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Abstract 

Contact unit size reduction is a widely studied mechanism to improve adhesion in natural fibrillar 

systems, such as those observed in beetles or geckos. However, these animals also display complex 

structural features in the way the contact is subdivided in a hierarchical manner. Here, we study 

the influence of hierarchical fibrillar architectures on the load distribution at the interface between 

the contact elements and the substrate, and the corresponding delamination behaviour. We present 

an analytical model to derive the load distribution in a fibrillar system, including hierarchical 

splitting of contacts, i.e. a “hierarchical shear-lag” model that generalizes the well-known shear-
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lag model used in mechanics. The influence on the detachment process is investigated introducing 

a numerical procedure that allows the derivation of the maximum delamination force as a function 

of the considered geometry, including statistical variability of local adhesive energy. Our study 

suggests that contact splitting alone is insufficient to produce efficient adhesive performance, and 

needs to be coupled with hierarchical architectures to counterbalance high load concentrations 

resulting from contact unit size reduction, generating multiple delamination fronts and helping to 

avoid detrimental non-uniform load distributions. We show that these results can be summarized 

in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect 

of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of 

hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with 

hierarchical reinforcements. 
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1. Introduction 

Animal adhesive pads based on dry friction, such as those found in insects, spiders [1] [2] or geckos 

[3] share a common strategy to enable optimized attachment to a non-adhesive substrate: contact 

is achieved through a large number of fibrillar structures that interact with the surface through Van 

der Waal’s interactions [4] and capillary forces [5]. It has been shown that the adhesive strength 

of the contact pads increases as the size of the terminal elements (i.e. spatulae or setae) decreases 

and their number increases [6]. Indeed, contact models such as that by Johnson, Kendall and 

Roberts (JKR) [7] predict an unlimited increase in the adhesive strength as the size of the contact 

tips decreases. This decrease in size also leads to an increase of the total peeling line, i.e. the sum 

of all contact tip widths, which is proportional to the peeling force according to thin-film peel 

theories [8]. Additionally, as the size of the animal increases and the dimensions of the contact 

units are reduced, hierarchical splitting is observed. For example in geckos, the lamellae support 

so-called setae, which are themselves split into hundreds of spatulae [3]. Similar structures are 

observed in arachnids [2]. The hierarchical scheme of contact splitting has been described as a way 

to optimize surface adaptability [9] or self-cleaning abilities [10] and to avoid self-bunching [11], 

and has been extended not only to the hairy adhesive structures, but also to the spider silk 

anchorages [12] [13] [14]. With the recent introduction of artificial micro-patterned surface that 

mimic animal adhesion [15] [16], including hierarchical structures [17] [18], reliable 

analytical/numerical approaches need to be developed in order to derive optimization criteria for 

such systems [19], and the interplay between contact size and hierarchical organization needs to 

be adequately addressed. 

Energy balance is usually adopted to analytically describe the delamination of a tape from a 

substrate. Two main models are extensively cited in the study of adhesion: the Rivlin model [20], 



which provides the peeling force, i.e. the tension required to achieve delamination in the detached 

length of an inextensible tape as a function of the adhesive energy, and the Kendall model [21], 

which includes the tape elastic energy variation in the equilibrium equation. Both models predict 

an increase in the peeling force as the angle between tape and substrate decrease. It has been shown 

that this relation correctly describes animal attachment systems [22] [23] [24] [25]. Geckos, for 

example, use opposing legs to stick to a surface in an inverted, upside-down position, thus reducing 

the peeling angle and optimizing adhesion. At the scale of microscopic contacts, reducing the 

peeling angle affects the distribution of load at the interface, which is another important aspect of 

the delamination mechanism. Indeed, interface stress is not uniform and depends on the structural 

and loading geometries. Models describing of the stress distribution as a function of the system 

geometrical and mechanical properties based on detailed experimental studies using pressure 

sensitive adhesive tapes were proposed in the 60’s and 70’s. One example is the Kaelble model 

[26], in which analysis of the interface stress has highlighted a direct relationship between the 

peeling angle and the critical stress in the adhesive layer. Stress distributions are obtained through 

the balance of forces acting on the tape in the attached region. When the applied external load is 

parallel to the substrate, the force balance can be reduced to a 1D problem, usually referred to as 

the “shear-lag model” [27], leading to a simple description of the load distribution. This loading 

configuration corresponds to the case in which the detachment force reaches its maximum, and is 

representative of the loading condition acting on biological contact elements (e.g. a gecko toe pad) 

in a stable attached configuration.  

In this work, we propose an extension of a classical shear-lag model [27] to hierarchical 

configurations and introduce a numerical approach to simulate the detachment process of thin films 

with an arbitrary (including hierarchical) structure from rigid substrates, with the objective of 



calculating the load distributions acting on their contact units, validating the theory and providing 

predictions for the peeling force of hierarchical adhesives or the pull-out force of hierarchical 

reinforcements in composites [28].  

 

2. Hierarchical shear lag model 

A schematic representation of a hierarchical attachment system is given in Figure 1. As explained 

above, we limit our study to the case of a load directed parallel to the substrate, since this provides 

significant insight in the role of hierarchy and contact splitting, starting from the analysis of the 

corresponding load distributions, and their influence on delamination. Rather than directly 

transferring the load between the tape (level-1 structure) and the interface, intermediate structures 

are introduced (level 2, level 3…) in the form of arrays of smaller tapes. The attachment system 

thus becomes a self-similar structure that transfers load through hierarchically organized contact 

units. The force acting on an infinitesimal length of the h-level tape is shown in Figure 1. At each 

scale level h, the tape geometrical and mechanical properties are the width 𝑤ℎ, the thickness 𝑏ℎ, 

the attached length 𝐿𝑎ℎ, the displacement in the attached region 𝑢ℎ, the detached length 𝐿𝑑ℎ, the 

elastic modulus 𝐸ℎ, the axial force within the tape 𝐹ℎ, and the number of sub-units 𝑁ℎ, i.e. the 

number of level-(h+1) structures attached to the h-level tape. The attachment contains ∏ 𝑁ℎℎ  

contact units in total.  

We adopt a top-down strategy to determine the load supported by each contact, starting from the 

larger (level-1) structure. When the structure is constituted by two levels, the load transfer between 

level 1 and level 2 is obtained from the force balance on an infinitesimal length of the level-1 

attached region d𝑥1 , as: 



 

 
d𝐹1
d𝑥1

=
𝑁1
𝐿𝑎1

𝐹2 (1) 

 

where d𝐹1 is the variation of axial load over d𝑥1 and 𝑁1 ∙ d𝑥1/𝐿𝑎1 is the number of contact units 

contained in the infinitesimal length d𝑥1. The load transferred to level-2 is assumed to be constant 

over the width of the level-1 tape. The axial force in each contact is: 

 

 𝐹2 =
𝐸2𝑏2𝑤2
𝐿𝑑2

𝑢1 (2) 

 

where 𝑢1 is the axial displacement in the level-1 structure. Substituting Eq. (2) into Eq. (1) and 

writing the strain in the level-1 structure as 𝜖1 = d𝑢1/d𝑥1 = 𝐹1/(𝐸1𝑏1𝑤1), we obtain after 

differentiation: 

 

 
d2𝐹1

d𝑥1
2 =

𝑁1
𝐿𝑎1

𝐸2𝑏2𝑤2
𝐿𝑑2𝐸1𝑏1𝑤1

𝐹1 = 𝜆1𝐹1 (3) 

 

We apply the boundary condition 𝐹1(𝑥1 = 0) = 𝐹0, where 𝐹0 is the applied external load, and 

suppose that the length 𝐿𝑎1 is sufficiently long for the axial load to tend to 0 at the other tape end 

(as is verified in all the cases considered in this study). This is equivalent to imposing 



𝐹1(𝑥1 = −∞) = 0. We obtain from Eq. (2) and Eq. (3) the load distribution on the first and second-

level as: 

 𝐹1(𝑥1) = 𝐹1(𝑥1 = 0)𝑒𝑥𝑝(√𝜆1𝑥1) (4) 

Using Eq. (1) together with Eq. (4) we have: 

 
𝐹2(𝑥1) = 𝐹1(𝑥1 = 0)

𝐿𝑎1
𝑁1

√𝜆1𝑒𝑥𝑝(√𝜆1𝑥1) 
(5) 

and repeating the procedure iteratively for the following levels, we obtain: 

 
𝐹3(𝑥1, 𝑥2) = 𝐹2(𝑥1)

𝐿𝑎2
𝑁2

√𝜆2𝑒𝑥𝑝(√𝜆2𝑥2)

…

𝐹ℎ(𝑥1⋯ , 𝑥ℎ) = 𝐹ℎ−1(𝑥1,⋯ , 𝑥ℎ−1)
𝐿𝑎ℎ
𝑁ℎ

√𝜆ℎ𝑒𝑥𝑝(√𝜆ℎ𝑥ℎ)

 

(6) 

These results are valid when the deformations within the attached regions of the level h structure 

are small with respect to the deformation of those at level (h-1), which is a valid assumption in 

most cases. If the attached length is not sufficiently long for the axial load to naturally tend to zero, 

Eq. (3) can be solved by imposing a boundary condition of the form 𝐹1(𝑥1 = −𝐿𝑎1) = 0, which 

leads to an analogous exponential form for the load distribution. This case is not considered here 

for simplicity and because the condition  𝐹ℎ(−𝐿𝑎ℎ) = 0 corresponds to a maximum of detachment 

force for the considered structure, which is the case of interest. 

Figure 2 shows the typical contact unit load distribution for two- and three-level structures whose 

geometrical and mechanical properties are reported in Table 1 and Table 2, respectively, and an 

applied external load 𝐹0. In the two-level structure (Figure 2.A), the contact units adhere to the 

substrate and are directly attached to the tape. The exponential distribution of force transferred to 



the contact units presents a maximum at the peeling line (𝑥1 = 0). In the case of a three-level 

structure (Figure 2.B), an intermediate level has been included, consisting of a set of lamellae or 

sub-tapes. The distribution presents multiple potential detachment fronts, where local force 

maxima for each of the intermediate structures are observed. The detachment behaviour of the first 

structure can easily be predicted, as the “crack front” theoretically propagates for a constant pulling 

force as a result of local detachment events in the area close to the peeling front, referred as 

“process zone” [23]. In the second case, the delamination events in the intermediate structures are 

simultaneous and several crack fronts will be involved in the detachment process. In both 

scenarios, the force at which the system detaches is likely to be influenced by the specific overall 

load distribution. Note that the integral under the curves should be multiplied by the number of 

contacts in the width of the tape to be equivalent to the external load. 

The dissipated energy by a detaching hierarchical structure can be obtained by considering the 

energy balance during delamination [21], which provides the relationship between the various 

energy terms involved when the detachment occurs, and can be written as follows: 

 
𝑑𝑊ℎ

𝑑𝐴ℎ
−
𝑑𝑈𝑒,ℎ
𝑑𝐴ℎ

=
𝑑𝑈𝐼,ℎ
𝑑𝐴ℎ

 (7) 

where 𝑊ℎ is the work of the external force during detachment, 𝑈𝑒,ℎ is the stored elastic energy in 

the adhesive, 𝑈𝐼,ℎ the available energy at the interface between the adhesive and the substrate and 

𝐴ℎ the adhesive area at level h. The interface energy in a hierarchical system is the total energy 

that the lower scale structures can dissipate per unit area of contact before complete detachment, 

so that: 

 
𝑑𝑈𝐼,ℎ−1
𝑑𝐴ℎ−1

=
𝑊ℎ

𝐴ℎ
 (8) 

In the hierarchical scheme, the total amount of dissipated energy is therefore obtained as: 



 𝑊ℎ−1 = ∫
𝑊ℎ

𝐴ℎ
𝑑𝐴ℎ−1

𝐴ℎ−1

+ 𝑈𝑒,ℎ−1  (9) 

 

 

3. Numerical model  

To verify the mechanisms outlined in the previous Section, we develop a numerical procedure to 

simulate the complete detachment of both types of structure. The system is discretized and 

modelled using a linear system of equations based on the Finite Element Method (FEM) in one 

dimension [29]. In particular, for a two-level system, the length 𝐿𝑎1is discretized in 𝑛1 segments 

of length 𝐿𝑎1/𝑛1, each containing 𝑁/𝑛1 contacts. The linear system of load-displacement 

equations of size 𝑛1
2 is written as 𝐐 = 𝐊 𝐮𝟏 , where 𝐊 is the stiffness matrix that is derived using 

Eq. (2) and explicitly provided in the Appendix. The external load 𝐹0 is applied on the terminal 

element of the discretized tape, so that the external force vector is 𝐐(𝑗) = 𝐹0 for 𝑗 = 𝑛1 and 𝐐(j) =

0 for 𝑗 ≠ 𝑛1. The equilibrium is written as 𝐮𝟏 = 𝐊
−𝟏𝐐 and the load distribution acting on each 

contact unit is then computed from the corresponding displacement field.  

For a three-level structure, the length 𝐿𝑎2 is discretized in (𝑛2 − 1) segments of length 𝐿𝑎2/(𝑛2 −

1) each of which contains 𝑁2/(𝑛2 − 1) sub-units, and we add one detached segment of length 𝐿𝑑2, 

resulting in a linear system of size (𝑛1𝑛2)
2. The number of levels can be increased following the 

same iterative procedure. The explicit form of the stiffness matrix in this case is also provided in 

the Appendix. 

Simulations are performed by imposing a stepwise incremental displacement. To introduce 

delamination in the model, a force threshold is assigned to each contact unit, above which the 



contribution of the corresponding element is removed from the linear system. The detachment 

force criterion is based on the thin film energy balance [21] applied to the loaded contact fibril, i.e. 

delamination occurs for  

 𝐹ℎ𝐶(𝑥ℎ−1) = √2𝐸ℎ𝑏ℎ𝑤ℎ
2𝐺 (10) 

 

where 𝐹ℎ𝐶 is the detachment load of a single contact at level h and 𝐺 the local adhesive energy per 

unit area between the tape and the substrate. In the numerical model, the elastic energy of a single 

contact is fully dissipated (complete detachment) as soon as the detachment force is reached, so 

that the total energy dissipated by the contact after loading is: 

 𝑊ℎ = 𝐿𝑑,ℎ𝑤ℎ𝐺 (11) 

   

4. Results and discussion 

4.1 Two-level (beetle-like) structures 

In order to verify the role of fibrillar contact number and size in adhesion, simulations are 

performed with varying lengths and numbers of contact units. We consider a level-1 (non-

hierarchical) structure, with fixed geometry and mechanical properties, and a level-2 structure with 

the same mechanical properties, both initially in contact with the substrate. The reference structure 

has the following properties: 𝑁1 = 104, 𝐿𝑎1 = 10 mm, 𝑤1 = 1 mm, 𝑏1 = 0.1 mm, 𝐸1 = 𝐸2 = 1 GPa, 

𝐿𝑑2 = 0.1 mm, 𝑤2 = 0.01 mm and 𝑏2 = 0.01 mm. 

To evaluate the influence of the contact unit size, a 𝜂-fold reduction of the size is considered, 

allowing an increase in the total number of contacts to 𝑁′1 = 𝑁1 ∙  𝜂
2, and a reduction in dimensions 



to L’d2 = 𝐿𝑑2/𝜂, 𝑤′2 = 𝑤2/𝜂 and 𝑏′2 = 𝑏2/𝜂. As a first approximation, the average adhesive energy 

increase with the reduction of the contact tip size predicted by contact models [7] is neglected. The 

resulting external force 𝐹0 vs. displacement 𝛿 at the load application point is shown in Figure 3.A 

for different  values. In all cases, there is an initial linear elastic deformation phase, then the load 

reaches a plateau corresponding to the detachment phase. Combining Eq.(5) with Eq. (10), we 

obtain the theoretical force at which detachment initiates as: 

 

𝐹0𝐷 =
𝑁1
𝐿𝑎1

√
2𝐸2𝑏2𝑤2

2𝐺

𝜆1
= √2

𝑁1
𝐿𝑎1

𝐿𝑑2𝐸1𝑏1𝑤1𝑤2𝐺 (12) 

Therefore, the overall (level-1) structure is bonded to the substrate trough an interface (level 2) 

that can dissipate an energy 𝑁1𝑊2/𝐿𝑎1 per unit detached length, where 𝑊2 is given by (11). 

Applying energy balance in Eq. (7) to this system leads to: 

 
𝐹0𝐶

2

2𝐸1𝑏1𝑤1
=
𝑁1
𝐿𝑎1

𝐿𝑑2𝑤2𝐺 (13) 

Thus, comparing Eq. (12) to Eq. (13), in this case 𝐹0𝐷 = 𝐹0𝐶, which means that the global 

detachment force is reached as soon as the local detachment initiates. 

Statistical distributions are also introduced in the numerical model for the adhesive energy G to 

capture the influence of surface defects and inhomogeneities, as occurs in real systems. Surface 

energies 𝐺(𝑥ℎ) are thus randomly assigned for each segment along 𝑥ℎ extracting the values from 

a Weibull distribution [30] with scale parameter 𝛾 = 0.01 MPa.mm and various shape parameters 

𝑚. Despite statistical variation in the local detachment forces, the average global adhesive force 

generated by the system is relatively constant, and coincides with the theoretical value given in 

Eq. (12) taking the scale parameter of the distribution equal to 𝛾 (shown in the inset of Figure 

3.A). The adhesive strength 𝜎𝐶 of the level-2 structure can be written as: 



 
𝜎𝐶 =

𝐹2𝐶
𝑏2𝑤2

 (14) 

so that from Eq. (10) we obtain: 

 
𝜎𝐶 = √

2𝐺𝐸2
𝑏2

 (15) 

Thus, an 𝜂-fold reduction of the contact size (b2  b2/) leads to an increase in the adhesive 

strength by a factor of √𝜂, in accordance with results in [23]. This is due to the increase of the total 

peeling line, i.e. the sum of the width of the contact elements as their number increases, usually 

indicated by peeling theories as one of the main parameters governing adhesion [8]. On the other 

hand, the variation in the load distribution shown in Figure 3.B counteracts this positive effect, 

since the load is distributed over a smaller fraction of the available contacts as their size decreases, 

so that there is no dependence of the overall detachment force with 𝜂. Only a uniformly distributed 

load involving more contact units would generate a higher detachment force. Alternatively, to 

obtain an improvement in the delamination load with contact size reduction (𝐹0𝐶 ∝ √η,), the latter 

should not be applied to the detached length of the contacts 𝐿𝑑2 , although this might lead to 

increased self-bunching effects. From Eq. (9) and Eq. (11), the total dissipated energy W by this 

tape becomes:  

 
𝑊1 = 𝑁1𝐿𝑑2𝑤2𝐺 + 𝐿𝑎1

𝐹0𝐶
2

2𝐸2𝑏2𝑤2
= 𝐺(𝑁1𝐿𝑑2𝑤2 + 𝐿𝑎1𝑤1) (16) 

According to this equation, the total dissipated energy is not influenced by 𝜂 in this case, as verified 

in simulations in Figure 3.A.  

 



4.2 Three-level (gecko-like) structures 

We now introduce an additional intermediate structure, as discussed above in the load distribution 

analysis (Figure 2). The detachment force of the resulting 3-level structure is compared to the 

previous 2-level structure in Figure 4.A. The adhesive energy is assigned as in the previous 

simulation. Results show an improvement in the total detachment force for the 3-level structure, 

together with a net increase in the total dissipated energy (the integral of the force vs. displacement 

curve). Thus, hierarchical organization leads to a wider distribution of the contact load, and reduces 

the stress concentrations close to the peeling line. As previously, an analytical force at which 

detachment initiates can be calculated from Eqs. (4-7) as follows: 

 

 

𝐹0𝐷 =
𝑁1𝑁2
𝐿𝑎1𝐿𝑎2

√
2𝐸3𝑏3𝑤3

2𝐺

𝜆1𝜆2
 (17) 

 

Figure 4.B shows that the force plateau reached by the 3-level system is higher and longer 

compared to the force obtained from Eq. (17). This can be explained by the fact that the detachment 

process involves the creation of multiple “crack fronts”, as illustrated in Figure 4.B, which is 

beneficial to the overall adhesive performance. The analytical force obtained from Eq.(17) 

provides the force at which the delamination process initiates, which is smaller than the maximal 

detachment force in this case. As the system starts to detach, an equilibrium between the 

propagation of different crack fronts is reached. A close-up of the load vs. displacement curve 

corresponding to detachment events in the early stage of the simulation is shown in the inset of 

Figure 4.A, with markers plotted when single contact unit detachments occur. To analytically 



determine the force plateau in the hierarchical structure, we adopt a bottom-up analysis of the 

system. Each level-2 tape has a detachment force 𝐹0𝐶  (given by Eq. (12)). As for Eq. (16), we 

calculate the total energy dissipated by the isolated tape, leading to: 

 
𝑊1 = 𝑁2𝐿𝑑3𝑤3𝐺 + (𝐿𝑎2 + 𝐿𝑑2)

𝐹1𝐶
2

2𝐸2𝑏2𝑤2
 (18) 

From (7) we obtain the following relation between the stored elastic energy in the level-1 tape and 

the energy dissipated by the interfaces of the sub-levels: 

 𝐹0𝐶
2

2𝐸1𝑏1𝑤1
=
𝑁1𝑊1

𝐿𝑎1
 (19) 

which leads to: 

 

𝐹0𝐶 = √2
𝑁1
𝐿𝑎1

𝐸1𝑏1𝑤1𝑊1 (20) 

This load level is also plotted in. Figure 4.A , showing good agreement with numerical simulations. 

This indicates that the maximum load that an adhesive structure can bear is related more to the 

energy that can be dissipated by its interfacial contacts rather than to their delamination strength. 

Also, these results highlight the fact that as the contact sizes become critical, biological adhesives 

adopt hierarchical organization to maintain the presence of multiple peeling fronts over the whole 

length of the attached system, giving rise to optimized distributions and developing a maximal 

delamination force from a given overall contact area.  

 

5. Thin-film hierarchical scaling laws 



Generalizing the equations in Section 2 using Kendall’s theory [21] to the detachment of a thin 

film at a peeling angle 𝜃, the relationship between the available interface energy and the 

detachment force at a given level h is: 

 𝐹ℎ−1𝑐(1 − cos 𝜃) +
𝐹ℎ−1𝑐

2

2𝐸ℎ−1𝑏ℎ−1𝑤ℎ−1
= 𝑤ℎ−1

𝑊ℎ

𝐴ℎ
 (21) 

Assuming that the loading angle remains constant for all the structures involved, Eq. (9) gives: 

 
𝑊ℎ−1

𝐴ℎ−1
= 𝑙𝑎,ℎ−1

𝑊ℎ

𝐴ℎ
+ (𝑙𝑎,ℎ−1 + 𝑙𝑑,ℎ−1)

𝐹ℎ−1𝑐
2

2𝐸ℎ−1𝑏ℎ−1𝑤ℎ−1
 (22) 

For a self-similar (fractal-like) thin film structure at 𝜃 = 0, i.e. the previously considered particular 

case of hierarchical shear lag, Eq. (22) becomes: 

 𝐹ℎ−1𝑐 = √2𝐸ℎ−1𝑏ℎ−1𝑤ℎ−1
2
𝑊ℎ

𝐴ℎ
 (23) 

The scaling of the dissipated energy between levels thus becomes: 

 
𝑊ℎ−1

𝐴ℎ−1
=
𝑊ℎ

𝐴ℎ
(2 +

𝑙𝑑,ℎ
𝑙𝑎,ℎ

) (24) 

so that each additional level gives an increase in the adhesive strength of a factor of √2 + 𝛽, where 

𝛽 =
𝑙𝑑,ℎ

𝑙𝑎,ℎ
 is the ratio between the detached and attached length of the tape units. To provide a 

practical example, we consider contacts in a tape-like geometry with the dimensions 𝑤 = 𝑙𝑎 =

10 = 𝑏 = 𝑙𝑑/10. We assemble these contact units into a structure with a contact area 106 times 

larger and the same mechanical properties, introducing various possible hierarchical arrangements: 

two levels with a scale factor of 106 between them (1.000.000:1), b) three levels with a scale factor 



of 103 between each of them (1000: 1000:1), and c) four levels with a scale factor of 102 between 

each of them (100:100:100:1). Of course, the scale factor should be a relatively large number since 

the proposed model implies that there is a scale change between two levels. Figure 5.A illustrates 

the scaling of global adhesive strength 𝐹0𝐶/(𝑤1𝐿𝑎1) as a function of the hierarchical organization 

and the peeling angle. A clear advantage of multiple hierarchical levels is highlighted in terms of 

global detachment strength. The angle dependency is that known from single-peeling theory, but 

also appears to be affected by hierarchical organisations, as shown in Figure 5.B. This result is 

limited to small 𝜃 values since local variations of the peeling angle may occur otherwise. 

 

6. Conclusions 

In conclusion, we have developed a generalization of the shear lag model to describe hierarchical 

fibrillar systems such as those observed in gecko and arachnid attachments and applied it in 

numerical simulations. We have shown that improved adhesion in fibrillar structures is not simply 

due to contact splitting alone, but rather to hierarchical organization, giving rise to optimized load 

distributions, enabling reduced stress concentrations, and therefore a reduced risk of detachment. 

Also, hierarchical architectures provide the means to provide multiple delamination fronts once 

detachment initiates, and therefore to continue avoiding critical stress concentrations. Finally, the 

general scaling behaviour of the adhesion of hierarchical structures is discussed, showing a clear 

advantage in providing multiple hierarchical levels. Thus, the presented model and numerical 

procedure contribute to providing a better understanding of the mechanisms of adhesion of 

hierarchical structures and can be used to provide design and optimization criteria for artificial 

adhesive structures, as well as for optimized composite materials with hierarchical reinforcements.  
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Figures 

 

Figure 1 : Schematic representation of the hierarchical attachment system and the force 

equilibrium acting between two levels. 

  



 

 

Figure 2 : Adhesion force distribution for 2-level (A) and 3-level (B) structures.  



 

Figure 3: A. Force vs. displacement plots during detachment for different size reduction factors 

. B. Force plateau for various shape parameter values of the Weibull distribution C. Propagation 

of the peeling front during delamination for 𝜂 = 1 (left) and 𝜂 = 10 (right). The color scale 

represents the contact unit force distributions. The area where contact units are detached is 

displayed in black.  



 

Figure 4 : A. Force vs. displacement curves for 2-level and 3-level structures. B. Propagation of 

the peeling front during simulation of the 3-level structures. 



 

Figure 5 : Scaling of the adhesive strength of hierarchical self-similar tape structures: A) Overall 

adhesive strength as a function of peeling angle for 2-level (1.000.000:1), 3-level (1.000:1.000:1) 

and 4-level (100:100:100:1) structures with constant overall number of contacts. B) Overall 

adhesion force vs. peeling angle 𝜃 for the 3 structures, normalized with respect to the 𝜃 = 0 value. 

 

  



Tables 

Level E (MPa) w (mm) b (mm) La (mm) Ld (mm) N 

1 1000 1 0.1 10 - 10 000 

2 1000 0.01 0.01 - 0.1 - 

Table 1 : 2-Level structure geometrical and mechanical parameters. 

 

Level E (MPa) w (mm) b (mm) La (mm) Ld (mm) N 

1 1000 1 0.1 10 - 20 

2 1000 1 0.02 0.5 1 50 000 

3 1000 0.001 0.001 - 0.01 - 

Table 2 : 3-Level structure geometrical and mechanical parameters. 

 

  



Appendix 

A Equations for the numerical model  

For a two-level structure, the linear system of equations for the FEM simulations is banded and of 

size 𝑛1
2:  

 

 

𝐊 =

[
 
 
 
 
𝑘𝑎1 + 𝑘𝑑2 −𝑘𝑎1 0 ⋯ 0
−𝑘𝑎1 2𝑘𝑎1 + 𝑘𝑑2 ⋱ ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ 2𝑘𝑎1 + 𝑘𝑑2 −𝑘𝑎1
0 ⋯ 0 −𝑘𝑎1 𝑘𝑎1 + 𝑘𝑑2]

 
 
 
 

 (A.1) 

 

where 𝑘𝑎1 = 𝑛1𝐸1𝑏1𝑤1/𝐿𝑎1 and 𝑘𝑑2 = 𝑁1𝐸2𝑏2𝑤2/𝑛1𝐿𝑑2, which we write as: 

 

 𝐊 = 𝐊𝒂𝟏 +𝐊𝒅𝟐 (A.2) 

 

where 

 

𝐾𝑎1 𝑖𝑗 = {

𝑘𝑎1 for  (𝑖 = 𝑗 = 1) ∪ (𝑖 = 𝑗 = 𝑛1)

2𝑘𝑎1 for  (𝑖 = 𝑗) ∩ (𝑖 ≠ 1) ∩ (𝑖 ≠ 𝑛1)

−𝑘𝑎1  for  (𝑖 = 𝑗 ± 1)
 (A.3) 

 

and  



 𝐾𝑑2 𝑖𝑗 = 𝑘𝑑2 for (𝑖 = 𝑗) (A.4) 

 

For a three-level structure, the stiffness matrix is built as follows: 

𝐊 = 𝐊𝒂𝟏 + 𝐊𝒅𝟐 + 𝐊𝒂𝟐 + 𝐊𝒅𝟑 (A.5) 

 

where:  

 

𝐾𝑎1 𝑖𝑗 = {

𝑘𝑎1 𝑓𝑜𝑟  (𝑖 = 𝑗 = 1) ∪ (𝑖 = 𝑗 = 𝑛1𝑛2)

2𝑘𝑎1 𝑓𝑜𝑟  (𝑖 = 𝑗 = 𝑝𝑛2) ∩ (𝑖 ≠ 𝑛2) ∩ (𝑖 ≠ 𝑛1𝑛2)

−𝑘𝑎1  𝑓𝑜𝑟  (𝑖 = 𝑝𝑛2) ∩ (𝑖 = 𝑗 ± 𝑝𝑛2)
     𝑝 ∈ ℕ (A.6) 

 

𝐾𝑑2 𝑖𝑗 = {

𝑘𝑑2 𝑓𝑜𝑟  (𝑖 = 𝑗 = 𝑝𝑛2) ∪ (𝑖 = 𝑗 = 𝑝𝑛2 − 1)

−𝑘𝑑2 𝑓𝑜𝑟 (𝑖 = 𝑗 + 1) ∩ (𝑖 = 𝑝𝑛2)

−𝑘𝑑2 𝑓𝑜𝑟 (𝑖 = 𝑗 − 1) ∩ (𝑗 = 𝑝𝑛2)
𝑝 ∈ ℕ (A.7) 

 

𝐾𝑎2 𝑖𝑗 =

{
 

 
𝑘𝑎2 𝑓𝑜𝑟  (𝑖 = 𝑗 = 1) ∪ (𝑖 = 𝑗 = 𝑝𝑛2 ± 1)

2𝑘𝑎2 𝑓𝑜𝑟 (𝑖 = 𝑗) ∩ (𝑖 ≠ 1) ∩ (𝑖 ≠ 𝑝𝑛2) ∩ (𝑖 ≠ 𝑝𝑛2 ± 1)

−𝑘𝑎2  𝑓𝑜𝑟  (𝑖 = 𝑗 − 1) ∩ (𝑖 ≠ 𝑝𝑛2) ∩ (𝑖 ≠ 𝑝𝑛2 − 1)

−𝑘𝑎2  𝑓𝑜𝑟  (𝑖 = 𝑗 + 1) ∩ (𝑗 ≠ 𝑝𝑛2) ∩ (𝑗 ≠ 𝑝𝑛2 + 1)

 𝑝 ∈ ℕ (A.8) 

 𝐾𝑑3 𝑖𝑗 = 𝑘𝑑3 𝑓𝑜𝑟 (𝑖 = 𝑗) ∩ (𝑖 ≠ 𝑝𝑛2)  𝑝 ∈ ℕ (A.9) 

 

and 𝑘𝑎1 = 𝑛1𝐸1𝑏1𝑤1/𝐿𝑎1, 𝑘𝑑2 = 𝑁1𝐸2𝑏2𝑤2/(𝑛1𝐿𝑑2), 𝑘𝑎2 = 𝑛2𝐸2𝑏2𝑤2/𝐿𝑎2 and  𝑘𝑑3 = 𝑁2𝐸3𝑏3𝑤3/
((𝑛2 − 1)𝐿𝑑3). 

 

 

Figure A.1 Schematization of the hierarchical connectivity of elements (corresponding to the 

above stiffness matrix) used in the simulations. 



 


