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Abstract—Deep neural architectures have been proposed as
a solution for Autonomous Vehicles. However, deep learners
require very large sets of training data such that meeting current
requirements of autonomous vehicle safety is intrinsically hard
to achieve. We here propose a hybrid multi-layer architecture,
featuring a biologically inspired separation between the tasks of
action priming and action selection, that extends the principle of
hierarchical Perception-Action learning via a dream simulation
mechanism to greatly extend the utility of training data during
learning.

Index Terms—Perception-Action Learning, Automated driv-
ing; Co-Driver Agent; Artificial Cognitive Systems; Learning by
simulations; Simulation Hypothesis of Cognition.

I. INTRODUCTION

A human-driven car has an expected average fatality rate
of 1.08 (fatal accidents) per 100 million miles average over
all driving situations [1]. Automated driving systems will be
required to improve on this to, say, 1 billion miles guaranteed
fatality-free driving without human supervision, such as at
level 3 or grater of the SAE automation level scale [2]. Deep
Machine learning approaches, e.g. [3], thus utilize very large
databases to implement a single function (lane following, in
the case of [3]).

To address the challenge of learning more efficiently, the
European H2020 project Dreams4Cars1 utilizes a hybrid multi-
layer architecture [4] built on the principle of hierarchical
Perception-Action learning (as in the more limited previous

1www.Dreams4Cars.eu

Fig. 1. Agent sensorimotor architecture

work [5]) that is capable of extending the utility of its training
data via a dream simulation mechanism. The architecture
covers the complete perception to action loop in a biologically
plausible model that separates action priming and action
selection, with parallel priming on many potential actions and
subsequent adaptive selection.



II. ARCHITECTURE

We exploit theories of embodied and episodic simulation
mechanisms [6], according to which thoughts, and dreams, are
equivalent to simulated action/perception chains. We adopt a
biologically inspired (see [7]) architecture with three loops:
(A) A “dorsal stream”, which enacts hierarchical layered

inverse models that generate affordances from the sensory
input.

(B) An action selection mechanism (“basal ganglia”) that
operates on several levels of the hierarchy.

(C) A “cerebellum” that learns forward models.

A. Dorsal stream – layered control

The dorsal stream takes sensory input (in any available form,
e.g. LIDAR, digital maps, cameras) and gradually morphs this
input into a representation of possible actions (affordances)
encoded as patterns of activity in the “motor cortex”. Overall
the dorsal stream aims at implementing simultaneous parallel
action priming according to the affordance competition hy-
pothesis by Cisek [8].

Layered organization (subsumption) in the dorsal stream
allows for strategies of a higher level of complexity (complex
sequences of actions). Learning and optimizing these strategies
(at all levels) equates to learning the mapping from perception
to affordances. The goal of the dorsal stream is thus to produce
many potential actions, not just one (the selection of the actual
action to be executed will be carried out later). The fact that
Dreams4Cars maps perception-to-(many)-affordances and then
affordances-to-(one)-action in two steps, instead of perception-
to-(one)-action in a single step, differentiates Dreams4Cars
from other examples of learning perception-action maps such
as, e.g., [3].

Separating affordance generation from action selection
achieves: 1) better adaptive behaviour, resulting from selection
among a pool of potential actions; and 2) the ability for the
agent to develop new behaviours (i.e. affordances) without
needing to retrain the action selection mechanism (this trans-
lates to better scalability to complex situations).

Affordances are represented by active regions of the cortex
and learning new motor strategies means updating the dorsal
stream so that new affordances appear as new active regions.
Motor cortex intensities encode the merit (inverse cost) of each
action, or its saliency from the point of view of the agent.
Actions leading to collisions will be completely inhibited;
actions violating priorities of lesser importance will be only
partially inhibited, so that e.g. the system will choose to break
a traffic rule if this is necessary to avoid a collision (in this
case, partial inhibition of traffic rules forms a shallow peak in
the motor cortex).

B. Basal Ganglia (BG) – action selection

The action-selection mechanism may operate at several
levels within the hierarchical subsumption architecture. At
the lowest level, it operates on the motor cortex: it takes
the motor cortex as input and returns a copy of the motor
cortex with only one active peak - the selection occurs by

suppressing all the affordance peaks except one. At a higher
levels, output consists of grounded symbolic representations
of salient environmental features and potential actions.

The action selection is analogous to a CNN max-pooling
layer. However, in biological systems the selection mechanism
is not strictly Winner Takes All (WTA); rather it is specu-
lated that the BG implement a more sophisticated algorithm
such as MSPRT (multi-hypothesis sequential probability ratio
test) [9] which carries out optimal decision making between
alternative actions with time and error rate constraints. The
action-selection mechanism in Dreams4Cars is inspired by the
broader biological principles.

C. Cerebellum – forward models

Forward models should produce an anticipation of the entire
sensory input. We may break down this function into the
prediction of the host vehicle trajectory, which depends on the
action that is selected (or potentially selected) by the agent,
and the prediction of the other agents behaviours.

Dreams4Cars will evaluate two approaches:
Hybrid analytical-learning: learning the parameters of a

vehicle model and supplementing it with learning the un-
modelled aspects via a general learning framework utilising a-
priori knowledge constraining the learning process. An impor-
tant reason for a hybrid approach, using locally weighted pro-
jection regression (LWPR) for the learnt part, is that symbolic
derivatives for the forward dynamics are available (both the
model equations and LWPR allows symbolic differentiation
so that a Variational formulation of Optimal Control can be
used in connection with logic-base reasoning.

Neural Networks. Deep Neural Networks may be used for
either learning the un-modelled dynamics (replacing LWPR)
or for learning the complete dynamics. Also, in this case we
may exploit some ideas related to inversion of DNN such as
to generate the expected input from patterns of activation rep-
resenting various output symbols [10] (interpolation between
symbols becomes possible and generates interpolated input).

In biological systems forward models have several uses: a)
online, they may be used to produce (overt) expectations of
the sensory feedback, and to enhance and process sensory
information; b) in covert actions (offline use) they may be
used for motor imagery and various forms of simulation of
actions.

Dreams4Cars foresees 3 particular uses:
1) A self-monitoring system to detect anomalies in vehicle

dynamics.
2) Detection of novelties (online use), i.e., mismatch be-

tween agent prediction and what happens at the higher-
levels of the sensorimotor architecture to annotate salient
situations for future dreams.

3) Learning a model of the world for offline simulations
(dreams)

III. GENERATION OF DREAMS

Within the architecture, dreams reactivate the offline control
system as if it were interacting with the controlled entity.



They thus enable the biological agent to consider hypothetical
situations to increase its ability to handle situations in the
online state [11], [12].

The dream-state simulates previous and novel events; it
can utilise goal directed scenarios to explore alternate paths.
However, one mode in particular enables very efficient use
of training data: simulations that recombine aspects of pre-
viously encountered events into new events. Novel events
can be achieved by rearranging percepts, including: instance
changing (e.g. change of vehicle type in a given situa-
tion), modifying trajectories, change of environment, rotating
forward emulators. One research direction is experimenting
with convolutional-decovovolutinal networks which somewhat
mimic the convergence-divergence neural architecture posited
by Meyer and Damasio [13]. In particular the future space in
this type of DNN may be the common points for representation
of past experiences (by compression using the coder part of
the net), recall of memorised situations (by expansion using
the decoder part to an associated autoencoder), and motor
planning (by expanding with the net decoder part). (Note
though that subsumption by higher levels in our architecture
must be respected when plannning motor activity.)

In this context, top-down exploratory instantiations of the
subsumption architecture can be used to generate goal directed
simulations. Randomized selection of perceptual goals within
the perception-action hierarchy amounts to motor babbling in
a manner analogous to the learning process of infant humans.
In particular, this motor babbling is carried out top-down;
higher-level percepts thus become the goal states of actions
parameterized at each hierarchical level in a subsumptive
fashion [14], [15], [16] . This mechanism is thus sufficiently
flexible to allow for first-order symbolic logical reasoning
processes (such as in relation to the Highway code) to be
integrated with, e.g. optimal control mechanisms on lower
levels (OC thus acts to optimize motor primitives within this
context). Dream generation is thus enacted by top-down logi-
cal variable instantiation in a manner analogous to generative
deep-learning approaches.
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