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Abstract—An effective context recognition system cannot rely
only on sensor data but requires the user to collaborate with the
system in providing her own knowledge. In approaches such as
participatory sensing, which leverages on users to annotate and
collect their own data, user-generated data is usually assumed to
be accurate; however, in real life situations, this is not the case.
Research in social sciences and psychology shows that humans are
unreliable due to several behavioral biases when describing their
everyday life. In this paper, we propose to parametrize two biases,
i.e., cognitive bias and carelessness, in order to identify and
evaluate their impact on the users’ reliability when recognizing
users’ context. The parameters are part of an architecture for
context modelling and recognition from previous work, which
combines sensors and users as a source of information. We
evaluate our approach on a dataset of location points from the
SmartUnitn One experiment.

Index Terms—context recognition; behavioral analysis; social
sensing; smartphone; context-aware computing

I. INTRODUCTION

Each individual interprets her surroundings differently be-
cause of her habits, routines, and intelligence; this represents
her personal context. However, the user’s notion and repre-
sentation of her own context is radically different from what
machines understand. In fact, machines interpret the world
via sensors but lack the knowledge about it. For instance,
while any location can be reduced to (a set of) coordinates
for a machine, for humans locations can be differentiated
via categories such as function, e.g., home vs. work. Thus,
effective context recognition requires machines to collaborate
with users to learn their habits and knowledge of the world.

Imparting human knowledge that machines have to learn for
context recognition is an integral part of supervised machine
learning [21]. In supervised approaches, humans are employed
as experts that interact either in an offline fashion by annotat-
ing sensor data [22], or directly online by interactively asking
the user to reduce the amount of labeling effort, see active
learning [18], [13], [14]. Humans as annotators are extremely
important also in real life scenarios such as participatory
sensing, where mobile users actively participate in collecting
data [17]. However, using experts for labeling another person’s
data is unfeasible, due to the workload and issues in aligning
to users’ experience [3]; thus, the annotation task is up to users
themselves.

Being their own annotators, users should be motivated to
provide the correct information to understand their own data.
Unfortunately, this is not always the case, since humans are not
a reliable source of information [20]. This issue is well known
in social sciences and psychology, because of response biases
in answering self-reports [23]. A major issue in sociology is
that the evaluation of the impact of these biases on users’
answers is still not well understood [5].

We propose an architecture, based on the work from [8],
[24], where users annotate their own sensor data (in real time)
on their smartphone, with the final goal of recognizing the
context based only on the reliable annotations. To ensure
the reliability of annotations, we account for two specific
behavioral biases, i.e., cognitive bias and carelessness, by
parametrizing them. These parameters are used to evaluate the
impact of biases when recognizing users’ context in real life
scenarios where they are not assumed to be reliable. To the
best of our knowledge, we are the first to explicitly consider
and address user reliability in context recognition in the area
of pervasive computing.

We evaluate our approach on a dataset of location points
from the SmartUnitn One experiment [11], which aims at
understanding how students’ behavior affects their academic
performance. Results show that we can detect and quantify
biases in students annotations. We also compare the algorithm
based on students’ annotations with an unsupervised algo-
rithm, proving that our solution performs better.

The paper is structured as follows. Section II illustrates how
we enable reliable human-machine collaboration for context
recognition, while we provide an evaluation in Section III
based on the SmartUnitn One. Section IV describes works
related to ours and Section V concludes our paper.

II. ADDRESSING USER RELIABILITY

In our approach, we model the user context based on its
definition from [7], i.e., “a theory of the world which encodes
an individual’s subjective perspective about it”, as shown in
Section II-A. Based on this model, we adapt our context model
via sociological approaches to elicit users’ input, illustrated
in Section II-B. Then, we enable the collaboration between
humans and machines to recognize context by asking for



users feedback on her surroundings while also collecting real-
life data on their smartphones, shown in Section II-C. To
ensure their reliability, we account for biases in answering by
quantifying them as parameters of users’ responding behavior,
detailed in Section II-D.

A. Personal Context Modelling

For humans, context is the mechanism to make sense of
our environment to decide what is relevant to our current state
of affairs [2]. For instance, a student focus will be on specific
elements of her environment, e.g., a lesson taking place, which
means that others may not be considered relevant, e.g., the
teacher gesturing.
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Fig. 1: The four dimensions of context, centered on the subject.

Figure 1 shows an example of context as a knowledge graph.
Each node represents an entity with its respective attributes
and their attribute values. For instance, attributes of Enrico in
Figure 1 are “Class”, “Name”, and “Role”, and their corre-
sponding values are “Person”, “Enrico”, and “PhD student”,
respectively. Edges represent relations between entities, e.g.,
“Enrico” has one relation “Attend” for “Meeting”.

We model context as a tuple:

Cxt =< me,WA,WE,WO,WI > (1)

where:
• me is the person on which the context is centered, e.g.,

a student;
• WA is the Temporal component, i.e., the dimension that

answers the question “WhAt are you doing?”. It covers all
the relevant activities for a person in the current context,
e.g., attending a lesson;

• WE is the Spatial component, i.e., the dimension that
answers the question “WhEre are you?”. It covers all the
relevant locations for a person in the current context, e.g.,
a classroom;

• WO is the Social component, i.e., the dimension that
answers the question “WhO are you with?”. It covers all
the relevant people for a person in the current context,
e.g., the teacher and classmates;

• WI is the Object component, i.e., the dimension that
answers the question “What are you wIth?”. It covers all
the relevant objects for a person in the current context,
e.g., his or her own smartphone.

Each dimension is modelled as an ontology based on
the general ontology in [9] unifying human perception and
knowledge representation.

B. Involving Humans

Ontologies can be seen as a hierarchy of labels to annotate
users’ life; to do so, they must be made deployable on
smartphones and usable by people. Thus, we adapt them as
time diaries, which are widely used in sociology to analyze
human behavior and consist of logs where respondents report
activities performed, locations visited and people encountered
during their day [12].

This presentation of ontological information as time diaries
consists in two main steps: i) the appropriate time use clas-
sification standard must be agreed upon, and ii) the context
dimensions to be covered must be chosen. Then, the resulting
ontologies must be adapted, in collaboration with sociologists,
based on the research needs to become the coded entries of
smartphone-based time diaries.

The time diary used in this work was presented in [8], so
we will skip detailing the building process. To summarize,
it relied on the America Time Use Survey (ATUS) [19] to
obtain an ontology consisting in over 80 candidate labels for
three dimensions, each being a question to be asked: activities,
locations, and people. Then, sociologists halved the number of
labels to 43.

TABLE I: The time diary used in [8].
What are you doing? Where are you? Who is with you?

Lesson Class Alone
Study Study Hall Classmate(s)
Eating Library Friend(s)
Personal Care Other University place Roomate(s)
En route (*) Canteen Partner(s)
Social life Bar/ Pub/etc Colleague(s)
Social media & internet Relative(s) Other
Cultural Activity Home
Sport Other Home (*) How are you travelling?
Shopping Workplace By Foot
Hobbies Outdoors By Bus
Other Free Time Gym By Train
Work Shop By Car
Housework Other Place By Bike
Volunteering Other
Other

In the resulting time diary, shown in Table I, each dimension
is mirrored by a list of possible closed answers, where each
question refers to its corresponding context dimension. Since
WI, i.e., objects, were not deemed relevant, there are three
questions: i) “What are you doing?”, which accounts for
activities (WA), ii) “Where are you?”, which accounts for
locations (WE), and iii) “Who is with you?”, which accounts
for social relations (WO). The asterisk links the question “How
are you traveling?” and the “En route” activity. When a user
selects it, instead of the “Where are you?” options, a list of
means of transportation is provided.

C. Human-Machine Collaboration for Context Recognition

In addition to human input, we also need to involve ma-
chines to collaborate as a source of information and combine
the two inputs to recognize the context. To do so, we rely on
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Fig. 2: System architecture showing client and server.

the i-Log infrastructure [24], which is composed of different
elements seamlessly interacting with each other to move
from sensor data to the level of the context model. i-Log is
built according to a client-server architecture. infrastructure as
shown in Figure 2.

The interaction with the user is guaranteed via a mobile ap-
plication with two functionalities. With respect to sensor data
input, i-Log can collect up to 30 different sensors, with the fi-
nal number depending on the actual sensors availability on the
user’s smartphone. As for human input, i-Log can administer
the time diary from Section II-B to users at configurable time
intervals, thus adjusting the context information granularity.
i-Log has been designed i) to be modular and adapt to each
smartphone model, especially in terms of sensing strategies for
both smartphones and their internal sensors (which can greatly
vary among different models), ii) to consume as little battery
as possible, by devising sensor-dedicated energy consumption
strategies and delegating all computation server-side, and iii)
to ensure users’ privacy from data collection to its analysis.

The backend stores the data, and performs the mapping be-
tween sensor data and the context model. It has 4 components:
1) an API system enabling client and server communication, 2)
the Sensor data storage system (STB), which stores the streams
of data coming from the sensors in a NOSQL database, to
ensure scalability, 3) The entity storage (EB/KB), which stores
the contextual information as entities, their attributes and their
corresponding values, and 4) the Service Module (SM), which
analyzes the streams of sensors stored in the STB and updates
the context model.

D. Parametrizing Biases

Since our approach relies on humans as a source of informa-
tion, we must address their reliability. We base our solution on
the sociological research showing how different response and
behavioral biases cause a lack of congruence between subjects’
answers and their true value [20].

Among the many biases, e.g., conditioning, memory bias,
and unwillingness to report [23], we focus on two specific
types of behavioral biases. The first one is cognitive bias,
i.e., the inadequate recall of respondents when reporting their

time use. The main cause is that the time diary answers
are often given retrospectively, causing memory bias [5], or
because respondents oversimplify their experience [20]. The
second one is carelessness, i.e., the set of behaviors leading
to hurriedness when answering, which may be caused by, e.g.,
boredom or annoyance [23]. The use of time diaries adminis-
tered via smartphone in combination with the collection and
exploitation of sensor data allows us to parametrize them. The
two behavioral parameters are defined as:

1) ∆QA, formalizing the cognitive bias, and defined as the
time interval (in minutes) from when the question is
presented to respondents to when the answer is given.
The lower the value, the better in terms of reliability.

2) ∆A(X,Y) formalizing carelessness, and defined as the
time interval (in seconds) elapsed from when the user
starts answering one question of the time diary X and
answers another question Y, where X >= 1, Y <= Z,
and Z is the total number of questions and X < Y . The
higher the value, the better in terms of reliability.

III. EVALUATION

We test our approach and the effectiveness of our parameters
in the SmartUnitn One experiment, which belongs to the
family of projects called S MARTRAMS1, detailed in Section
III-A. Section III-B shows the strategy for quantifying the
biases that depend on the user sample, and Section III-C
demonstrates how to exploit the human-machine collaboration
to detect the context. Section III-D explains how the results
can be improved by addressing the biases.

Due to lack of space, for our evaluation we focused our
attention only on one of the elements of the context, i.e., the
spatial one (WE) and in particular on the students’ homes
location.

A. The SmartUnitn One Experiment

SmartUnitn One is an experiment that aims at understanding
the relationship between students’ behavior and their academic
performance. It has been carried on in November/December
2016 on 72 students enrolled at the University of Trento in
the Academic year 2015-2016.

SmartUnitn One lasted two weeks: during the first one,
students were asked to answer a time diary on their smartphone
about their time use, while the application was collecting
sensor data in the background. During the second week,
they were only required to have the application running for
collecting sensor data. Students were incentivized with a
fixed money compensation plus three final prizes assigned
to random users that actively participated. We collected a
total of user 110 Gb of labeled sensor data from the students
for the whole duration of the experiment. Our architecture
guarantees privacy is guaranteed through data anonymization
in all the steps, from data acquisition to storage and processing.
Moreover, before starting the data collection, we obtained
the approval from the ethical committee of the University of
Trento.

1http://trams.disi.unitn.it



B. Quantifying Biases

We adopted the following strategy to quantify the behavioral
parameters in the SmartUnitn One use case:
(i) ∆QA has a lower bound of 0 and an upper bound of

150min since the questions were available to the user for
2.5 hours. After this time, the question was discarded and
considered empty. ∆A(X,Y ) has X = 1 and Y = 3 since
the questions were composed by only 3 sub-questions as
in [8]. The lower bound is 0 while the upper bound is
left unconstrained.

(ii) Both values are calculated using the mean among all
the answers (not only the ones to the “Home”) given
by all the students and not of the single user because
while designing the experiment, but the attention was also
focused on students as a population.

(iii) We used the values calculated with the strategy above
as a threshold. Answers with values of ∆QA above the
threshold and with values of ∆A(X,Y ) below the threshold
were considered unreliable.

Concerning ∆QA, Table II presents the distribution of the
values across all the 17207 answers generated by the students
during the seven days of the experiment. The mean value was
identified as 30.4 minutes (Std 37.5). The general trend is
that many answers were given for a low value of ∆QA and
decreased upon nearing to the maximum limit of 150 minutes
to answer (use case defined limit). If we consider the average
value of 30.4 minutes obtained from our data, the coverage
reaches a higher value of 66.4%.

TABLE II: Distribution of the ∆QA parameter at different time
slots.

10min 30min 60min 90min 120min 150min
∆QA 41.5% 24.9% 15.9% 8.4% 5.4% 3.8%

Concerning ∆A(1,3), we calculated an average value of 8.8
seconds on the 17207 answers (Std 33.2); Table III shows
how the values are distributed. We defined six time intervals
to represent all the samples,; moreover, at this stage, we were
able to set the upper bound as 60 seconds since only 0.04% of
the answers were given with a duration above this threshold.

TABLE III: Distribution of the ∆A(1,3) parameter at different
time slots.

4sec 8sec 12sec 20sec 40sec 60sec
∆A(1,3) 36.96% 40.04% 11.14% 7.05% 4.01% 0.76%

C. Detecting Students’ Homes

Students were instructed to consider “Home” as their main
residential locations. They were supposed to do so regardless
of the fact that they were either residents in Trento, commuters
or that they usually went back to their hometown during the
weekends; this last case would, in fact, imply an additional
residence. Nonetheless, if they were staying in other private
building, e.g., houses belonging to members of their social

circles, then they were supposed to mark them as “Other
Private Home”. These considerations define a limit for the
student’s homes to 1 for those students that were resident in
Trento and 2 for the commuters.

From a sensor point of view, each answer was associated
with a unique location point collected by the smartphone
when the question was asked, either from the GPS sensor
or calculated through the network Wi-Fi connection. By
clustering together the points belonging to all the “Home”
answers for each student, we identified a certain number of
proxy locations. The clustering process accounts for the GPS
inaccuracies. Ideally, the resulting clusters should identify one
single location for all the “Home” answers (or two different
locations for commuters) if the student replied reliably.

We chose DBSCAN [4] as a clustering algorithm, which
is based on the spatial density of the points to cluster.
Among its parameters, ε is the maximum distance between
two points so that they are considered as being in the same
neighborhood. To characterize this value, we averaged the
accuracy of all the points collected by the location sensor at
the time of the “Home” answer input. In fact, the location
collected with i-Log is composed by a tuple of informa-
tion: < latitude, longitude, altitude, accuracy, provider >.
The accuracy variable contains information about the ac-
curacy of the current measurement, where the lower, the
better, represented in meters from the point centered at <
latitude, longitude, altitude >. It usually varies from few
meters when using the GPS up to tens of meters when using
the Wi-Fi network provider, or even up to hundreds of meters
when using the cellular network provider. In this experiment,
the average value for the accuracy was 108.27 meters (Std
314.68 meters).

Fig. 3: Distribution of the number of clusters for “Home”.

Figure 3 shows the distribution of the number of clusters for
the “Home” location across all students, without considering
biases. While two homes is a reasonable and expected upper
bound, the results show that the majority of students’ clusters
are included between those of size 1 and 6, with two peaks
for 2 and 4 clusters. Moreover, a few students claimed that
their home is in 10 or even 14 different places. On average,
we identified 3.47 (Std 2.47) homes per student. This result
shows that leveraging on the user to annotate his or her data



may generate inconsistent answers.

D. The Impact of Biases

To evaluate how the biases affect the user annotations, the
system exploits the behavioral parameters to filter out the
labels that: i) have a higher value than the threshold of ∆QA,
and ii) a lower value than the threshold of ∆A(1,3).

(a) ∆QA lower than 30min. The
red dashed vertical line is the
mean value of 2.81 clusters

(b) ∆A(1,3) greater than 8.8sec.
The red dashed vertical line is
the mean value of 2.38 clusters

Fig. 4: Number of clusters distribution for “Home” with:

Figure 4a shows the cluster distribution considering only
the location points of the answers with ∆QA lower than the
average of 30.4 minutes. In this case, the results improve in
accordance to our expectations, with a mean value of 2.81
(Std 1.92) with a total of 4117 points considered belonging
to 71 students (63.6% of all points). In this result, not all
the students are present since some of them never answered
“Home” with such constraints on ∆QA.

In the case of ∆A(1,3), the threshold value was calculated as
8.8. Figure 4b, shows the cluster distribution for the location
points of the answers with ∆A(1,3) higher than 8.8 sec. Also, in
this case, the number of clusters moves towards the expected
result and shows a correlation between label reliability and
questions completion time. The average number of clusters
per student is 2.38 (Std 1.47) calculated out of 1579 points,
which represent all the students.

These results show that even the simple strategy we adopted
in this experiment produces a significant improvement in
the context recognition results when using the behavioral
parameters to detect and account for the user unreliability.

The previous results are obtained via what could be con-
sidered a standard supervised approach. We present, as an
additional result, the comparison between our results and those
generated by an entirely unsupervised algorithm that does not
leverage on the user helping in the recognition. Based on [16],
the best window of time to detect a people in their own house
is between 07:00-07:30 AM. We then run the same DBSCAN
algorithm used for the other analysis on all the location points
of every user in that timeslot over all the two weeks of the
experiment regardless of the labels. In this case, the total points
clustered are 11784, which belong to 63 students. Apparently,
9 of them did not have any location point in that timeslot. The
distribution of the resulting clusters is shown in Figure 5. The
results, in this case, are worse than the previous ones since
the distribution is flatter and distributed towards higher values

of the number of clusters. In fact, the mean value across all
the users is 6.73 homes (Std 9.83).

Fig. 5: Distribution of the number of clusters for students’
homes calculated in an unsupervised approach.

The results of the evaluation process are summarized in
Table IV. What emerges is that for the situation we addressed,
the unsupervised technique provided the worst results and
this motivates the need for the human-machine collaboration.
Accounting for users to annotate their data is needed and
improves the results. In fact, when considering the human
unreliability by filtering out the unreliable annotations, the
results of the context recognition process improve even more,
especially concerning the cognitive bias.

TABLE IV: Comparison of the results of the 4 approaches for
determining the user Home location context.

Approach Mean Std
Unsupervised 6.73 9.83

Supervised
Biased 3.47 2.47

Unbiased ∆QA 2.81 1.92
∆A(1,3) 2.38 1.47

IV. RELATED WORK

Active learning, where a learning algorithm is able to
interactively query the user to obtain the desired outputs at new
data points [18], is used to alleviate the task of labeling data in
supervised approaches, which rely on expert users [22]. This
means that the process iterates as the data is collected, unlike
traditional supervised machine learning, where the labeling is
done offline [21]. In the area of activity recognition, active
learning is being used especially in smart homes, given the
limited range of activities to be recognized. For instance, in a
very recent work [14], a new model that discovers unseen new
activities and includes the new activity class in the supervised
learning model is proposed. The main advantage is that the
model itself is dynamic in finding new activities, whereas the
standard ones only consider a set of pre-defined activities.

Other areas are focused on real-life scenarios, thus dealing
with non-expert users; for instance, participatory sensing [15].
The main idea is to have users collect and share sensed
data from their surroundings using their mobile phones. One
increasingly important line of research has been understanding



the best approaches to elicit not only user data but their
annotations as well. [3] analyze three approaches for the
data collection, i.e., Participatory (PART), Context-Triggered
In Situ (SITU), and Context-Triggered Post Hoc (POST).
Participatory refers to users actively collecting data for the
whole experiment. Context triggered in situ and post hoc refer
to obtaining annotations from user data during the experiment
either when a specific condition is triggered or to prompt users
afterwards to obtain retrospective annotations, respectively.
These approaches were experimented on 37 users that had to
record and annotate their travelling habits. The results suggest
the PART approach is the most effective one since it produces
a larger amount of activity data and with less noise, although
SITU and POST leads to more activity recordings.

The main issue with current approaches is that they ignore
the reliability of users’ annotations. In participatory sensing,
the main measure of quality is the amount of activities reported
and data collected on a specific aspect of the daily life of users,
e.g., travelling [3]. In the case of supervised machine learning,
expert may be enough for correct annotations; however, these
approaches cannot scale outside of controlled environments.

Our definition of context is quite different from that usually
found the pervasive computing community (see [1] for a
survey). To us, context is an intermediate representation layer
which bridges the human and machine representations of
the world, rather than an aggregation mechanism exploited
by machines to reason about sensor data [1]. As such, our
notion of context does not need to represent uncertainty. We
implement reasoning by representing context as an ontology
and by exploiting efficient Modal/Description Logic inference
engines [10], [6].

V. CONCLUSIONS

In this paper, we proposed a parametrization of behavioral
biases to improve human-machine collaboration for context
recognition. Humans are needed in the context recognition
loop because of the different way the machine represents the
world; without them, the machine cannot generate meaningful
information. However, users in real life scenarios cannot be
assumed to be entirely reliable in the annotation task. We
can quantify the user label reliability and account for it in
the context recognition process to improve the final accuracy.
We evaluated our approach on the SmartUnitn One dataset,
proving that an unsupervised technique for detecting the
user’s home location shows poor results. Instead, a supervised
approach with user annotations improves this results, showing
that the user feedback is needed. Finally, when accounting for
the user unreliability during the analysis, the results show an
increased accuracy and follow our expectations.
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