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Highlights

• This paper, inspired by the conguration of the hygroscopic keel tissue of the ice
plant, deals with the analysis of a two-dimensional cellular material made of elon-
gated hexagonal cells filled with an elastic material.

• The assumption of the Born rule, in conjunction with an energy-based approach,
provide the constitutive model in the continuum form.

• It emerges a strong influence of the infill’s stiffess and cell walls’ inclination on the
macroscopic elastic constants. In particular, parametric analysis reveals the system
isotropy only in the particular case of regular hexagonal microstructure.

• The application of the theoretical model to estimate the effective stiffness of the
biological system leads to results that are in good agreement with the published
data, where the keel tissue is represented as an internally pressurised honeycomb.
Optimal values of pressure and cell walls’ inclination also emerge.

• Finally, the theory is extended to the hierarchical conguration and a closed form
expression for the macroscopic elastic moduli is provided.
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Abstract

Cellular structures having the internal volumes of the cells filled with fluids, fibers or
other bulk materials are very common in nature. A remarkable example of composite
solution is the hygroscopic keel tissue of the ice plant Delosperma nakurense. This tissue,
specialised in promoting the mechanism for seed dispersal, reveals a cellular structure
composed by elongated cells filled with a cellulosic swelling material. Upon hydrating,
the filler adsorbs large amounts of water leading to a change in the cells’ shape and
effective stiffness.

This paper, inspired by the configuration of the aforementioned hygroscopic keel tis-
sue, deals with the analysis of a two-dimensional honeycomb made of elongated hexagonal
cells filled with an elastic material. The system is treated as a sequence of Euler-Bernoulli
beams on Winkler foundation, whose displacements are derived by introducing the clas-
sical shape functions of the Finite Element Method. The assumption of the Born rule,
in conjunction with an energy-based approach, provide the constitutive model in the
continuum form. It emerges a strong influence of the infill’s stiffness and cell walls’ in-
clination on the macroscopic elastic constants. In particular, parametric analysis reveals
the system isotropy only in the particular case of regular hexagonal microstructure.

Even though a rigorous analysis of the keel tissue is well beyond our aim, the applica-
tion of the theoretical model to estimate the effective stiffness of such biological system
leads to results that are in good agreement with the published data, where the keel
tissue is represented as an internally pressurised honeycomb. Specifically, an energetic
equivalence gives an explicit relation between the inner pressure and the filler’s stiffness.
Optimal values of pressure and cell walls’ inclination also emerge.

Finally, the theory is extended to the hierarchical configuration and a closed form
expression for the macroscopic elastic moduli is provided. It emerges a synergy of hierar-
chy and material heterogeneity in obtaining a stiffer material, in addition to an optimal
number of hierarchical levels.

Keywords: composite, cellular material, orthotropy, Winkler model, linear elasticity,
Delosperma nakurense, keel tissue, hierarchy
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1. Introduction

Cellular materials are commonly observed in nature [1], [3], [4], [5], [6]. Due to their
specific structural properties, they are very promising for engineering applications in a
variety of industries including aerospace, automotive, marine and constructions [7], [8],
[9]. As an example, honeycombs are widely used in lightweight structures and sandwich
panels because of their high bending stiffness and strength at low weight.

Many authors extensively studied cellular materials and it would be difficult to quote
without omissions the vast literature flourished on the mechanical modelling of such
cellular structures in the last years. Noteworthy contributions such as [5], [10], [11]
present a detailed discussion of the characteristics of many periodic cellular materials
and provide simple relations between their density and equivalent mechanical properties
through the application of beam theory. Other authors, like [12], [13], [14], [15], [16]
suggest alternative approaches to solve the crucial passage from discrete to continuum and
to derive the constitutive model for the in-plane deformation of various two-dimensional
microstructures by applying the energy equivalence. In addition, [17], [18], [19], [20]
exploit a method based on the principles of structural analysis to obtain the homogenized
continuum model of the discrete lattice.

Although many efforts have been devoted to the prediction of the effective properties
of regular cellular materials with empty cells, in the literature few investigations con-
cern the characterisation of cellular structures having the internal volumes filled with
fluids, fibers or other bulk materials as commonly happens in nature [21], [22], [23], [24],
[25], [26], [27], [28]. For example, in the context of sandwich panels, [29], [30] present
a finite element-based technique to evaluate the structural performance of foam filled
honeycombs. It emerges an increase in the load-bearing capacity of the material and an
improvement in both the effective elastic properties and energy absorption due to the
presence of the filler. More recently, [12] analyses the mechanics of a two-dimensional
filled honeycomb by representing the microstructure as a sequence of beams on Winkler
elastic foundation. The homogenized elastic moduli derived confirm, from a mechanical
behavior point of view, the beneficial effect due to the filling material. Other works, [31],
[33], concerning the nature’s wonders of design, study the mechanics of the hygroscopic
keel tissue of the ice plant Delosperma nakurense (Fig. 1) by representing it as a network
of elongated cells internally pressurised. The ice plant, that grows in the arid regions
of Africa, is a source of inspiration because of its sophisticated origami-like movement
mechanism for seed dispersal. The plant, in particular, has adopted its anatomy and ma-
terial architecture to the unfavourable environmental conditions by producing a special
seed capsule to prevent the premature dispersion of the seeds. In the dry state, Figure 1a,
five petal-like sections, the protective valves, cover the seed compartment as a box-like
lid. When it rains, the valves unfold backwards revealing a seed compartment composed
by five seed chambers partitioned by five septa, Figure 1b. Within few minutes, most
of the seeds are splashed out by the falling water [34]. When the capsule dries up, the
valves return to the original position. The specialised organ promoting this movement

∗Corresponding author
∗∗Co-corresponding author

Email addresses: federica.ong@gmail.com (F. Ongaro), e.barbieri@jamstec.go.jp (E. Barbieri),
nicola.pugno@unitn.it (N. M. Pugno)

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is the hygroscopic keel, Figure 1c. In the dry state, this tissue consists of a network of
elongated cells filled with a ’swelling cellulosic inner’ (CIL). If hydrated, the CIL absorbs
large amounts of water giving rise to a change of the keel initial geometry and stiffness,
Figure 1d. In addition, experimental observations [31] reveal that the filler contains
a soft inclusion that behaves like an elongated, thin septum partitioning the internal
volume of the cell. Consequently, the cell walls’ coupling effect due to the presence of
the filling material is compromised. Though many studies experimentally investigated
the morphology and composition of the keel, little is known about the relation between
microstructure’s parameters and macroscopic mechanical behavior [33].

Hierarchy is another way to enhance the mechanical properties of lightweight mate-
rials and structures.

Various authors studied structural hierarchy in biological systems [6], [35], [36], [37],
[38], [39] and man-made materials [40], [41], [42]. Among others, [43], [44], [45], [46],
[47] provide numerical and theoretical models, force or energy based, to understand the
role of hierarchy on the mechanical behavior of cellular solids. All of them conclude that
many desirable properties, like stress attenuation, superplasticity, increased toughness
are due to hierarchy. Conversely, for classical cellular materials, the introduction of some
levels of hierarchy is detrimental for the specific stiffness. In spite of this, in the case
of hierarchical architectures of different types of fibre bundles, increasing the number of
hierarchical levels leads to an improvement in the material strength [48].

Inspired by the previously introduced hygroscopic keel tissue, this paper deals with
a two-dimensional composite cellular material made of elongated hexagonal cells, filled
with an elastic medium. The study provides a theoretical model, based on the Born
rule, that is able to understand the mechanics of the examined orthotropic configuration
and is general enough to investigate the effects of adding some levels of hierarchy. This
work is organised in 6 sections, including this introduction. Section 2 initially illustrates
the mathematical formulation and modelling technique while, in Section 3, the effective
elastic constants and constitutive equations are derived. Some considerations about the
influence of the microstructure parameters, such as the stiffness of the filler and the cell
walls’ inclination, are presented in Section 4, as well as the results of the application of
the theoretical model to the biological keel tissue. Despite a detailed investigation of the
biological problem is beyond our scope, it emerges that the elastic moduli obtained in
this paper agree with those proposed in the literature. Finally, in Section 5, the theory
is extended to the hierarchical configuration and explicit expressions for the macroscopic
elastic moduli are derived. As a conclusion, Section 6 summaries the main findings.

2. Problem statement: geometrical description and theoretical modelling of
the discrete system

2.1. Geometrical description

In terms of crystallography, the configuration of the composite material considered
here can be described as the union of two simply shifted lattices (Fig. 2a)

L1(`) =
{
x ∈ R2 : x = n1l1 + n2l2 ,with (n1, n2) ∈ Z2

}
, L2(`) = s + L1(`), (1)

with
l1 = (2 ` cos θ, 0) , l2 = (` cos θ, `(1 + sin θ)) (2)
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the lattice vectors,
s = (` cos θ, ` sin θ) (3)

the shift vector, ` and θ, respectively, the length (the lattice size) and angle of inclination
of the cell walls.

2.2. Theoretical modelling

2.2.1. The discrete system continuum-springs

The discrete system is treated as a sequence of Euler-Bernoulli beams on Winkler
foundation, where a series of independent, linear elastic springs, the Winkler foundation,
represent the material within the cells. In particular, each beam is supported by two sets
of springs: the springs a, in the −ηe2 direction, and the springs b, in the ηe2 (Fig. 3).

Being a rigorous analysis of the biological keel tissue a complex undertaking that does
not coincide with the scope of our investigation, in the present paper the missing cell
walls’ coupling effect caused by the septum (Figs. 1c, 1d) is modelled by anchoring the
springs at the nodes of the lattice L3, defined by

L3(`) = 2 s + L1(`). (4)

As illustrated in Figure 2a, the nodes of L3 are connected to the lattice L2 by means of
line elements that, from a mechanical point of view, are represented as Euler-Bernoulli
beams having stiffness much smaller than the stiffness of the cell walls. Consequently,
the energetic contribution of the beams composing the lattice L3 can be neglected with
respect to those composing the skeleton of the cells (i.e., the principal lattices L1 and
L2), introduced in the following section.

With reference to the equilibrium conditions of the springs’ anchorage points it should
be noted that the forces brought by the springs to such nodes balance with one another
because of the symmetry of the hexagonal cells.

In particular, let us focus on the hexagonal cell illustrated in Figure 4, where each
beam is connected to the central point of the cell by closely-spaced elastic springs (i.e.,
the Winkler foundation). Note that, for ease of reading, in Figure 4 the series of closely
spaced springs are schematically represented by a single spring connecting the beams
to the central point of the cell. As it can be seen, the symmetry of the hexagonal cell
leads to a symmetric configuration of the springs. To make it more clear, in Figure 5
the two sets of symmetric springs (i.e., the springs a represented in blu and the springs
b represented in red) are enhanced. Let us now imagine to apply external forces to the
cell, leading to a generic deformation of the cell. Again, because of the symmetry of
both the hexagonal cell and the configuration of the springs, it emerges that, in terms
of anchorage points (i.e., the central point of the cell), the forces brought by the springs
balance with one another. Further details are provided in Section 2.4.

2.2.2. The Euler-Bernoulli beam on Winkler foundation element

In the two-dimensional Euler-Bernoulli beam, each node has three degrees of free-
dom, two translations and one rotation. Thus, the vector of nodal displacements can be
expressed as

ue = [ui uj ]
T

= [ui vi ϕi uj vj ϕj ]
T
. (5)
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According to the finite element method (FEM), the axial and transverse displacements
at every point within the beam are approximated by

[
u(x)
v(x)

]
= Ψ(x)ue, (6)

with (0 ≤ x ≤ `) and

Ψ(x) =

[
Ψ1(x) 0 0 Ψ4(x) 0 0

0 Ψ2(x) Ψ3(x) 0 Ψ5(x) Ψ6(x)

]
(7)

the shape functions matrix, whose components are

Ψ1(x) = 1− x

`
, Ψ2(x) = 1− 3

(x
`

)2
+ 2

(x
`

)3
, Ψ3(x) =

(
x

`
− 2

(x
`

)2
+
(x
`

)3)
`,

Ψ4(x) =
x

`
, Ψ5(x) = 3

(x
`

)2
− 2

(x
`

)3
, Ψ6(x) =

((x
`

)2
+
(x
`

)3)
`.

(8)
The elastic strain energy of the Euler-Bernoulli beam on Winkler foundation element

can be evaluated as the sum of three terms [12], [49]:

we =
1

2
(ue)T · kebue +

1

2
(∆ue,a)T · kewf∆ue,a +

1

2
(∆ue,b)T · kewf∆ue,b. (9)

The first is the elastic energy due to the axial and bending deformations of the beam,
the second and third related to the elongation of the springs,

∆ue,a =
[
∆uai ∆uaj

]T
, (10)

∆ue,b =
[
∆ubi ∆ubj

]T
. (11)

In particular, for the beams 0-1, 0-2 and 0-3, the quantities in (10) and (11) are, respec-
tively,

∆ua1 =

[
u0 − u6

u1 − u6

]
, ∆ub1 =

[
u0 − u4

u1 − u4

]
, (12)

∆ua2 =

[
u0 − u4

u2 − u4

]
, ∆ub2 =

[
u0 − u5

u2 − u5

]
, (13)

∆ua3 =

[
u0 − u5

u3 − u5

]
, ∆ub3 =

[
u0 − u6

u3 − u6

]
. (14)

Finally, with obvious notation, keb and kewf , in turn, stand for the stiffness matrix of the
classical Euler-Bernoulli beam and of the Winkler foundation. In the FEM framework,
their components are obtained by applying the strain energy principle [50]. In particular,

[keb]ij =





∫ `

0

C`Ψ
′
i(x)Ψ

′
j(x) dx, i, j = 1, 4,

∫ `

0

D`Ψ
′′
i (x)Ψ

′′
j (x) dx, i, j = 2, 3, 5, 6,

0, otherwise

(15)
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and

[
kewf

]
ij

=





∫ `

0

KwΨi(x)Ψj(x) dx, i, j = 2, 3, 5, 6,

0, otherwise,

(16)

with Kw the Winkler foundation constant, C` = Es h
1−ν2

s
and D` = Es h

3

12(1−ν2
s )

, respectively,

the tensile and bending stiffness (per unit width) of the beams, Es, νs, h, `, in turn, the

Young’s modulus, Poisson’s ratio, thickness, and length of the beams, while (·)′
=
∂(·)
∂x

and (·)′′
=
∂2(·)
∂x2

. Substituting (8) into (15) and (16) leads to

keb =




C`/` 0 0 −C`/` 0 0
0 12D`/`

3 6D`/`
2 0 −12D`/`

3 6D`/`
2

0 6D`/`
2 4D`/` 0 −6D`/`

2 2D`/`
−C`/` 0 0 C`/` 0 0

0 −12D`/`
3 −6D`/`

2 0 12D`/`
3 −6D`/`

2

0 6D`/`
2 2D`/` 0 −6D`/`

2 4D`/`




(17)

and

kewf =




0 0 0 0 0 0
0 13Kw/35 11Kw`/210 0 9Kw/70 −13Kw`/420
0 11Kw`/210 Kw`

2/105 0 13Kw`/420 −Kw`
2/140

0 0 0 0 0 0
0 9Kw/70 13Kw`/420 0 13Kw/35 −11Kw`/210
0 −13Kw`/420 −Kw`

2/140 0 −11Kw`/210 Kw`
2/105



. (18)

It should be noted that there are different approaches in evaluating the stiffness ma-
trix of beam elements on elastic foundations [50]. The two main techniques are based on
either the use of approximated shape functions [2], [51], [52], [53] or the development of
exact ones [54], [55], [56]. In the first case, both keb and kewf are evaluated by adopting the
cubic polynomial shape functions typical of the Euler-Bernoulli beam, listed in (8). In
the second, the shape functions are derived by solving the governing differential equation
of the Euler-Bernoulli beam resting on Winkler foundation [54]. However, despite the
simplifications introduced, several existing studies dealing with a broad range of engi-
neering problems [2], [50], [57] conclude that the results of the numerical implementations
based on the approximated solution compare favourably to those obtained by the exact
ones. Considering this and aiming to obtain a more mathematically tractable problem,
in this work the approximated approach is adopted (cf. equation (16)).

2.3. Elastic energy of the discrete system

For any given deformation, the elastic energy representative of the whole discrete
structure, W , can be evaluated from the analysis of the unit cell of the periodic array.

As illustrated in Figure 2b, the unit cell is composed by the central node 0 and the
external nodes 1, 2, 3, 4, 5, 6, linked by the line elements 0-1, 0-2, 0-3, treated as Euler-
Bernoulli beams on Winkler foundation, and 0-4, 0-5, 0-6, modelled as Euler-Bernoulli

7
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beams. In the global reference system (e1, e2), the beams are represented, respectively,
by the vectors

b1 = l1 − s, b2 = l2 − s, b3 = −s, b4 = s, b5 = −l1 − s, b6 = (s− l2)/2. (19)

The elastic energy W , in particular, is obtained by summing the elastic energies of
the beams it consists. However, as stated in Section 2.2.1, the contribution of the beams
composing the lattice L3, 0-4, 0-5, 0-6, is assumed to be negligible with respect to those
composing the principal lattices L1 and L2, 0-1, 0-2, 0-3. Consequently, in evaluating
W , only the beams 0-1, 0-2, 0-3 will be considered.

Furthermore, as it can be seen in Figure 2b, the first node of each beam coincides
with the central node 0, where it is imposed the balance of forces and moments. This
condition guarantees the equilibrium of the examined cell and allows us to condense the
degrees of freedom of 0, leading to

W = W (uj ,∆uaj ,∆ubj), j = 1, 2, 3, (20)

with
∆ua1 = [u1 − u6] , ∆ub1 = [u1 − u4] , (21)

∆ua2 = [u2 − u4] , ∆ub2 = [u2 − u5] , (22)

∆ua3 = [u3 − u5] , ∆ub3 = [u3 − u6] . (23)

2.4. Discussion

According to our method, it emerges that the elastic energy of the discrete system is
given by (cf. equation (20))

W = W (uj ,∆uaj ,∆ubj), j = 1, 2, 3. (24)

In particular, the energetic contribution due to the Winkler foundation,

WWinkler = WWinkler(∆uaj ,∆ubj), j = 1, 2, 3, (25)

is a quadratic function of the elongation of the springs involving, as stated, the difference
between the displacements of the end points of the beams and of the anchorage points.
As it can be seen, the displacements of the nodes 4, 5 and 6 does not ”directly” take
part in the description of the system; they only contribute via the terms ∆uaj and ∆ubj .

This can be verified by imagining to represent the composite architecture in Figure
2a as an hybrid system composed by one-dimensional (1D) beams and two-dimensional
(2D) filler. With reference to the unit cell in Figure 2b, the elastic energy of the hybrid
1D-2D configuration is the sum of the elastic energies of the beams, Wbeams, and of the
filler, Wfiller:

W1D−2D = Wbeams +Wfiller. (26)

Wfiller, in particular, is given by

Wfiller =
1

2

∫

V

εTf σf dV, (27)
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with

εf :=




ε11
ε22
2ε12


←

[
ε11 ε12
ε12 ε22

]
=: εf (28)

and

σf :=



σ11
σ22
σ12


←

[
σ11 σ12
σ12 σ22

]
=: Tf , (29)

respectively, the infinitesimal strain tensor, εf , and stress tensor, Tf , expressed in Voigt
notation, Cf the stiffness tensor of the material within the cell, satisfying the generalised
Hooke’s law

σf = Cf εf . (30)

For two-dimensional isotropic materials in plane-stress tensional state, Cf is defined by

Cf :=
Ef

1− ν2f




1 νf 0
νf 1 0
0 0 (1− νf )/2


 , (31)

with Ef and νf , in turn, the Young’s modulus and Poisson’s ratio of the filler.
Accordingly, by substituting (30) into (27) and considering a unitary width, b = 1, it

emerges

Wfiller =
1

2

∫

A0

εTf Cfεf dA, (32)

being V = bA0 and A0 the area of the examined cell (Fig. 2b).
By discretizing the area A0 into a set of two-dimensional triangular elements having

nodes
0− 1− 4,
0− 4− 2,
0− 2− 5,
0− 5− 3,
0− 3− 6,
0− 6− 1

(33)

and by considering the so-called constant-strain triangular element (CST) frequently
used in the Finite Element Method, (32) takes the form

Wfiller =

6∑

e=1

1

2
dTe kede, (34)

with ke and de = [ui uj um]
T

, respectively, the local stiffness matrix and displacements

9
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vector of each triangular element of nodes i, j and m [32]. Specifically,

d0−1−4 = [u0 u1 u4]
T
,

d0−4−2 = [u0 u4 u2]
T
,

d0−2−5 = [u0 u2 u5]
T
,

d0−5−3 = [u0 u5 u3]
T
,

d0−3−6 = [u0 u3 u6]
T
,

d0−6−1 = [u0 u6 u1]
T

(35)

provide the displacements vector of the examined triangles.
In terms of the global displacements vector, D, and stiffness matrix, K, obtained by

”summing” their local counterparts, (34) becomes

Wfiller =
1

2
DTKD =

1

2




u0

u1

u2

u3

u4

u5

u6




T

K




u0

u1

u2

u3

u4

u5

u6




(36)

or, by splitting the vector D into the vectors D1 = [u0 u1 u2 u3]
T

and D2 = [u4 u5 u6]
T

that, with reference to our model, represent the displacements of the principal lattices,
L1 and L2, and of the central points of the cells (i.e., the springs’ anchorage points),

Wfiller =
1

2

[
D1

D2

]T [
K11 K12

K21 K22

] [
D1

D2

]
, (37)

leading to

Wfiller =
1

2

(
DT

1 K11D1 + DT
1 K12D2 + DT

2 K21D1 + DT
2 K22D2

)
, (38)

with Kij obtained by partitioning K.
When νf = 1/3, value that coincides with the Poisson’s ratio of the hygroscopic keel

tissue considered in the present paper, it emerges that the elastic energy in (38) can
be expressed as a quadratic function of the quantities ui − uj , with i = 0, 1, 2, 3 and
j = 4, 5, 6. Specifically,

Wfiller = Wfiller (u0 − uk,u1 − ul,u2 − um,u3 − un) , (39)

where k = 4, 5, 6, l = 6, 4, m = 4, 5 and n = 5, 6.
As it can be seen, similarly to equation (25), in (39) the displacements of the nodes

4, 5, 6 are not ”directly” involved in the description of the system; their contribution is
10
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only related to the terms ui − uj that, in the Winkler model, represent the elongation
of the springs.

Also, by assuming that the elastic energy of the beams is the same in the two consid-
ered models (i.e., hybrid system 1D-2D and Winkler model), it can be concluded that,
in the case of νf = 1/3,

Wfiller =
1

2

(
DT

1 K11D1 + DT
1 K12D2 + DT

2 K21D1 + DT
2 K22D2

)

∼WWinkler =
∑

e

1

2

(
(∆ue,a)T · kewf∆ue,a + (∆ue,b)T · kewf∆ue,b

)
. (40)

A final observation concerns the equilibrium conditions of the springs’ anchorage
points, i.e., the nodes 4, 5 and 6 (Fig. 2b).

As mentioned in Section 2.2.1, the symmetry of both the hexagonal cell and the con-
figuration of the springs provide the equilibrium of the forces at the springs’ anchorages.
This geometrically-based consideration can be verified by considering the equivalence
between the hybrid system 1D beams-2D filler and the system Euler-Bernoulli beams on
Winkler foundation described above. In particular, when the hexagonal cell in Figure 4
is subjected to a set of external forces leading to a generic deformation of the cell, the
reaction forces of the springs along the direction ni take the form

fi =
(
nTi Kwni

)
∆uini, (41)

where Kw is the stiffness matrix of the elastic foundation and ∆ui the elongation of the
springs in the ni direction.

At the anchorage points (i.e., the central point of the cell), the sum of the springs’
reaction forces is expressed by

fanc =
∑

fi =
∑(

nTi Kwni
)

∆uini (42)

or, by splitting the contribution of the two sets of springs,

fanc =
∑(

(nai )
T

Kwnai

)
∆uai n

a
i +

∑((
nbi
)T

Kwnbi

)
∆ubin

b
i , (43)

with ∆uai and ∆ubi , respectively, the elongation of the springs a and of the springs b in
the directions nai and nbi (Fig. 4).

By taking into account the equivalence between the system 1D beams-2D filler and
the Winkler model, it can be assumed

∆ui = ∆di, (44)

being ∆ui and ∆di, respectively, the elongation in the ni direction in the Winkler foun-
dation model and in the system 1D beams-2D filler. From classical continuum mechanics,

∆di =
(
nTi εfni

)
di (45)

with di the original length of the cell in the ni direction and εf the infinitesimal strain
tensor (cf. equation (28)).
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By substituting (44) into (42) and splitting the contribution of the springs a and of
the springs b as in equation (43), it emerges

fanc =
∑(

(nai )
T

Kwnai

)(
(nai )

T
εfn

a
i

)
dai n

a
i +

∑((
nbi
)T

Kwnbi

)((
nbi
)T
εfn

b
i

)
dbin

b
i .

(46)
Finally, by observing that dai = dbi and that nai = −nbi , equation (46) provides

fanc = 0, (47)

relation that coincides with the equilibrium of the forces at the springs, anchorage points.
It should be noted that the above equation is valid for any deformation of the cell, both
symmetric and not-symmetric.

3. The homogenized model

3.1. Elastic energy

It is possible to express W in a continuum form by introducing the affine interpolants
of the nodal displacements and microrotations, û(·) and ϕ̂(·), and by assuming that in
the limit `→ 0 the discrete variables (uj, ϕj) previously introduced can be expressed by

uj = û0 + ∇û bj , ϕj = ϕ̂0 + ∇ϕ̂bj , j = 1, 2, 3. (48)

The terms û0 and ϕ̂0 stand for the values of û(·) and ϕ̂(·) at the central node of the cell
in the continuum description, while bj are the vectors formerly defined. Substituting
(48) into (20) and dividing the expression that turns out from the calculation by the
area of the unit cell, A0 = 2`2 cos θ(1 + sin θ) (Fig. 2b), give the strain energy density
in the continuum approximation w. Similarly to [12], [13], in the limit `→ 0 it emerges
the independency of w by the microrotation gradients, ϕ̂,α, that scale with first order in
`. Accordingly,

w = w(ε11, ε22, ε12, (ω − ϕ̂)), (49)

with εαβ = 1
2 (ûα,β + ûβ,α) and ω = 1

2 (û1,2 − û2,1) the infinitesimal strains and the
infinitesimal rotation of classical continuum mechanics. More details are given in Ap-
pendices A and B.

3.2. Constitutive equations

The stress-strain relations of the equivalent continuum take the form
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σ11 =
C`c(ε11(24c4D` + c2(C``

2 + 48D`s
2)) + s(ε22(C``

2 − 12D`)f0 + ε11(12D`s(1 + 2s2))))

`f0(24c2D` + C``2(1 + 2s2))
+

+
Kwc(ε11f1 − ε22f2)

104f0f3
,

σ22 =
C`(C`ε22`

2s2f0 + c2(ε11(C``
2s− 12D`s) + 12D`ε22f0))

c`(24c2D` + C``2(1 + 2s2))
+
Kw(ε22f4/c− ε11cf2)

104f0f3
,

σsym12 = σsym21 =
3D`ε12(c2(C``

2(4sf0(s2 + s+ 3) + 3)− 24D`sf0))

2`3f0c(2C``2c2 + 3D`(4sf0 + 3))
+

+
3D`ε12(4c4(C``

2(2sf0 + 1) + 3D`) + 4C``
2c6 + 12D`s

2f20 )

2`3f0c(2C``2c2 + 3D`(4sf0 + 3))
+
Kwε12f5
208cf0f3

,

σskw12 = −σskw21 =
9D` (ω − ϕ̂)

c`3(3 + 4sf0)
,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 ,

(50)

with σsymγδ and σskwγδ , in turn, the symmetric and skew-symmetric part of the Cauchy
stress tensor defined by

σ =
1

A0

∂W

∂∇û
. (51)

Note that, to simplify the notation, in (50) c and s stand, respectively, for cos θ and sin θ
while fi = fi(cos θ, sin θ) are polynomial expressions listed in Appendix B.

3.3. Elastic constants

Simple mathematical manipulations provide the elastic constants of the limit problem,
given by
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E∗
1 =

c(Kwvc
2((4λ3f8Es)/v + f6Kw(2s2 + 1)) + 4λEs((104λ3Esf10)/(vf0) + f7Kw))

4(f9Kwv(2λ2c2 + 2s2 + 1) + 104λf10Es(λ2c2 + s2))
+

+
λ2K2

wf6vc
5

2(f9Kwv(2λ2c2 + 2s2 + 1) + 104λf10Es(λ2c2 + s2))
,

ν∗12 = − c2(Kwvf2(2λ2c2 + 2s2 + 1) + 104λ(λ2 − 1)Esf11)

Kwvf4(2λ2c2 + 2s2 + 1) + 104λf0Es(λ2c2 + s2)f11/s
,

E∗
2 =

4λEs((104λ3Esf10)/(vf0) + f7Kw) +Kwc
2(4λ3Esf8 +Kwvf6(2s2 + 1))

4f0c(Kwvf1(2λ2c2 + 2s2 + 1) + 104λ3f3Es(s2(3 + 2c2) + 2c4 + c2))
+

+
λ2K2

wvc
3f6

2f0(Kwvf1(2λ2c2 + 2s2 + 1) + 104λ3f3Es(s2(3 + 2c2) + 2c4 + c2))
,

ν∗21 = − Kwvf2(2λ2c2 + 2s2 + 1) + 104λ(λ2 − 1)f11Es
Kwvf1(2λ2c2 + 2s2 + 1) + 104λ3Esf3(s2(3 + 2c2) + 2c4 + c2)

,

G∗ =
1

416f0c

(
104λ3Es(c

2(2λ2 + f13)− 2λ2sf0 + f12)

v(λ2(4f0s+ 3) + 8c2)
+
Kwf11
f10

)
,

(52)

with λ = h/`, v = (1 − ν2s ), c = cos θ, s = sin θ and fi = fi(cos θ, sin θ) the expressions
in Appendix B. Also, with obvious notation, E∗

1 , ν
∗
12 and E∗

2 , ν
∗
21 denote, in turn, the

Young’s modulus and the corresponding Poisson’s ratio in the e1 and e2 direction, G∗

the shear modulus. As expected, the macroscopic elastic moduli derived satisfy the

classical relation revealing the system isotropy, G∗ =
E∗

2 (1 + ν∗)
, with E∗

1 = E∗
2 ≡ E∗

and ν∗12 = ν∗21 ≡ ν∗, only in the particular case θ = 30◦.

4. Discussion

4.1. The hygroscopic keel tissue: comparison with other authors

As stated, the present work is inspired by the hygroscopic keel tissue of the ice plant.
This biological tissue reveals a cellular microstructure composed by elongated hexagons
filled with the CIL. If hydrated, the CIL adsorbs large amount of water, leading to a
change of the cells’ shape and, consequently, to the macroscopic stiffness.

As a matter of fact, let us consider the compact expression of the stress-strain relations
derived in Section 3.2



σsym11

σsym22

σsym12


 =



C11 C12 C13

C21 C22 C23

C31 C32 C33






ε11
ε22
2ε12


 , (53)
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with Cij the components of the effective stiffness tensor previously obtained and reported
here for ease of reading

C11 =
C`c(24c4D` + c2(C``

2 + 48D`s
2) + s(12D`s(1 + 2s2)))

`f0(24c2D` + C``2(1 + 2s2))
+

Kwcf1
104f0f3

,

C22 =
C`(C``

2s2 + 12D`c
2)f0

c`(24c2D` + C``2(1 + 2s2))
+
Kwf4/c

104f0f3
,

C12 = C21 =
C`cs(C``

2 − 12D`)

`(24c2D` + C``2(1 + 2s2))
− Kwcf2

104f0f3
,

C33 =
3D`c(C``

2(4sf0(s2 + s+ 3) + 3)− 24D`sf0)

2`3f0c(2C``2c2 + 3D`(4sf0 + 3))
+

+
3D`(4c

4(C``
2(2sf0 + 1) + 3D`) + 4C``

2c6 + 12D`s
2f20 )

2`3f0c(2C``2c2 + 3D`(4sf0 + 3))
+

Kwf5
208cf0f3

,

C13 = C23 = C31 = C32 = 0.

(54)

It emerges a strong influence of the inclination of the cell walls θ (Fig. 2), via the
terms c = cos θ, s = sin θ and the polynomials fi = fi(cos θ, sin θ).

Before addressing a parametric analysis to investigate further this influence, let us
verify the adopted modelling technique by comparing the proposed results with the avail-
able data in the literature.

As summarised in Table 1, the comparison is established by comparing the Cij con-
stants of the present paper with those suggested in [33], where the keel tissue, repre-
sented as a pressurised diamond-shaped honeycomb, is analysed by Finite Element ho-
mogenization and theoretical modelling based on the Born rule. Specifically, four cell’s
configurations are considered, characterised by different values of θ and inner pressure,
p. Notwithstanding the diverse strategies adopted, Table 1 reveals that the agreement is
generally good. The discrepancies that emerge in some cases are due to the different cells’
shape considered: diamond-shaped cells in [33], elongated hexagons in the present work.
Also, neglecting the compromised cell walls’ coupling effect could be another source of
dissimilarities. As mentioned in Section 2.1, a rigorous analysis of the biological keel tis-
sue is beyond our aim. However, from Table 1 it emerges that the proposed theory could
be applied in biology to study the mechanics of composite tissues having a not-regular
hexagonal microstructure.

In addition, in Table 1 the values of the Winkler foundation constant, Kw, are ob-
tained by the energetic equivalence described in Appendix C. In particular, it emerges
that Kw, expressed by

Kw(p) =

√
2 p

(
−8 sin θ cos θ

17
+ 1

)
cos θ

√
1 + sin θ

(
4 sin3 θ

6 +
√

2
+

4 cos3 θ

6−
√

2
− 1

)2

+ cos θ

(
4 cos θ

6−
√

2
− 1

)2
, (55)
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is a function of the pressure, p, and cell walls’ inclination, θ = θ(p).

One question that arises is if there exist an optimal value of p, p̃, that maximises the
area of the hexagonal cell, A0, given by

A0(p) = 2`2 cos θ(p) · (1 + sin θ(p)), (56)

with ` and θ(p), in turn, the length and inclination of the cell walls.
As illustrated in Figure 6, A0 attains the maximum at θ ≡ θ̃ = 30◦ and, according to

the analysis of Guiducci et al. [33], the corresponding value of p is given by p̃ ≈ 15 MPa.
It should be noted that the outcome of the analysis is not affected by the particular value
of cell walls’ length assumed in Figure 6, ` = 1 mm.

Finally, a schematic representation of this smart mechanism is shown in Figure 7. In
the dry state, at zero pressure, the tissue is composed by elongated cells characterised
by high values of θ and minimum absorption (Fig. 7a). When it starts raining, the
filler absorbs more and more large amounts of water, leading to an increase in the inner
pressure and, consequently, to a decrease in θ. In particular, decreasing θ provides an
increase in A0 (cf. Fig. 6), as well as an increase in the absorption (Fig. 7b). At
θ = 30◦, the stationary condition of maximum absorption is reached (Fig. 7c). Then,
when the rain stops, the pressure inside the cells decreases, as the absorbed water starts
to evaporate (Fig. 7d). It follows an increase in θ and a decrease in A0, until the original
configuration is restored (Fig. 7e).

4.2. Parametric analysis

From the expressions in (54) it is clear that the macroscopic mechanical behavior is
strongly affected by the microstructure’s geometrical and mechanical properties.

Assuming lignified cell walls as in the keel tissue, with Es = 1 GPa and νs = 0.3
[33], this section investigates the influence of the infill’s stiffness, Kw, and cell walls’
inclination, θ, in the effective stiffness. In particular, two different cases are considered:
slender beams, with h/` = 0.01, Figure 8, and thick beams, with h/` = 0.1, Figure 9. As
it can be seen, Figures 8a, 9a suggest that when Kw is fixed, an increase in θ leads to a
decrease in the C11 constant, that is more significant in the case of h/` = 0.1 (Fig. 9a).
Conversely, for fixed Kw, increasing the cell walls’ inclination provides an increase in C22

(Figs. 8b, 9b). This is not surprising since the smaller the angle θ, the more elongated
in the e1 direction will be the resulting cell. Consequently, the smaller θ, the higher C11.
Similarly, increasing θ yields a more and more elongated cell in the e2 direction and a
more and more higher C22. In addition, Figures 8a, 9a and 8b, 9b show that, for fixed θ,
to high values of Kw(10−1Es, 10−2Es) corresponds an higher initial value of both C11

and C22.
Regarding the constant C33, from Figures 8e, 9e it emerges that when Kw is fixed,

an increase in θ leads to an increase in C33, that is more evident for high values of
Kw(10−1Es, 10−2Es).

In terms of the cross stiffness components, C12 and C21, Figures 8c, 9c and 8d, 9d
reveal that increasing θ provides a fast initial increase followed by a gradual decrease.
In contrast to what would be expected, for small values of θ the presence of the filling
material does not stiffen the structure. Also, by comparing the curves corresponding
to slender beams (Figs. 8c, 8d) and thick beams (Figs. 9c, 9d), it can be said that
this peculiar behavior is geometry-related. This result could be of interest in practical
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applications as a strategy to design a new more mechanically efficient material or to
improve existing ones.

As in classical orthotropic materials, it emerges C11 6= C22 and C12 = C21. Regardless
the values of h/`, only in the particular case θ = 30◦ the equivalence C11 = C22 holds
true. This, as expected, reveals the system isotropy.

5. Hierarchical extension

A hierarchical material can be defined as a material that contains structural elements
which themselves have structure [58], [59].

This work, in particular, deals with a hierarchical composite cellular material having
n levels of hierarchy and a elongated hexagonal microstructure with filled cells at all
levels (Fig. 10). Similarly to Section 2, the Euler-Bernoulli beam on Winkler foundation
element represent the skeleton of the cells, the (n− 1)th level. Again, the elastic springs
are imagined to be anchored at the nodes of the lattice L3, modelled as a sequence of
Euler-Bernoulli beams much less stiff than the principal ones (cf. Section 2.1).

5.1. Effective elastic constants

Let us focus on the nth level structure of Figure 10. By assuming that the size of the
microstructure of each cell wall, the (n − 1)th level, is fine enough to be negligible with
respect to the nth level, each cell arm can be treated as a continuum having the elastic
moduli derived in Section 3.3. Consequently, the effective elastic constants of the nth

level structure in the continuum form are
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Ě1 =
č(Ǩw ˇ̌v č2((4 λ̌3 f̌8

ˇ̌E)/ˇ̌v + f̌6 Ǩw(2š2 + 1)) + 4 λ̌ ˇ̌E((104 λ̌3 ˇ̌E f̌10)/(ˇ̌vf̌0) + f̌7 Ǩw))

4(f̌9 Ǩw ˇ̌v(2λ̌2 č2 + 2š2 + 1) + 104λ̌ f̌10
ˇ̌E(λ̌2 č2 + š2))

+

+
λ̌2 Ǩ2

w f̌5 ˇ̌v č5

2(f̌9 Ǩw ˇ̌v(2λ̌2 č2 + 2š2 + 1) + 104 λ̌ f̌10
ˇ̌E(λ̌2 č2 + š2))

,

ν̌12 = − č2(Ǩw ˇ̌v f̌2(2λ̌2 č2 + 2š2 + 1) + 104λ̌(λ̌2 − 1) ˇ̌E f̌11)

Ǩw ˇ̌v f̌4(2λ̌2 č2 + 2š2 + 1) + 104 λ̌f̌0
ˇ̌E(λ̌2č2 + š2)f̌11/š

,

Ě2 =
4λ̌ ˇ̌E((104λ̌3 ˇ̌E f̌10)/(ˇ̌vf̌0) + f̌7 Ǩw) + Ǩw č

2 (4λ̌3 ˇ̌E f̌8 + Ǩw ˇ̌v f̌6(2š2 + 1))

4f̌0 č (Ǩw ˇ̌v f̌1(2λ̌2 č2 + 2š2 + 1) + 104 λ̌3 f̌3
ˇ̌E(š2(3 + 2č2) + 2č4 + č2))

+

+
λ̌2 Ǩ2

w
ˇ̌v č3 f̌6

2f̌0(Ǩw ˇ̌v f̌1 (2λ̌2 č2 + 2š2 + 1) + 104 λ̌3 f̌3
ˇ̌E(š2(3 + 2č2) + 2č4 + č2))

,

ν̌21 = − Ǩw ˇ̌v f̌2(2λ̌2 č2 + 2š2 + 1) + 104 λ̌(λ̌2 − 1)f̌11
ˇ̌E

Ǩw ˇ̌v f̌1(2λ̌2 č2 + 2š2 + 1) + 104 λ̌3 ˇ̌E f̌3(š2(3 + 2č2) + 2č4 + č2)
,

Ǧ =
1

416f̌0 č

(
104 λ̌3 ˇ̌E (č2 (2λ̌2 + f̌13)− 2λ̌2 š f̌0 + f̌12)

ˇ̌v(λ̌2 (4f̌8š+ 3) + 8 č2)
+
Ǩw f̌11

f̌10

)
,

(57)

with Ě1, ν̌12 and Ě2, ν̌21 the Young’s modulus and corresponding Poisson’s ratio in the
e1 and e2 direction respectively, Ǧ the shear modulus. In addition, λ̌ = ȟ/ˇ̀, č :=
cos θ̌, š := sin θ̌ with ȟ, ˇ̀, θ̌, in turn, the thickness, length and inclination of the cell walls

(Fig. (10)), Ǩw the Winkler constant, ˇ̌v = (1 − ˇ̌ν), ˇ̌E and ˇ̌ν the Young’s modulus and
Poisson’s ratio of the beams in the longitudinal direction [39], [43] obtained in Section
3.3. The polynomials f̌i = f̌i(cos θ̌, sin θ̌) are derived by substituting θ̌ for θ into the
expressions listed in Appendix B. It should be noted that the previous notation, (̌·) for

(·)(n) and
ˇ̌
(·) for (·)(n−1), is introduced to simplify the relations and facilitate reading.

5.2. The stiffness-to-density ratio

The stiffness-to-density ratio takes the form

Ě1

ρ̌
=

Ě1

ǎ ρ̌f + b̌ ˇ̌ρ
,

Ě2

ρ̌
=

Ě2

ǎ ρ̌f + b̌ ˇ̌ρ
,

Ǧ

ρ̌
=

Ǧ

ǎ ρ̌f + b̌ ˇ̌ρ
, (58)

with ρ̌ and Ě1, Ě2, Ǧ, in turn, the density and the effective elastic constants of the nth

level structure previously defined. In particular, as explained in Appendix D, ρ̌ is given
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by

ρ̌ =

(
2 č (1 + š)− 3 λ̌

2 č (1 + š)

)
ρ̌f +

(
3 λ̌

2 č (1 + š)

)
ˇ̌ρ = ǎ ρ̌f + b̌ ˇ̌ρ, (59)

where ρ̌f and ˇ̌ρ are the density of the filling material, the first, and of the cell walls, the
second, at level n.

5.3. Parametric analysis and optimal values

Based on the above formulation, this section aims at understanding how the mi-
crostructure’s parameters affect the macroscopic elastic moduli in the case of structural
hierarchy. The analysis involves a three-level hierarchical honeycomb having a elongated
hexagonal microstructure with filled cells at all levels and such that the self-similar con-
dition [43]

λ(i) = λ, θ(i) = θ, i = 1, 2, 3, (60)

holds true. The hypothesis that the density of the filling material, ρ
(i)
f , is the same at all

levels leads to
ρ
(i)
f = ρf = αρs, i = 1, 2, 3, (61)

with α = 0.4, 0.2, 0.1, 0 for assumption. In addition, the lignified cell walls of the starting
element, the level 0 in Figure 10, have Young’s modulus Es = 1 GPa, Poisson’s ratio
νs = 0.3, density ρs = 1400 kg/m3 [5]. The Winkler constant, derived in Appendix D, is
expressed by

K(i)
w = Kw =

4
√

3

5
α3Es, i = 1, 2, 3. (62)

As Figure 11 shows, for fixed Kw the stiffness-to-density ratio, E
(3)
1 /ρ(3), E

(3)
2 /ρ(3),

G(3)/ρ(3), is strongly affected by the inclination of the cell walls θ, as in the not-

hierarchical case. In particular, increasing the values of θ leads to an increase in E
(3)
2 /ρ(3)

and to a decrease in E
(3)
1 /ρ(3). This is explained by the fact that the higher θ, the more

elongated in the e2 direction will be the cell. Also, it emerges that the cell-filled config-
uration is generally stiffer than the hollow one (Kw = 0), especially in the case of high
values of Kw (10−1Es, 10−2Es). However, for high values of θ, Figure 11a illustrates
that the composite configuration with high values of Kw is not the best solution in terms

of E
(3)
1 /ρ(3). The reason is that, firstly, the macroscopic stiffness in the e1 direction is

more and more smaller by increasing the cell walls’ inclination. Secondly, filling the cells
provides not only a stiffer material but also an higher value of the density. Regarding

E
(3)
2 /ρ(3), analogous considerations apply (Fig. 11b). That is to say, high values of

Kw leads to a stiffer material when θ > 24◦, since small values of θ result in a hier-
archical configuration characterised by cells strongly elongated in the e1 direction and,

consequently, by smaller values of E
(3)
2 .

As expected, E
(3)
1 /ρ(3) = E

(3)
2 /ρ(3) only in the case θ = 30◦.

Finally, in the cell-filled configuration, in contrast to the standard hierarchical ma-
terial [43], [48], increasing the number of hierarchical levels leads to an increase in the
specific stiffness (Fig. 12) and an optimal number of levels also emerges.

In the practical context, these findings could suggest a method to obtain a stiffer
composite material via structural hierarchy and could assist the designer in the selection
of the geometric and mechanical characteristics of the microstructure.
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6. Conclusions

Composite cellular materials have been credited with significantly improving the me-
chanical behavior of hollow structures. However, in the literature a few number of ana-
lytical techniques has been proposed to predict the effective properties of filled cellular
materials, especially in the case of not-regular microstructures.

This paper, inspired by the keel tissue of the ice plant Delosperma nakurense, deals
with the analysis of a composite honeycomb composed by elongated cells filled with an
elastic material. By modelling the composite hexagonal microstructure as a sequence
of Euler-Bernoulli beams on Winkler foundation and by applying an energy-based tech-
nique, the constitutive equations and elastic moduli in the continuum approximation are
derived. It emerges a strong influence of the cell walls’ inclination and of the filler’s
stiffness on the effective elastic constants.

The application of the theoretical model to the keel tissue of the ice plant, in con-
junction with a comparison with the available data in the literature, reveal the validity
of the proposed modelling approach. Despite the simplifications introduced to obtain a
mathematically tractable problem, the present work could be useful to gain some insights
into the mechanics of biological structures.

The theory is also extended to the hierarchical configuration and a closed-form expres-
sion for the effective elastic moduli and specific stiffness is provided. From the parametric
analysis developed, it emerges that increasing the hierarchical levels leads to an increase
in the specific stiffness and an optimal number of levels also exists.
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Appendix A

The elastic energy of the Euler-Bernoulli beam is the sum of three terms:

we =
1

2
(ue)T · kebue +

1

2
(∆ue,a)T · kewf∆ue,a +

1

2
(∆ue,b)T · kewf∆ue,b. (63)

The first,
1

2
(ue)T · kebue, (64)
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is related to the axial and bending deformations of the classical elastic beam, while the
second and the third,

1

2
(∆ue,a)T · kewf∆ue,a,

1

2
(∆ue,b)T · kewf∆ue,b, (65)

to the Winkler foundation and, in particular, to the elongation of the springs a, the first,
and of the springs b, the second (Fig. 14).
The elastic energy of the unit cell, W , derives from that of the beams composing the
skeleton of the cells: 0-1, 0-2, 0-3. Also, imposing the balance of forces and moments in
0 and condensing the corresponding degrees of freedom, provides

W = W (u1,u2,u3,∆ua1 ,∆ua2 ,∆ua3 ,∆ub1,∆ub2,∆ub3). (66)

Then, the assumption that in the limit ` → 0 the discrete variables (uj , ϕj) can be
written as

uj = û0 + ∇û bj
ϕj = ϕ̂0 + ∇ϕ̂bj , j = 1, 2, 3,

(67)

provides the continuum description of the discrete structure. The terms û0 and ϕ̂0 are
the values of û(·) and ϕ̂(·) at the central point of the cell in the continuum description
and in what follows, to simplify the notation, they will be denoted with û and ϕ̂. Finally,
substituting (67) into (66) gives the strain energy of the unit cell as a function of the
fields û and ϕ̂.
In particular, the aforementioned quantities are (Figs. 13-15):

- Beam 0-1
Discrete system

∆ua1 =

[
u1 − u6

ϕ1 − ϕ6

]
, ∆ub1 =

[
u1 − u4

ϕ1 − ϕ4

]
. (68)

In the continuum description,

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = 1, 6, 4, (69)

that, substituted in (68), lead to

∆ua1 =

[
∇û b1 −∇û b6

∇ϕ̂b1 −∇ϕ̂b6

]
, ∆ub1 =

[
∇û b1 −∇û b4

∇ϕ̂b1 −∇ϕ̂b4

]
. (70)

- Beam 0-2
Discrete system

∆ua2 =

[
u2 − u4

ϕ2 − ϕ4

]
, ∆ub2 =

[
u2 − u5

ϕ2 − ϕ5

]
. (71)

Continuum description

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = 2, 4, 5, (72)

and

∆ua2 =

[
∇û b2 −∇û b4

∇ϕ̂b2 −∇ϕ̂b4

]
, ∆ub2 =

[
∇û b2 −∇û b5

∇ϕ̂b2 −∇ϕ̂b5

]
. (73)
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- Beam 0-3
Discrete system

∆ua3 =

[
u3 − u5

ϕ3 − ϕ5

]
, ∆ub3 =

[
u3 − u6

ϕ3 − ϕ6

]
. (74)

Continuum description

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = 3, 5, 6, (75)

and

∆ ua3 =

[
∇û b3 −∇û b5

∇ϕ̂b3 −∇ϕ̂b5

]
, ∆ ub3 =

[
∇û b3 −∇û b6

∇ϕ̂b3 −∇ϕ̂b6

]
. (76)

Finally, the vectors bi are (Fig. 15):

b1 = l1 − s, b4 = s,
b2 = l2 − s, b5 = −s− l1,
b3 = −s, b6 = (s− l2) /2.

(77)

Appendix B

B.1. Energy

The strain energy density in the continuum form defined in Section 3.1 is expressed
by

w =
ε211 C`c(24c4D` + 12D`s

2(1 + 2s2) + c2(C``
2 + 48D`s

2))

2`(1 + s)(24c2D` + C``2(1 + 2s2))
+

ε222 C`(1 + s)(12c2D` + C``
2s2)

2c`(24c2D` + C``2(1 + 2s2))
+
ε11ε22 C`c(−12D` + C``

2)s

24c2D` + C``2(1 + 2s2)
+

ε212 3D`(4C`c
6`2 + 12D`s

2(1 + s)2 + 4c4(3D` + C``
2(1 + 2s(1 + s))))

2c`3(1 + s)(2C`c2`2 + 3D`(3 + 4s(1 + s)))
+

ε212 3D`(c
2(−24D`s(1 + s) + C``

2(3 + 4s(1 + s)(3 + s+ s2))))

2c`3(1 + s)(2C`c2`2 + 3D`(3 + 4s(1 + s)))
+

9D` (ω − ϕ̂)
2

c`3(3 + 4s(1 + s))
+
ε11ε22Kwc(−1352 + s(9412 + s(1901− 8s(8 + 1851s))))

104(1 + s)(347 + 484s+ 452s2)
+

ε211Kwc(11518 + s(13520 + s(23761 + 24s(540 + 617s))))

208(1 + s)(347 + 484s+ 452s2)
+

ε222Kwc(20280 + s(9464 + s(9721 + 8s(−1604 + 1851s))))

208(1 + s)(347 + 484s+ 452s2)
+

ε212Kw(c4(10969 + 8s(1958 + 1851s)) + 6c2s(4158 + s(2063 + 8(44− 617s)s)))

208c(1 + s)(347 + 484s+ 452s2)
+

ε212Kws
2(35114 + s(22836 + s(21585 + 8s(−2222 + 1851s))))

208c(1 + s)(347 + 484s+ 452s2)
, (78)
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with Kw the Winkler foundation constant, C` = Es h
1−ν2

s
and D` = Es h

3

12(1−ν2
s )

, respectively,

the tensile and bending stiffness (per unit width) of the beams, Es, νs, h, ` and θ, in
turn, the Young’s modulus, Poisson’s ratio, thickness, length and inclination of the cell
walls. Also, to simplify the notation, c = cos θ and s = sin θ.

In the case of regular hexagonal microstructure, θ = 30◦, (78) takes the form

w =

(
ε211 + ε222

)
(C2

` `
4 + 36D`C``

2) + 2ε11ε22(C2
` `

4 − 12D`C``
2) + 96D`C``

2ε212

4
√

3`3(12D` + C``2)
+

3D` (ω − ϕ̂)
2

√
3`3

+
Kw

(
305

(
ε211 + ε222

)
+ 544 ε212 + 66 ε11ε22

)

1664
√

3
. (79)

B.2. Constitutive equations and elastic constants

The polynomial expressions fi = fi(cos θ, sin θ) introduced in Section 3.2 are:

f0 = 1 + s,

f1 = 11518 + s(13520 + s(23761 + 24s(540 + 617s))),

f2 = s(s(8s(1851s+ 8)− 1901)− 9412) + 1352,

f3 = 347 + 484s+ 452s2,

f4 = (s(s(8s(1851− 1604) + 9721) + 9464) + 20280)c2,

f5 = (((8(1851s− 2222)s+ 21585)s+ 22836)s+ 35114)s2 + (8(1851s+ 1958)s+ 10969)c4+
6((8s(44− 617s) + 2063)s+ 4158)sc2,

f6 = 25688 + s(9464 + s(24093 + 4s(581 + 8207s))),

f7 = s2(1 + s)2 f1 + c2 f4 + 2c2s(1 + s) f2,

f8 = 11518 + 2 f4(1 + s2) + 33852s+ 98719s2+
2s3(53046 + s(59222 + s(9464 + s(9721 + 8s(−1604 + 1851s))))),

f9 = (1 + s) f4, f10 = (1 + s)3 f4, f11 = s(s+ 1) f3,

f12 = (8(s+ 1)s+ 4)c4 + 4c6, f13 = 4(s+ 1)s(s+ s2 + 3) + 3,

(80)

with c = cos θ and s = sin θ.

In particular, for regular hexagonal microstructure, θ = 30◦,

f0 = 3/2, f1 = 107055/4, f2 = −11583/4, f3 = 702, f4 = 321165/16,

f5 = 35802, f6 = 77571/2, f7 = 53703/2, f8 = 249561/2, f9 = 963495/32,

f10 = 9477/4, f11 = 1053/2, f12 = 117/16, f13 = 57/4.

(81)
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Accordingly, the constitutive equations and elastic moduli of Sections 3.2 and 3.3 take
the form:

σ11 = σsym11 =
(C2

` `
2 + 36D`C`)ε11 + (C2

` `
2 − 12D`C`)ε22

2
√

3 `(12D` + C``2)
+
Kw(305ε11 + 33ε22)

832
√

3
,

σ22 = σsym22 =
(C2

` `
2 + 36D`C`)ε22 + (C2

` `
2 − 12D`C`)ε11

2
√

3 `(12D` + C``2)
+
Kw(305ε22 + 33ε11)

832
√

3
,

σsym12 = σsym21 =
48D`C`ε12

2
√

3 `(12D` + C``2)
+

17Kw ε12

52
√

3
,

σskw12 = −σskw21 =

√
3D` (ω − ϕ̂)

`3
,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 ,

(82)

and

E∗
1 = E∗

2 ≡ E∗ =
(13Kw(1− ν2s ) + 32λEs)(17(1 + λ2)Kw(1− ν2s ) + 104λ3Es)

2
√

3(1− ν2s )(305(1 + λ2)Kw(1− ν2s ) + 416(λ+ 3λ3)Es)
,

ν∗12 = ν∗21 ≡ ν∗ =
33(1 + λ2)Kw(1− ν2s )− 416λ(λ2 − 1)Es

305(1 + λ2)Kw(1− ν2s ) + 416λ(1 + 3λ2)Es
,

G∗ =
17(1 + λ2)Kw(1− ν2s ) + 104λ3Es

104
√

3(1 + λ2)(1− ν2s )
.

(83)

Appendix C

As stated, an energetic equivalence provides a suitable relation between the Winkler
foundation constant of the present work, Kw, and the hydrostatic pressure p of [33].

First of all, let us focus on a single cell and let us consider its elastic energy, Wc,
obtained by summing the contribution of the walls, Ww, and of the filling material, Wf :

Wc = Ww +Wf . (84)

In particular,

Wc =





Wc,Winkler = Ww,beams +Wf,Winkler Winkler model

Wc,pressurised cell = Ww,walls +Wpressure pressurised cell,

(85)

with Ww,beams,Wf,Winkler and Ww,walls,Wpressure, in turn, the elastic energies of the
cell walls and of the filling material in the case of Winkler foundation model, Figure 16a,
and pressurised cell [33], Figure 16b. By assuming

Ww,beams ≡Ww,walls, (86)
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the energetic equivalence

Wc,Winkler ≡Wc,pressurised cell (87)

takes the form
Wf,Winkler ≡Wpressure. (88)

The first term, Wf,Winkler is the sum of the elastic energies of the three series of
springs in the directions n1,n2,n3:

Wf,Winkler =

(
3∑

i=1

1

2
∆UT

i ·Kw∆Ui

)
b, (89)

where ∆Ui is the elongation of the springs in the ni direction, b the width,

Kw =

[
Kw 0
0 Kw

]
(90)

the stiffness matrix of the elastic foundation, Kw the Winkler constant. Also, Wpressure

is related to the change in the volume of the cell and its expression, given in [33], is

Wpressure = −pV − V0
V0

= −p ((1 + ε11) (1 + ε22)− 1) b, (91)

with p the inner pressure, V = V (p) and V0 = V (p = 0), respectively, the volume
of the cell in the deformed and undeformed configuration, b the width. From classical
continuum mechanics, the strains εij = εij(p) take the form

εij(p) = nTi εf (p)ni =
∆di
di

, i = 1, 2, 3, (92)

with ∆di the elongation in the ni direction, εf (p) the infinitesimal strain tensor,

d1 = d3 = `
√

2 + 2 sin θ(p), d2 = 2` cos θ(p), (93)

and θ(p) the inclination of the cell walls in the deformed configuration (Fig. 16). In
addition, the assumption

∆Ui = ∆di, i = 1, 2, 3 (94)

provides, in view of (92),

nTi εf (p)ni =
∆Ui
di

, i = 1, 2, 3, (95)

leading to
∆Ui = (nTi εf (p)ni)di, i = 1, 2, 3. (96)

Substituting (96) into (89) and taking into account (88), gives

3∑

i=1

1

2
di
(
nTi εf (p)ni

)T
Kwni

(
nTi εf (p)ni

)T
di = p ((1 + ε11(p)) (1 + ε22(p))− 1) . (97)
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From standard mathematical manipulations, it follows

Kw =
p (− (1 + ε11(p)) (1 + ε22(p)) + 1) 2 cos θ(p) (1 + sin θ(p))

√
2 + 2 sin θ(p)

(
sin θ(p)

2
ε11(p) + cos θ(p)

2
ε22(p)

)2
+ cos θ(p)ε22(p)2

, (98)

being

ε11(p) =
sin θ(p)

sin θ0
− 1, ε22(p) =

cos θ(p)

cos θ0
− 1 (99)

obtained from classical continuum mechanics and simple geometrical considerations. In
the above relations, θ0 = θ(p = 0) stands for the inclination of the cell walls in the un-
deformed configuration and its approximated value, 75◦, is given in [33]. By considering
this and inserting (99) into (98), it emerges

Kw(p) =

√
2 p

(
−8 sin θ(p) cos θ(p)

17
+ 1

)
cos θ(p)

√
1 + sin θ(p)

(
4 sin3 θ(p)

6 +
√

2
+

4 cos3 θ(p)

6−
√

2
− 1

)2

+ cos θ(p)

(
4 cos θ(p)

6−
√

2
− 1

)2
, (100)

where the values of θ(p) are derived from [33].

Appendix D

D.1. Density

Let us focus on the 0-th order level structure in Figure 11. From the rule of mixtures,
the density of this composite configuration, ρ(0), is given by

ρ(0) = f (0) ρ
(0)
f + (1− f (0)) ρs, (101)

with f (0) = V
(0)
f /V

(0)
tot the porosity, V

(0)
f and V

(0)
tot , in turn, the volume of the filling

material and of the entire cell, ρs and ρ
(0)
f the density of the cell walls, the first, and of

the filler, the second. In particular,

f (0) =
A

(0)
f b

A
(0)
tot b

=
2 cos θ(0)

(
1 + sin θ(0)

)
− 3λ(0)

2 cos θ(0)
(
1 + sin θ(0)

) , (102)

where A
(0)
tot and A

(0)
f are, on order, the total area of the cell and of the filling material,

b the width, λ(0) = h(0)/`(0) the ratio between the thickness and length of the walls.
Accordingly,

ρ(0) =

(
2 cos θ(0)

(
1 + sin θ(0)

)
− 3λ(0)

2 cos θ(0)
(
1 + sin θ(0)

)
)
ρ
(0)
f +

(
3λ(0)

2 cos θ(0)
(
1 + sin θ(0)

)
)
ρs (103)

or, to simplify the notation,

ρ(0) = a(0)ρ
(0)
f + b(0)ρs, (104)
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with

a(0) =
2 cos θ(0)

(
1 + sin θ(0)

)
− 3λ(0)

2 cos θ(0)
(
1 + sin θ(0)

) , b(0) =
3λ(0)

2 cos θ(0)
(
1 + sin θ(0)

) . (105)

Regarding the density of the first level structure (n = 1), ρ(1), let us assume that the
length of scale of the cell walls’ microstructure is much smaller than the cell wall itself.
So, as done in Section 5.1, a continuum having density ρ(0) approximates each cell arm.
As a consequence,

ρ(1) = a(1)ρ
(1)
f + b(1)ρ(0) (106)

where ρ
(1)
f is the density of the filling material, a(1), b(1) are derived by substituting θ(1)

and λ(1) = h(1)/`(1) for θ(0) and λ(0).
Finally, analogous calculations provide the density in the case on n levels of hierarchy:

ρ(n) = a(n)ρ
(n)
f + b(n)ρ(n−1), (107)

with ρ
(n)
f and ρ(n−1), in turn, the density of the filler and of the cell walls, a(n) and b(n)

obtained as before.

D.2. Winkler foundation constant as a function of the filler’s Young’s modulus

In Section 5.3, the hypothesis that the density of the filling material, ρ
(i)
f , is the same

at all levels provides

ρ
(i)
f = ρf = αρs, i = 1, 2, 3, (108)

with α a positive constant depending on the material inside the cells. For simplicity, let
us assume that the filler is a standard cellular material with hexagonal microstructure,
as commonly happens in nature [5]. Thus, the classical relations [5]

ρ
(i)
f

ρs,f
=

2√
3
λ
(i)
f ,

E
(i)
f

Es,f
=

4√
3

(
λ
(i)
f

)3
, i = 1, 2, 3 (109)

provide its (effective) Young’s modulus, E
(i)
f , and density, ρ

(i)
f , as a function of the cell

walls’ properties, i.e., the thinness ratio, λ
(i)
f , the density, ρs,f , and the Young’s modulus,

Es,f .
By taking into account the energetic equivalence in [12],

K(i)
w =

8

5
√

3
E

(i)
f , i = 1, 2, 3, (110)

together with the assumption

ρs,f = ρs, Es,f = Es, (111)

simple mathematical manipulations give

K(i)
w =

4
√

3

5
Es

(
ρ
(i)
f

ρs

)3

, i = 1, 2, 3, (112)
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a suitable relation between the Winkler constant, K
(i)
w , and the filler’s density. Finally,

in view of (108),

K(i)
w = Kw =

4
√

3

5
α3Es, i = 1, 2, 3. (113)

In particular, four values of α are considered: 0.4, 0.2, 0.1, 0, leading to Kw = 10−1Es,
10−2Es, 10−3Es, 0, respectively.
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Figures and Tables

(a) (b)

keel tissue

(c)

(d)

✓

dry state wet state

✓

water

Figure 1: The seed capsule of the ice plant Delosperma nakurense in the (a) dry state [60]
and (b) wet state [60]. (c) The hygroscopic keel tissue [60] and (d) its schematic
representation
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Figure 2: Theoretical modelling of the composite hexagonal microstructure: (a) geometrical
modelling, (b) the unit cell
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Figure 3: The discrete system continuum-springs: (a) springs a, (b) springs b

nb
i

nb
i

nb
i

na
i na

i

na
i

Figure 4: The anisotropic hexagonal cell in the Winkler model with focus on the springs’ an-
chorage point
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Figure 5: Equilibrium of the forces at the springs’ anchorage point: the two sets of symmetric
springs (springs a represented in red, springs b represented in blu)
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Figure 6: Optimal value of θ, with ` = 1 mm: area of the cell
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Figure 7: The smart mechanism of the hygroscopic keel tissue: (a) dry state, (b) when it starts
raining, the filler absorbs water leading to an increase in the absorption capability,
(c) stationary condition, maximum absorption, (d) the rain stops and the water
absorbed starts to evaporate, until (e) the original configuration is restored

Table 1: A practical application to the keel tissue of the ice plant. Comparison between the
results of the present paper and those of [33]

Guiducci et al. [33]
Es=1 GPa, νs=0.3, h/`=0.07

p (MPa) C22 (GPa) C11 (GPa) C33 (GPa) C12 (GPa) C21 (GPa)

0 0.1÷ 0.3 0.002 0.004÷ 0.012 0.028 0.028
2.5 0.03 0.020÷ 0.027 0.03÷ 0.086 0.020÷ 0.026 0.023÷ 0.026
5 0.025 0.03÷0.05 0.03÷ 0.086 0.015 0.015
6 0.02 0.03÷ 0.04 0.02÷ 0.096 0.02 0.02

Present
Es=1 GPa, νs=0.3, h/`=0.07

θ(◦) Kw (MPa) C22 (GPa) C11 (GPa) C33 (GPa) C12 (GPa) C21 (GPa)

75 0 0.15 0.002 0.0035 0.025 0.025
48 15.27 0.020 0.020 0.04 0.018 0.018
47 33 0.019 0.046 0.057 0.018 0.018
46 41.1 0.02 0.05 0.054 0.016 0.016
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Figure 8: The influence of Kw and θ in the effective stiffness constants in the case of h/` =
0.01: (a) C11, (b) C22, (c) C12, (d) C21, (e) C33
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Figure 9: The influence of Kw and θ in the effective stiffness constants in the case of h/` = 0.1:
(a) C11, (b) C22, (c) C12, (d) C21, (e) C33
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Figure 10: The hierarchical composite cellular material
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Figure 11: The influence of Kw and θ in the stiffness-to-density ratios of a three-level hierar-
chical composite in the case of h/` = 0.01: (a) Young’s modulus in the e1 direction,
(b) Young’s modulus in the e2 direction, (c) shear modulus
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Figure 12: Stiffness-to-density ratio vs levels of hierarchy, optimal value in the case of h/` =
0.01 and θ = 30◦
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Figure 13: The triplet of elastic beams with focus on springs: (a) beam 0-1, (b) beam 0-2, (c)
beam 0-3
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Figure 14: The two sets of springs connecting the triplet of elastic beams: (a) springs a, (b)
springs b
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Figure 16: Practical application to the keel tissue of the ice plant. Equivalence between (a) the
Winkler foundation model and (b) the pressurized cell [33]
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