2 instead of M and applying Remark 5 we reduce to
the case c = 0 . Write M = (bij) , i, j = 1, 2 , with respect to the basis v, e2 . We have b11 = b22 = b12 = 0

and b12 ̸= 0 . Set µ := b12 . Take u = xv + ye2 such that ⟨u, u⟩ = 1 , i.e. xσ(y) + σ(x)y + σ(y)y = 1 (and in
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particular y ̸= 0). We have ⟨u,Mu⟩ = ⟨xv+ ye2, µyv⟩ = µσ(y)y . Varying y ∈ L∗ as σ(y)y we get all elements
of ∆̂ . Hence, to conclude the proof it is sufficient to prove that for every y ∈ L∗ there is x ∈ L such that
xσ(y)σ(x)y + σ(y)y = 1 . First assume char(K) ̸= 2 . Fix e ∈ L \K with e2 /∈ K and write x = u + ev and
y = c + ed with u, v, c,∈ K . We have σ(x) = u − ev and σ(y) = c − ed . We find 2uc = η for some η ∈ K

and we always have a solution u , because we may take y giving σ(y)y and c ̸= 0 . Now assume char(K) = 2 .
There is e ∈ L\K such that e2+ e ∈ L and σ(e) = e+1 . Write x = u+ ev , y = c+ ed with u, v, c, d ∈ K and
(c, d) ̸= (0, 0) . Now we find an equation ud+ vc = η for some η ∈ K , which may always be satisfied, because
(c, d) ̸= (0, 0) . 2

Remark 8 Assume 0 ∈ ∆̂2 , say 0 = σ(x)x + σ(y)y with (x, y) ∈ L2 \ {(0, 0)} , and take c ∈ L . Set
v := xe1 + ye2 ∈ L2 \ {(0, 0)} . Take any linear map f : L2 → L2 with Ker(f − cIdL2) = Im(f) = Lv and let
M be the matrix associated to f . Then M ̸= cI2×2 and M satisfies the assumptions of Proposition 6.

Proof of Theorem 1. By assumption there are a1, a2 ∈ L with (a1, a2) ̸= (0, 0) and σ(a1)a1 + σ(a2)a2 = 0 .
Set v := a1e1 + a2e2 . We have v ̸= 0 and ⟨v, v⟩ = 0 . Hence, e2 and v are not proportional and so they form
a basis of L2 . Since ⟨ , ⟩ is nondegenerate and ⟨v, v⟩ = 0 , we have ⟨v, e2⟩ ̸= 0 . Taking a multiple of v if
necessary we reduce to the case ⟨v, e2⟩ = 1 . Thus, ⟨e2, v⟩ = 1 . Take M ∈ Mn,n(L) defined by Mv = cv and
Me2 = µv + ce2 . Apply Proposition 6. 2

Proof [Proof of Theorem 2:] Taking M − cI2,2 instead of M and applying Remark 5 we reduce to the case
c = 0 .

Set δ := ⟨v, v⟩ . Write v = a1e1 + a2e2 and set w := −σ(a2)e1 + σ(a1)e2 . We have ⟨v, w⟩ =

−σ(a1)σ(a2) + σ(a2)σ(a1) = 0 and hence ⟨w, v⟩ = 0 . Since δ = ⟨v, v⟩ = σ(a1)a1 + σ(a2)a2 and σ(σ(ai)) = ai ,
we have ⟨w,w⟩ = δ . Since δ ̸= 0 and ⟨v, w⟩ = 0 , v, w are a basis of L2 . Write M = (bij) , i, j = 1, 2 , with
respect to the basis v, w . By assumption we have b11 = b21 = 0 . Since M has a unique eigenvalue, we have
b22 = 0 . Assume M ̸= 0I2,2 and hence b12 ̸= 0 . Set µ := b12 .

(i) If δ ∈ ∆ , then δ ∈ Num(M) by Remark 6. Now assume 0 ∈ Num(M) , i.e. assume the existence
of u = xv + yw such that ⟨u, u⟩ = 1 (i.e. such that σ(x)x + σ(y)y = 1/δ ) and ⟨u,Mu⟩ = 0 (i.e. 0 =

⟨xv + yw, µyv⟩ = µδσ(x)y ). Hence, either y = 0 or x = 0 . Hence, u is either a multiple of v or a multiple of
w . Since ⟨v, v⟩ = ⟨w,w⟩ = δ , Lemma 4 gives δ ∈ ∆ .

(i) Now assume δ ∈ ∆̂ . Since ∆̂ is a multiplicative group, there is t ∈ L such σ(t)t = 1/δ . Set v1 := tv

and v2 := tw . We have ⟨vi, vi⟩ = 1 and ⟨vi, vj⟩ = 0 if i ̸= j . Let (mij) be the matrix associated to M in
the basis v1, v2 . We have m11 = m12 = 0 . Since M has a unique eigenvalue, we have m22 = 0 . Assume
M ̸= 0I2×2 , i.e. assume m12 ̸= 0 . Taking (1/m12)M instead of M and applying Remark 5 we reduce to the
case m12 = 1 . Take u = xw1 + yw2 with ⟨u, u⟩ = 1 , i.e. with σ(x)x + σ(y)y = 1 . Set γ := σ(x)x and hence
σ(y)y = 1 − γ . Since 0 ∈ Num(M) , to check all other elements of Num(M) we may assume xy ̸= 0 , i.e.
γ /∈ {0, 1} . Note that γ is an arbitrary element of ∆̂∩ (1− ∆̂) . We fix γ , but we only take x, y with σ(x)x = γ

and σ(y)y = 1 − γ . We have ⟨u,Mu⟩ = ⟨xw1 + yw2, yw1⟩ = σ(x)y . Note that σ(x)y · σ(σ(x)y) = γ(1 − γ) .
Fix w ∈ L such that σ(w)w = γ(1 − γ) . Take any x with σ(x)x = γ . Note that x ̸= 0 , because γ ̸= 0 .
Take y := w/σ(x) . To conclude the proof of part (b) it is sufficient to prove that σ(y)y = 1 − γ . We have
σ(y)y = σ(w)w/xσ(x) = γ(1− γ)/γ . 2

1706



BALLICO/Turk J Math

Lemma 10 and Proposition 7 are, respectively, the analogues of [3, Lemma 3.6 and Theorem 1.2 (d)].
In their statements the last

∪
is a union of circles with center 0 , in which if we take d ∈ ∆̂ ∩ (1 − ∆̂) as a

parameter space the circles coming from d and 1 − d are the same and we do not claim that
∪

is a disjoint
union (see [3, Example 3.7]).

Lemma 10 Fix b ∈ L∗ and let M = (mij) be the 2 × 2 matrix with a11 = 1 , a21 = a22 = 0 , and a12 = b .
Then

Num(M) = {0, 1} ∪
∪

d(1−d),d∈∆̂∩(1−∆̂)

C(σ(b)bd(1− d), d).

Proof The vector e1 gives 1 ∈ Num(M) . The vector e2 gives 0 ∈ Num(M) . Take u = xe1 + xe2 ∈ L2 such
that ⟨u, u⟩ = 1 , i.e. such that σ(x)x + σ(y)y = 1 . Set d := σ(x)x ∈ ∆ . We have σ(y)y = 1 − d and hence
d ∈ (1 −∆) . We have ⟨u,Mu⟩ = ⟨xe1 + y2, (x + by)e1⟩ = d + bσ(x)y . Set m := bσ(x)y . We have σ(m)m =

σ(b)bσ(y)yσ(x)x = σ(b)bd(1 − d) . Thus, m ∈ C(bd(1 − d), 0) and hence ⟨u,Mu⟩ ∈ d + C(σ(b)bd(1 − d), 0) .
Since 0, 1 ∈ Num(M) , from now on we may assume d /∈ {0, 1} and prove the other inclusion. Take any
m′ ∈ C(σ(b)bd(1 − d), 0) , i.e. with σ(m′)m′ = σ(b)bd(1 − d) . Take x1 ∈ C(d, 0) . Since d ̸= 0 , we have
x1 ̸= 0 . Set y1 := m′/(bσ(b)x1 and u′ := x1e1 + y1e2 . We have y1 ∈ C((1 − d), 0) , ⟨u′,Mu′⟩ = d +m′ and
σ(x1)x1 + σ(x2)x2 = σ(b)bd(1− d) . 2

Proposition 7 Assume n = 2 and that M has two eigenvalues c1, c2 ∈ L , c1 ̸= c2 , with eigenvectors vi for
ci with ⟨v1, v1⟩ ∈ ∆̂ .

(i) If ⟨v1, v2⟩ = 0 , then M is unitarily equivalent to c1I1×1 ⊕ c2I1×1 .
(ii) Assume ⟨v1, v2⟩ ̸= 0 . Then there is µ ∈ L∗ such that Num(M) is the union of {c1, c2} and a union

of circles C(σ(µ)µd(1− d), d) with d ∈ ∆̂ ∩ (1− ∆̂) .

Proof Set δ := ⟨v1, v1⟩ . Since 1/δ ∈ ∆̂ (Remark 2), there is t ∈ L∗ such that σ(t)t = 1/δ . Set
w1 := tv1 . We have ⟨w1, w1⟩ = 1 and Mw1 = c1w1 . Write w1 = a1e1 + a2e2 for some a1, a2 ∈ L . Set
w2 := −σ(a2)e1 + σ(a1)e1 . Note that ⟨w2, w1⟩ = 0 and ⟨w2, w2⟩ = 1 . Taking M − c2I2,2 instead of M and
applying Remark 5 we reduce to the case c2 = 0 and hence c := c1− c2 ̸= 0 . Taking (1/c)M instead of M and
applying Remark 5 we reduce to the case c = c1− c2 = 1 . Write M = (mij) , i = 1, 2 , in the orthonormal basis
w1 and w2 . We have m11 = 1 and m21 = m22 = 0 . If m12 = 0 , then M is unitary equivalent to the matrix
c1I1×1 ⊕ c2I1×1 . We have m12 = 0 if and only if w2 is proportional to v2 , i.e. (being v2 linearly independent
from tv1 = w1 ) if and only if ⟨v1, v2⟩ = 0 . Apply Lemma 8 with µ := m12/(c1 − c2) . 2

Proposition 8 Take M ∈M2,2(L) with eigenvalues c1, c2 ∈ L , c1 ̸= c2 , and take vi ∈ L2 such that Mvi = civi

and vi ̸= 0 . Assume ⟨vi, vi⟩ = 0 for all i . Set D := {t ∈ L | t+ σ(t) = 1} . Then Num(M) = D

Proof Taking (1(c2 − c1)(M − c1I2×2) and applying Remark 5 we reduce to the case c1 = 0 and c2 = 1 .
Since ⟨ , ⟩ is nondegenerate and ⟨vi, vi⟩ = 0 for all i , we have ⟨v1, v2⟩ ̸= 0 . Taking (1/⟨v1, v2⟩)v2 instead
of v2 we reduce to the case ⟨v1, v2⟩ = 1 . Thus, ⟨v2, v1⟩ = 1 . Take u = xv1 + yv2 with ⟨u, u⟩ = 1 , i.e.
with σ(x)y + σ(y)x = 1 . Note that x ̸= 0 and y ̸= 0 . We have ⟨u,Mu⟩ = ⟨xv1 + yv2, yv1⟩ = σ(x)y .
For any b ∈ L∗ let N(b) be the set of all σ(x)b with σ(x)b + σ(b)x = 1 . Fix y ∈ L∗ . Set t := x/y .
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Note that t ̸= 0 . Since σ(x)y + σ(y)x = 1 , we have σ(t)yσ(y) + tyσ(y) = 1 and ⟨u,Mu⟩ = σ(t)yσ(y) .
Take t0, y0, y ∈ L∗ such that t0σ(t0)y0σ(y0) + t0y0σ(y0) = 1 and set t1 := t0y0σ(y0)/(yσ(y)) . We have
σ(t1)yσ(y) + t1yσ(y) = t0σ(t0)σ(t0) + t0y0σ(y0) . Hence, N(y) ⊇ N(y0) . By symmetry we get N(y) = N(y0) .
Taking y0 = 1 we get Num(M) = N(1) . Note that t + σ(t) = 1 if and only if σ(t) + t = 1 . Hence,
σ(N(1)) = N(1) . Thus, Num(M) = D . 2

Proposition 9 Fix n > 2 and assume ∆n = ∆ . Take M ∈ Mn,n(L) with an eigenvalue c ∈ L with an
eigenspace of dimension n− 1 . Then one of the following cases occurs:

1. M is unitarily equivalent to cIn−1,n−1 ⊕ dI1×1 (unitary direct sum) for some d ̸= c ;

2. M is unitarily equivalent to cIn−2,n−2 ⊕M ′ (unitary direct sum) with M ′ as in case (ii) of Proposition
7;

3. M is unitarily equivalent to cIn−2,n−2 ⊕M ′ (unitary direct sum) with M ′ as in Theorem 2;

4. M is unitarily equivalent to cIn−2,n−2 ⊕M ′ (unitary direct sum) with M ′ as in Proposition 8;

5. M is unitarily equivalent to cIn−2,n−2 ⊕M ′ (unitary direct sum) with M ′ as in Proposition 6.

Proof Let W ⊂ Ln be the c -eigenspace space of M . Taking M − cIn,n instead of M and applying Remark
5 we reduce to the case c = 0 . Hence, Mw = 0 for all w ∈ W . By Lemma 6 there are f1, . . . , fn−2 ∈ W

such that ⟨fi, fi⟩ = 1 for all i and ⟨fi, fj⟩ = 0 for all i ̸= j . Let V be the linear span of f1, . . . , fn−2 . Set
V ⊥ := {x ∈ Ln | ⟨w, x⟩ = 0 for all w ∈W} . By the choice of f1, . . . , fn−2 we have V ∩V ⊥ = {0} . Since ⟨ , ⟩ is
nondegenerate, we have dim(V ) + dim(V ⊥) = n and so Ln = V ⊕ V ⊥ (unitary direct sum). Fix w, v ∈ V . We
have ⟨v,M†w⟩ = ⟨Mv,w⟩ = ⟨0, w⟩ = 0 . Since the restriction of ⟨ , ⟩ to V is nondegenerate, we get M†w = 0 .
Hence, M†w = 0 for all w ∈W . Fix m ∈ V ⊥ and v ∈W . We have ⟨v,Mm⟩ = ⟨M†v,m⟩ = ⟨0,m⟩ = 0 . Since
this is true for all v ∈W , we get Mm ∈ V ⊥ . Hence, MV ⊥ ⊆ V ⊥ . Set B :=M|V ⊥ , seen as a map V ⊥ → V ⊥ .
All the eigenvalues of M are in L and we call d the other eigenvalue. The matrix B has eigenvalues 0 and d

with 0 the eigenspace that contains u ∈W ∩ V ⊥ , u ̸= 0 .
(a) First assume d ̸= 0 and hence there is v ∈ V ⊥ with Mv = dv and v ̸= 0 . We have ⟨z, z⟩ ∈ ∆n = ∆

for all z ∈ V ⊥ . Hence, if either ⟨u, u⟩ ̸= 0 or ⟨v, v⟩ ̸= 0 , then we apply Proposition 9 and get that we are either
in case (1) or case (2). If ⟨u, u⟩ = ⟨v, v⟩ = 0 , then we apply Proposition 8.

(b) Now assume d = 0 . By assumption Lu is the only one-dimensional subspace of V ⊥ sent into itself
by B . If ⟨u, u⟩ = 0 , then we apply Proposition 6. If ⟨u, u⟩ ̸= 0 , then we apply Theorem 2. 2

5. Matrices with coefficients in K

Take M = (mij) ∈Mn,n(K) . The set Cn(1,K) is the set of all solutions (x1, . . . , xn) ∈ Kn of the equation

x21 + · · ·+ x2n = 1. (2)

Thus, Num(M)K is the set of all ∑
i,j

mijxixj (3)

with x1, . . . , xn satisfying (2).
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Lemma 11 Take M = (mij) , N = (nij) ∈Mn,n(K) .

1. If mii = nii for all i and mij +mji = nij + nji for all i ̸= j , then Num(M)K = Num(N)K .

2. We have Num(B)K = Num(M)K for the matrix B := (bij) with bii = mii for all i , bij = 0 for all i < j ,
and bij = mij +mji for all i > j .

3. If char(K) ̸= 2 , the matrix A := (aij) with aij = (mij + mji)/2 for all i, j is symmetric and
Num(A)K = Num(M)K .

Proof Equation (3) is the same for M (i.e. with mij as coefficients) and for N (i.e. with nij as coefficients).
The last two assertions of Lemma 11 follow from the first one. 2

Remark 9 For all c, d ∈ K and all M ∈Mn,n(K) we have Num(cM + dIn,n)K = cNum(M)K + d .

Remark 10 The vectors e1, . . . , en prove that for any M ∈Mn,n(K) the diagonal elements of M are contained
in Num(M)K .

Proof [Proof of Proposition 2:] Write M = (mij) . Taking M −m11In,n instead of M we reduce to the case
m11 = 0 by Remark 9. If M is antisymmetric and mii = 0 for all i , then Num(M)K = Num(0In×n)K = {0}
by Lemma 11.

Now assume ♯(Num(M)K) = 1 . Since the diagonal elements of M are contained in Num(M)K by
Remark 10, we have mii = 0 for all i . Assume mij ̸= 0 for some i ̸= j . The first part of the proof of
Proposition 1 with ei, ej instead of e1, e2 (i.e. the part with x, y ∈ K ) gives mji = −mij . 2

Remark 11 Assume char(K) = 2 . Then x21 + · · ·+ x2n = (x1 + · · ·+ xn)
2 . Hence, the elements of (3) coming

from the solutions of (2) are the ones coming from the solutions of

x1 + · · ·+ xn = 1. (4)

Substituting xn = 1 + x1 + · · · + xn−1 in (3) we get that Num(M)K is the image of a map fM : Kn−1 → K

with fM a polynomial in x1, . . . , xn−1 with deg(fM ) ≤ 2 . If deg(fM ) = 1 , then fM is surjective, i.e.
Num(M)K = K . If deg(fM ) = 0 , then fM is constant and hence ♯(Num(M)K) = 1 . Let gM be the
homogeneous degree 2 part of fM and let A = (aij) , i, j = 1, . . . , n − 1 , be the matrix associated to gM with
aij = 0 if i < j . We have aii = mii+mnn and aij = mij+mji for all i ̸= j with i, j < n . Since char(K) = 2 ,
we have aii = 0 if and only if mii = mnn and aij = 0 (with i ̸= j ) if and only if mij = mji . Thus, gM = 0 if
and only if all diagonal elements of M are the same and the top (n− 1)× (n− 1) principal submatrix of M is
symmetric.

(a) Assume gM ̸= 0 and that K is infinite.
Claim 1: If aij ̸= 0 for some i ̸= j , then Num(M)K = K .
Proof of Claim 1: Up to a permutation of e1, . . . , en−1 we may assume a12 ̸= 0 . We have fM (x1, x2, 0,

. . . , 0) = (m11 + mnn)x
2
1 + a12x1x2 + (m22 + mnn)x

2
2 + βx1 + γx2 + δ for some β, γ, δ ∈ K . Hence, it is

sufficient to prove that the image of the map ψ : K2 → K induced by the polynomial fM (x1, x2, 0, . . . , 0) has
the cardinality of K . We will prove that ψ is surjective. Take b ∈ K such that a11b ̸= −γ . The polynomial
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fM (b, x2, 0 . . . , 0) is a nonconstant degree 1 polynomial and hence it induces a surjection K → K . Thus, ψ is
surjective. Now assume aii ̸= 0 for some i , i.e. mii ̸= mnn for some i < n .

Claim 2: Assume aij = 0 for all i ̸= j , but aii ̸= 0 for some i < n−1 . If K is infinite, then Num(M)K

has the cardinality of K .

Proof of Claim 2: We have gM (x1, . . . , xn−1) =
∑n−1

i=1 aiix
2
i ̸= 0 and

fM (x1, . . . , xn−1) = gM (x1, . . . , xn−1) + ℓ(x1, . . . , xn−1) + γ

for some γ ∈ K and a linear form ℓ ∈ K[x1, . . . , xn−1] . Up to a permutation of the indices we may assume that
a11 ̸= 0 . Fix any (b2, . . . , bn−1) ∈ Kn−2 and call ϕ : K → K the map induced by fM (x1, b2, . . . , bn−1) . Since
fM (x1, b2, . . . , bn−1) is a degree 2 nonconstant polynomial, each fiber of ϕ has at most cardinality 2 . Hence,
ϕ(K) and K have the same cardinality.

(b) Assume gM ≡ 0 . In particular, mii = mnn for all i < n . We have fM (0, . . . , 0) = ann and
fM (x1, . . . , xm) = b1x1 + · · · + bn−1xn−1 + ann with bi = mni +min . Hence, fM is surjective if and only if
mni ̸= min for some i < n , while fM is constant if mni = min for all i < n .

Proof of Proposition 3. The proposition was proved in Remark 11, with as a bonus the discussion of some
cases with Num(M)K = K . 2
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