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We present an efficient method to obtain bulk isothermal compressibilities (κT ) and Kirkwood-
Buff (KB) integrals of single- and multicomponent liquids using fluctuations of the number of
molecules obtained from small-sized molecular dynamics simulations. We write finite-size versions of
the Ornstein-Zernike and the Kirkwood-Buff integral equations and include there finite size effects
related to the statistical ensemble and the finite integration volumes required in computer simula-
tions. Consequently, we obtain analytical expressions connecting κT and the KB integrals in the
thermodynamic limit with density fluctuations in the simulated system. We validate the method
by calculating various thermodynamic quantities, including the chemical potentials of SPC/E water
as a function of the density, and of aqueous urea solutions as a function of the mole fraction. The
reported results are in excellent agreement with calculations obtained by using the best computa-
tional methods available thus validating the method as a tool to compute the chemical potentials
of dense molecular liquids and mixtures. Furthermore, the present method identifies conditions in
which computer simulations can be effectively considered in the thermodynamic limit.

I. INTRODUCTION

Statistical mechanics establishes the connection between
macroscopic thermodynamic quantities and the micro-
scopic interactions and components of a physical system.
In particular, integral equations relate the local structure
of a fluid with density fluctuations in the grand canoni-
cal ensemble that, in the thermodynamic limit (TL), can
be identified with equilibrium thermodynamic quantities
such as the compressibility and the derivatives of the
chemical potential [1, 2]. In computer simulations this
relation is routinely employed in spite of the fact that
the systems under consideration are constrained to the
canonical ensemble and usually far away from TL condi-
tions. Hence, various finite size effects need to be iden-
tified [3–5] and their impact should be evaluated for an
appropriate interpretation of the simulation results [6–
10].
Building on our previous work [11], in this study we
explicitly write finite size versions the Ornstein-Zernike
(OZ) [12] and the Kirkwood-Buff (KB) [13] integral equa-
tions of the theory of liquids. By including in these equa-
tions size effects related to i) the statistical ensemble used
in computer simulations and ii) the finite integration vol-
umes required when the system is not in the TL, we
derive analytical expressions to obtain isothermal com-
pressibilities and Kirkwood-Buff integrals (KBIs) in the
thermodynamic limit from relatively small-sized simula-
tions. The accuracy of the method presented here allows
one to derive other thermodynamic quantities of interest
such as the chemical potential of rather complex molecu-
lar liquids, in particular SPC/E water and aqueous urea

∗ corteshu@mpip-mainz.mpg.de

solutions, that well reproduce available simulation data
for these systems.
The method presented here is inspired by the block anal-
ysis method introduced originally by Binder [14–20]. For
the OZ integral equation we have generalised the study of
Velasco et al. on off-lattice fluids [3, 4, 21–23] to molecu-
lar fluids. Moreover, we have extended the applicability
of this approach to multicomponent liquids via the KBIs.
The paper is organised as follows: In Section II we discuss
the finite size version of the OZ integral equation and
the evaluation of the bulk isothermal compressibility of
SPC/E water which allows one to compute the chemical
potential as a function of the density. Section III extends
these results to multicomponent systems, where we study
urea–water liquid mixtures and obtain the KBIs in the
TL and subsequently the chemical potential of urea as a
function of mole fraction. In Section IV we summarise
our results.

II. SIMPLE LIQUIDS

Let us consider a molecular liquid of average density ρ at
temperature T in equilibrium with a reservoir of parti-
cles, i.e. an open system. The fluctuations of the number
of molecules are related to the local structure of the liquid
via the Ornstein-Zernike integral equation [1, 12]

∆2(N)

〈N〉 = 1 +
ρ

V

∫
V

∫
V

dr1dr2[go(r1, r2)− 1] , (1)

where ∆2(N)/〈N〉 are the fluctuations of the number of
particles, ∆2(N) = 〈N2〉−〈N〉2 and go(r1, r2) is the pair
correlation function of the open system and r1, r2 the po-
sition vectors of a pair of fluid particles. To solve the inte-
gral in Eq. (1) one assumes that the fluid is homogeneous,
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isotropic and that the system is in the thermodynamic
limit (TL), i.e. V → ∞, 〈N〉 → ∞ with ρ = 〈N〉/V =
constant. An infinite, homogeneous and isotropic system
is translationally invariant, therefore we rewrite Eq. (1)
as [1]:

χ∞T =
∆2(N)

〈N〉 = 1 + 4πρ

∫ ∞
0

dr r2(go(r)− 1) , (2)

with χ∞T = ρkBTκT , κT being the isothermal compress-
ibility of the bulk system. We have replaced go(r1, r2)
with go(r) the radial distribution function (RDF) of the
open system, with r = |r2 − r1|. Eq. (2) is only valid in
the TL. However, it is routinely used in computer simu-
lations where closed systems with finite volume and fixed
number of particles are usually considered. The modified
version of Eq. (2) used in simulations reads:

χRT = 1 + 4πρ

∫ R

0

dr r2(gc(r)− 1) , (3)

where gc(r) is the RDF of the closed system and the in-
finity upper limit in the integral on the r.h.s. of Eq. (2)
is replaced by a radius ζ � R < L with ζ the correla-
tion length of the system and L the size of the simulation
box. These implicit assumptions introduce two different
finite size effects: ensemble effects appear from assuming
go(r) = gc(r), which only holds in the TL. If R� ζ then
it is true that go(r > R) = 1. By contrast even small
fluctuations of gc(r > R) might contribute significantly
to the integral on the r.h.s. of Eq. (3). Boundary effects
appear because in computer simulations the volume V
in Eq. (1) is finite and therefore the step leading to Eq.
(2) has to be handled with care. As a matter of fact,
the errors introduced by using Eq. (3) yield significant
deviations that become apparent when comparing stan-
dard molecular dynamics results with semi-grand canon-
ical simulations [24]. An alternative Ornstein-Zernicke
integral equation for finite size systems was proposed a
long time ago [14, 16, 22, 25]. Let us consider a closed
system with fixed number of particles N0 and volume V0,
with periodic boundary conditions (PBCs), where fluctu-
ations of the number of particles are computed for sub-
domains of volume V ≤ V0. Therefore, we define [4]

χT (V, V0) =
∆2(N ;V, V0)

〈N〉V,V0

= 1 +
ρ

V

∫
V

∫
V

dr1dr2[gc(r12)− 1] ,

(4)

where gc(r12), r12 = |r2−r1|, is the pair correlation func-
tion of the closed system with total number of particles
N0, and ∆2(N ;V, V0) = 〈N2〉V,V0

− 〈N〉2V,V0
. The fluc-

tuations of the number of particles thus depend on both
subdomain and simulation box volumes. The question
now is: is it possible to compute χ∞T using Eq. (4) [26]?

To answer this question, we consider first the relation be-
tween the RDFs of an open system and its closed coun-
terpart. The original idea is to write the grand canoni-
cal RDF as a sum of RDFs, in the canonical ensemble,
weighted by the probability that the system has a num-
ber of particles N when in contact with a reservoir of
particles [21, 27]. For a single component fluid of density
ρ at temperature T with fixed number of particles N0

and volume V0, its RDF can be written in terms of an
expansion around N0 as [21, 23, 25–27] :

gc(r) =go(r)− χ∞T
N0

{
1 +

1

2

∂2

∂ρ2
[ρ2(go(r)− 1)]

}
+O(1/N2

0 ) .

(5)

In the following we neglect the O(1/N2
0 ) terms in Eq. (5)

because it has been demonstrated that, for sufficiently
large systems, their contribution can be safely ignored
[25]. By inserting Eq. (5) into the integral on the right
hand side (r.h.s.) of Eq. (4) we obtain

ρ

V

∫
V

∫
V

dr1dr2(gc(r12)− 1) =

IV,V −
V

V0
χ∞T

[
1 +

1

V

1

2

∂2

∂ρ2
(ρIV,V )

]
,

(6)

where

IV,V =
ρ

V

∫
V

∫
V

dr1dr2(go(r12)− 1) , (7)

and we use that ρ = N0/V0.
At this point we include explicitly the second finite size
effect, i.e. the fact that the volume V is finite. For this
we rewrite IV,V as [17]

IV,V0−V = IV,V0 − IV,V ,

with

IV,V0
=

ρ

V

∫
V

∫
V0

dr1dr2(go(r12)− 1) ,

IV,V0−V =
ρ

V

∫
V

∫
V0−V

dr1dr2(go(r12)− 1) .

To solve these equations, we recall that both integrals,
IV,V and IV,V0

, are equal when r1 and r2 are both within
the volume V . Moreover, the integrand is zero for r12 > ζ
and therefore it does not contribute to the integral. How-
ever, for values of r12 close to the boundary of the sub-
domain V , and in particular when r1 lies inside V and
r2 outside with r12 < ζ, there are contributions miss-
ing in IV,V that are present in IV,V0

. Thus, the differ-
ence IV,V0−V = IV,V0

− IV,V must be proportional to the
surface-to-volume ratio S/V of the subdomain [17], i. e.
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IV,V0−V = α′ρ
S

V
= − ρα

V 1/3
, (8)

with α′, α> 0 proportionality constants that at this point
we assume to be intensive. S is the surface area of the
subdomain with volume V [17].
To compute IV,V0 , we require that Vζ < V < V0 with
Vζ = 4πζ3/3. Since we assumed PBCs, the system
is translationally invariant. Hence, upon applying the
transformation r12 → r = r2 − r1 we obtain

IV,V0 = ρ

∫
V0

dr(go(r)− 1) = χ∞T − 1 , (9)

where we assume that go(r > ζ) = 1 thus ignoring fluctu-
ations of the RDF beyond the volume V . By combining
these two results we obtain

IV,V = χ∞T − 1 +
ρα

V 1/3
, (10)

and by including this result in Eq. (6) we obtain

ρ

V

∫
V

∫
V

dr1dr2(gc(r12)− 1) = χ∞T − 1 +
ρα

V 1/3

− V

V0
χ∞T

[
1 +

1

V

1

2

∂2

∂ρ2

(
ρ
{
χ∞T − 1 +

ρα

V 1/3

})]
.

(11)

The expression inside the square bracket on the r.h.s. is
approximated to 1 since the term with the second deriva-
tive with respect to ρ is proportional to V −4/3 ≈ 0. Re-
placing in Eq. (4) we obtain

χT (λ) = χ∞T
(
1− λ3

)
+

ρα

V 1/3
, (12)

with λ ≡ (V/V0)1/3 and Vζ < V < V0. This expression
is consistent with the two obvious limiting cases. In the
thermodynamic limit, V, V0 → ∞, the correct value is
recovered, i.e. χT (λ = 0) = χ∞T . In the asymptotic limit
λ = 1 we obtain χT (λ = 1) = 0, that is, the fluctuations
of the number of particles for a closed system are, by
definition, equal to zero. The two size effects considered
above can be easily identified in the previous expression.
First, the term proportional to λ3 takes into account the
difference in ensemble, i.e., gc(r) 6= go(r). Second, the
term proportional to V −1/3 accounts for the fact that the
integration domain V is finite. We emphasise here that
this last result can be equally obtained by neglecting the
derivative with respect to the density of Eq. (5), i.e. by
directly using the expression:

gc(r) = go(r)− χ∞T
N0

, (13)

V0

V

FIG. 1. Snapshot of a urea–water mixture simulation to il-
lustrate the procedure used to obtain χT (λ). For a system
with fixed volume V0, fluctuations of the number of particles
are computed for various subdomains of volume V ≤ V0. The
figure has been rendered with VMD [28].

valid for large values of r and with an asymptotic correc-
tion independent of r.
Finally, for practical purposes [22], we multiply Eq. (12)
by λ and obtain:

λχT (λ) = χ∞T
(
1− λ3

)
λ+

ρα

V
1/3
0

. (14)

To make use of Eq. (14), one runs a standard NVT sim-
ulation and selects a system with volume V0 � Vζ . Then
one computes systematically the fluctuations of the num-
ber of particles given by the l.h.s. of Eq. (4) for subvol-
umes V such that V < V0, as schematically illustrated
in Figure 1. Finally, one plots the results as a function
of λ and extracts χ∞T from a simple linear regression in

the range (Vζ/V0)1/3 < λ � 1. We recall here that ex-
trapolations of thermodynamic properties from finite size
computer simulations of single-component systems have
been obtained in the past. Examples include the calcula-
tion of the compressibility of the Ising lattice gas [14] and
hard disk fluids [22, 29], and the investigation of the gas-
liquid transition in two-dimensional Lennard-Jones fluids
[16, 18], as well as the calculation of the elastic constants
of model solids [20].
We have used this strategy to calculate the isothermal
compressibility of SPC/E [30] water. Molecular dynam-
ics simulations have been carried out with GROMACS
4.5.1 [31] for 8000, 16000, and 32000 SPC/E [30] water
molecules. To equilibrate the system, we started with a
simulation box of size such that the initial density was
≈ 26 waters/nm3 (≈ 776 kg/m3). Then, optimisation
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of the system was achieved by performing steepest de-
scent minimisation (50000 steps are sufficient). Finally,
an equilibration run of 3.5 ns has been carried out in the
NPT ensemble at 1 bar. During this time the displace-
ment of a randomly chosen water molecule is comparable
to half the linear size of the simulation box.
Following this minimisation step we proceeded by alter-
nating 3.5 ns (time step = 1 fs) constant pressure (NPT)
at P=1 bar and constant volume (NVT) simulations at
T=300 K. For NPT simulations we used a Berendsen
barostat [32] whereas for NVT simulations temperature
was enforced by a velocity rescaling thermostat [33]. We
continued with this protocol until we verified that in
the NPT ensemble the density is 33.5 waters/nm3 (1000
kg/m3) and that in the NVT simulation pressure never
deviates significantly from the 1 bar value. For all the
cases considered in the present study, the last NVT tra-
jectory obtained after this sequence of NPT–NVT equi-
libration runs was used for the subsequent analysis in
terms of the fluctuations of the number of molecules.
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FIG. 2. Fluctuations of the number of water molecules as
a function of λ for systems of 8000 (red circles), 16000 (blue
triangles) and 32000 (green squares) corresponding to the vol-
umes indicated in the legends. Using Eq. (14) and the linear
fit to the data for 8000 water molecules in the range λ < 0.3,
we obtain the curve represented by the dashed black line and
the solid black line (neglecting the λ3 term in Eq. (14)).

We evaluated λχT (λ) as a function of λ for a system
of 8000 water molecules. These data suggest a linear
regime for λ < 0.3, consistent with Eq. (14), where we
used a linear fit to the data to obtain χ∞T and α. We
report χ∞T = 0.062 (3 % error calculated from a sim-
ple linear regression), and by multiplying this value by
the molar mass of water and dividing by ρkBT , we ob-
tain 4.48 ×10−5 bar−1 in excellent agreement with the
widely accepted value for the isothermal compressibility
of the SPC/E model (4.50 ×10−5 bar−1) [34]. Fig. 2

shows λχT (λ) − ρα/V 1/3
0 as a function of λ for systems

of 8000 (red circles), 16000 (blue triangles) and 32000
(green squares) water molecules. We replaced χ∞T and α
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R T

Eq. (3), V0 = (6.2)3 nm3

Eq. (3), V0 = (7.8)3 nm3

Eq. (3), V0 = (9.9)3 nm3

Eq. (14), V0 = (6.2)3 nm3

1.2 1.5
0.04

0.06

0.08

0.10

FIG. 3. Evaluation of Eq. (3) for R = 1.5 nm using the RDFs
obtained from simulation boxes of side 6.2 (red line), 7.8 (blue
line) and 9.9 nm (green line). The horizontal black line marks
the asymptotic limit, χ∞T = 0.062, obtained from the linear
fit on Fig. 2 and Eq. (14). The panel shows the interval 1.2 <
R < 1.5 nm. χR

T for large values of R can be obtained by
averaging over such an interval. These results correspond to
the coloured horizontal lines. For V0 = (6.2)3, (7.8)3 and
(9.9)3 nm3 we obtain the limits 0.093 ± 0.004, 0.072 ± 0.003
and 0.061 ± 0.003, respectively.

back in Eq. (14) to obtain the black curve that superposes
on the simulation data for the full interval 0 < λ < 1.
The reader should keep in mind that for very small values
of λ, when the linear size of the subdomain is compara-
ble to the size of the molecules, the statistical analysis
is questionable. The three sets of data follow the same
curve, indicating that α is indeed an intensive quantity
but also suggesting that it is possible to accurately esti-
mate χ∞T using the results of a relatively small simulation.

By neglecting the term proportional to λ3 in Eq. (14), we
obtained the straight black line in Fig. 2 that indicates
that deviations from linearity indeed become important
for λ > 0.3. This limit λ� 1, where a linear behaviour is
apparent, is rather interesting. In this regime the volume
V � V0, that is, the system is effectively in the grand
canonical ensemble. If V0 � Vζ we obtain χT (λ � 1) =
χ∞T . Namely, provided that Vζ < V < V0 in the interval
λ < 0.3, both V and V0 are large enough such that the
system seems to be in the TL. A way to challenge this
argument involves the RDF: if the system is in the TL
then gc(r) = go(r) and Eq. (3) gives χ∞T for R > ζ. We
choose R = 1.5 nm as a reasonable value since the O-O
RDF of the SPC/E model goes to 1 at approximately 1
nm. This choice gives V 1/3 = 1.5 × (4π/3)1/3 nm, and

with the sizes V
1/3
0 ≈ 6.2, 7.8 and 9.9 nm we obtain

λ ≈ 0.39, 0.31 and 0.24, respectively. For these systems
we compute gc(r) and evaluate χRT from Eq. (3). We
obtain χRT from the integral by averaging in the interval
1.2 < R < 1.5 nm. As expected, upon increasing the
size of the simulation box (with λ = 0.39, 0.31 and 0.24
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FIG. 4. Isothermal compressibility for SPC/E water as a
function of temperature at fixed pressure (1 bar) using the
method described in the text (red circles) and direct volume
fluctuations: blue triangles [35] and green squares [36, 37].

the integral takes the values 0.093 ± 0.004, 0.072 ± 0.003,
0.061 ± 0.003) the integral converges to the value of 0.062
computed with the present method (See Fig. 3).
We conclude this part by saying that this method also
allows us to identify simulation conditions in which the
TL can be reached: in the case of SPC/E water, the vol-
ume at which the RDF is computed should be maximum
of the order of one percent of the total volume of the
simulation box.
To test the accuracy of the method, we have computed
the isothermal compressibility of SPC/E water in the
temperature interval 260 - 360 K. As shown in Fig. 4
there is reasonable agreement with previous calculations
using directly volume fluctuations [35–37]. More impor-
tant, the efficient and accurate calculation of isothermal
compressibility for dense liquids opens the possibility to
compute other thermodynamic quantities of great inter-
est. For example, the isothermal compressibility is re-
lated to the chemical potential µ via

κT =
1

ρ2
∂ρ

∂µ

∣∣∣∣
T

, (15)

which can be rearranged in terms of µ as:

δµ =

∫ ρ

ρ0

dρ′

ρ′2κT
(16)

with δµ = µ−µ0 and µ0 the chemical potential of the sys-
tem at the reference density ρ0. This expression suggests
that, upon an accurate calculation of the compressibility
for different densities at fixed temperature, it is possible
to obtain the chemical potential of the system, shifted by
a constant µ0. We have computed the compressibility of
SPC/E water in the density interval 0.99 - 1.05 g/cm3

0.99 1.00 1.01 1.02 1.03 1.04

ρ [g/cm3]

−29.0

−28.5

−28.0

−27.5

−27.0

−26.5

µ
e
x

[k
J/

m
ol

]

This work
SPARTIAN

FIG. 5. Excess chemical potential as a function of density for
the SPC/E water model at 300 K. The blue triangles are the
data obtained with the SPARTIAN method [38] and the red
circles correspond to the points computed with the method
outlined in the text. For the latter the error bars are compa-
rable to the point size.

and used the expression (16) to obtain δµ. To estimate
the shift and to prove that the method outlined here gives
correct results, we have computed the excess chemical
potential of SPC/E water in the same density interval
using a method recently developed by us which can be
interpreted as spatially resolved thermodynamic integra-
tion (SPARTIAN) [38]. To obtain the excess chemical
potential we subtract the density-dependent part of the
chemical potential of the ideal gas from δµ, i.e.

δµex = δµ− kBT ln ρ. (17)

Results are presented in Fig. 5, and upon displacing the
point corresponding to 0.995 g/cm3 we find that both
data sets overlap remarkably well within error bars. In
this way we have shown that with the strategy presented
here it is possible to compute efficiently the chemical po-
tential of dense liquids. When used in combination with
another method that allows one to calculate the chemical
potential at a reference state point, it also brings results
consistent with state-of-the-art chemical potential calcu-
lations. Since in this context the chemical potential is
obtained via the simple evaluation of fluctuations of the
number of particles, we provide here an alternative strat-
egy useful, in particular, in cases where the high density
of the liquid becomes problematic for methods based on
particle insertion or thermodynamic integration.

III. MULTICOMPONENT SYSTEMS

From the previous analysis, the generalisation to multi-
component systems is straightforward [11]. For a mul-
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ticomponent fluid of species i, j in equilibrium at tem-
perature T , analogous to the Ornstein-Zernike integral
equation, the Kirkwood-Buff integral (KB) is defined as
[13]:

Go
ij = V

( 〈NiNj〉 − 〈Ni〉〈Nj〉
〈Ni〉〈Nj〉

− δij
〈Ni〉

)
=

1

V

∫
V

∫
V

dr1dr2[goij(r1, r2)− 1] ,

(18)

with δij the Kronecker delta. As before, the superscript
(o) indicates that this definition holds for an open system,
i.e. a system described by the grand canonical ensem-
ble. goij(r1, r2) is the multi-component pair correlation
function of the open system. KB integrals connect the
local structure of a multicomponent system to density
fluctuations calculated in the grand canonical ensemble,
that, in the thermodynamic limit, are related to equi-
librium quantities such as the isothermal compressibility
and derivatives of the chemical potential [2]. Recently,
and to illustrate the robustness of this framework, KB
integrals have been used to investigate the thermody-
namics of Lennard-Jones binary mixtures [39], solvation
of biomolecules [40], diffusion in multicomponent liquids
[41, 42], complex phenomena in molecular mixtures [43]
and denaturation [44] and self-assembly [45] of proteins.
As in the single component case, by assuming that the
fluid is homogeneous and isotropic we obtain the KB in-
tegrals in the TL:

G∞ij = 4π

∫ ∞
0

dr r2(goij(r)− 1) , (19)

where goij(r) is the multicomponent RDF of the infinite
system. However, in computer simulations the expression

GRij = 4π

∫ R

0

dr r2(gcij(r)− 1) , (20)

is widely used. Here, gcij(r) is the multicomponent RDF
of the finite system and R� ζ is a cutoff distance.
We explicitly include both finite size effects: ensemble
and boundary effects, into an expression, analogous to
Eq. (18), defined for a finite system. Let us consider
systems with a total fixed number of particles N0 and
volume V0 with PBCs. We define [4]

Gij(V, V0) = V

( 〈NiNj〉′ − 〈Ni〉′〈Nj〉′
〈Ni〉′〈Nj〉′

− δij
〈Ni〉′

)
=

1

V

∫
V

∫
V

dr1dr2[gcij(r12)− 1] ,

(21)

with gcij(r12), r12 = r2− r1, the pair correlation function
of the closed system, and 〈Ni〉′ ≡ 〈Ni〉V,V0

the average
number of i-particles that depends on V and V0. Thus,

we define a quantity Gij(V, V0) that can be evaluated
by computing fluctuations of the number of particles in
finite subdomains of volume V inside a simulation box of
volume V0.
We have proposed an expression, valid for large separa-
tions r, relating the open and closed RDFs of the form
[11]:

gcij(r) = goij(r)−
1

V0

(
δij
ρi

+G∞ij

)
, (22)

based on the asymptotic limit gcij(r →∞) = 1−(δij/ρi+
G∞ij )/V0 discussed in Ref. [2]. As expected, when the
total volume V0 → ∞ we recover gcij(r) = goij(r). We
include Eq. (22) in the integral on the r.h.s. of Eq. (21)
and obtain:

Gij(V, V0) =
1

V

∫
V

∫
V

dr1dr2[goij(r12)− 1]

− V

V0

(
δij
ρi

+G∞ij

)
.

(23)

In analogy to the single-component case, in Eq. (22) we
neglect O(1/V0) contributions that include derivatives of
goij(r) with respect to ρi, as well as O(1/V 2

0 ) terms, be-
cause their contribution to ensemble size effects becomes
negligible upon integration.
Second, for the boundary effects, by explicitly taking into
account the finite domain of integration V , we obtain
[4, 11]:

Gij(V, V0) =
1

V

∫
V

∫
V0

dr1dr2[goij(r12)− 1]

− V

V0

(
δij
ρi

+G∞ij

)
+
αij

V
1
3

,

(24)

where αij is a constant that depends only on intensive
thermodynamic system properties such as density and
temperature. Finally, we rewrite Eq. (24) as [11]

Gij(λ) = G∞ij (1− λ3)− λ3 δij
ρi

+
αij

V
1
3
0 λ

, (25)

with λ = (V/V0)1/3. And like in the single-component
case, we can use Eq. (25) to extract the Kirkwood-Buff
integrals in the thermodynamic limit, G∞ij . In the case of
multicomponent fluids, the explicit inclusion of finite size
effects to obtain G∞ij has been attempted in the literature
by either using arguments from the thermodynamics of
small systems [46] where only the 1/V 1/3 term appears
[47] or by introducing empirical tail corrections to the
RDF and evaluating Eq. (20) with a modified kernel [48,
49]. Here we identify the relevant finite size effects at play
and use them in a simple and physically sound framework
that enables an accurate and efficient calculation of G∞ij
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FIG. 6. Simulation results for a molar concentration of 2.00 M
showing λGUU (red circles) and λGUW (blue triangles). The
horizontal lines indicate the asymptotic limits for Gij(λ→ 1):
GUU → 1/ρU = 1/1.208 = 0.828 and GUW → 0. The linear
regime (λ < 0.3 as seen in the inset), with slope equal to
G∞ij , is indicated by the vertical black line. The black lines
superimposing on the data for the whole interval 0 < λ < 1
were obtained by fitting Eq. (26) in the linear regime.

[11]. Recently, the accuracy of this method has been
tested by computing several thermodynamic properties
of Lennard Jones mixtures showing good agreement with
theoretical predictions [39].
We rewrite Eq. (25) as

λGij(λ) = λG∞ij
(
1− λ3

)
− λ4 δij

ρi
+
αij

V
1
3
0

. (26)

To validate Eq. (26), we have performed simulations of
aqueous urea solution [50, 51] using the Kirkwood-Buff
derived force field [52] and SPC/E water [30] in GRO-
MACS 4.5.1 [31] with a relatively small size of the sim-
ulation box (L ∼ 8 nm). In addition to the trajectories
from Ref. 51 we have considered four more molar concen-
trations for a total of seven molar concentrations: 2.00,
3.06, 3.90, 5.07, 6.03, 7.10 and 8.03. To equilibrate the
system, we have alternated 3.5 ns (time step = 1 fs) con-
stant pressure (NPT) at P=1 bar and constant volume
(NVT) simulations at T=300 K. For NPT simulations we
used a Berendsen barostat [32] whereas for NVT simu-
lations temperature was enforced by a velocity rescaling
thermostat [33]. We continued with this protocol until
we verified that in the NVT simulation pressure never de-
viates significantly from the 1 bar value. The last NVT
trajectory obtained after this NPT–NVT equilibration
sequence was used to compute fluctuations of the num-
ber of molecules.
Fig. 6 shows fluctuations of the number of molecules of
species i,j = urea (U), water (W) as a function of λ
for a molar concentration of 2.00 M. Blue triangles cor-
respond to λGUW(λ) that goes to zero when λ → 1,
as the horizontal blue solid line indicates. Red circles
represent λGUU(λ) that in the limit λ → 1 goes to
1/ρU = 1/1.208 = 0.828 as indicated by the horizon-
tal red dashed line. As in the case of single component
systems, here it is also clear that there is a linear region

0.0 0.5 1.0 1.5

R [nm]

−0.2

−0.1

0.0

0.1

G
R ij

[n
m

3
]

GUU

GUW

FIG. 7. Results for GR
ij obtained from Eq. (20) for urea water

mixtures at CU=2.00 M. The dotted horizontal lines indicate
the average of the curve obtained between 1.3 and 1.5 nm.
The dashed horizontal lines correspond to G∞ij as obtained
from Eq. (26).

in the interval 0 < λ < 0.3, indicated by the vertical solid
black line (See inset in Fig. 6). From a simple linear re-
gression in this region G∞UW, G∞UU as well as the values
of αij are obtained. By inserting these values in Eq. (26)
we obtain curves, in black solid lines, that overlap the
simulation data points in all cases.
Since we can compute gc(r) directly from our trajecto-
ries, we compare the fluctuations results with the eval-
uation of the integral Eq. (20). Results for GRUU, GRUW
with R = 1.5 nm are presented in Fig. 7 with solid red
and blue curves, respectively. To obtain a value for the
Kirkwood-Buff integrals we have averaged these curves
in the interval 1.3 – 1.5 nm as indicated by the dotted
horizontal lines. In addition, the dashed lines correspond
to the values G∞UU and G∞UW obtained from the linear fit
of Eq. (26). Differences in G∞UU and the average from
the curve are significant. The reason behind such differ-
ences lies in the fact that the concentration of urea is low,
CU = 2.00M , and a larger simulation box is needed to
correctly compute the corresponding RDF. Conversely,
the differences for GUW are negligible because the size of
the system is large enough to accurately obtain the urea
– water RDF.
In our previous paper we have used these tools to in-
vestigate solvation thermodynamics [11]. In urea–water
mixtures at pressure P , temperature T and number den-
sity ρU the derivative of the urea activity coefficient can
be written as

γUU = 1 +

(
∂ ln γU
∂ ln ρU

)
P,T

=
1

1 + ρU(GUU −GUW)
, (27)

with γU the activity coefficient and kBT ln γU the chem-
ical potential of urea. We have computed γUU as a func-
tion of molar concentration and report the results in Fig.
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CU [M]

0.8
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1.2

γ
U
U

This work
Eq. (20)
van der Vegt et. al. (2018)
Exp. 1
Exp. 2

FIG. 8. Derivative of the activity coefficient γUU as a function
of different urea molar concentrations CU. Experimental data
(Exp. 1 [52, 53] solid black line and Exp. 2 [56] dashed black
line) are also presented for comparison. Concerning other
simulation methods, the blue triangles have been obtained
by using Eq. (20) [50, 51]. Recently, the activity coefficient
has been computed by using a modified version of Eq. (20)
with empirical tail corrections to the RDF. The green squares
correspond to one data set extracted from Ref. [54] with the
smallest error bars and that best reproduces the experimental
results. For the latter, as well as for our data, the error bars
are comparable to the symbol size.

8. These results are in good agreement with the experi-
mental measurements [53] used to parameterise the force
field [52]. Recently, a modified version of Eq. (20) with
empirical tail corrections to the RDF have been used to
compute γUU [54]. To compare with our method, we ex-
tract [55], among the various examples provided [54], the
data set with the smallest error bars and that best re-
produces the experimental results. The results presented
in Fig. 8 suggest that a simple calculation of the fluctua-
tions of the number of particles used in combination with
eq. (26) produce results consistently in better agreement
with Exp. 1 [53].
More important, we can also use Kirkwood-Buff integrals
to compute the chemical potential of urea in urea–water
mixtures. We use the expression

1

kBT

(
∂µU

∂ρU

)
P,T

=
1

ρU
+

GUW −GUU

1 + ρU(GUU −GUW)
, (28)

and as in the case of single component fluids, we integrate
this equation to obtain a shifted chemical potential:

δµU = kBT

∫ ρU

ρU,0

dρ′U

[
1

ρ′U
+

GUW −GUU

1 + ρ′U(GUU −GUW)

]
,

(29)
where we have dropped the subindices P, T to lighten
the notation. Using a combination of different methods,

0.00 0.05 0.10 0.15 0.20
xU

−78
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−70
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J/
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]

This work
Montgomery Pettitt et.al. 2007

FIG. 9. Chemical potential of urea in aqueous solution as a
function of mole fraction xU. The results obtained with the
method outlined in the text (red circles) are compared with
the data from Ref. [57] (blue triangles).

the chemical potential of urea in urea–water mixtures as
a function of mole fraction has been computed in Ref.
[57]. In Fig. 9 we report these results in the interval
0,0.20 with blue triangles. We have obtained the shifted
chemical potential of urea as a function of mole fraction
using Eq. (29) and plot the results using the data for the
mole fraction xU = 0.13 (CU = 6.03) as a reference state
point (red circles). The two data points are in excellent
agreement. This suggests that the method presented here
constitutes an efficient and accurate tool to compute the
chemical potential of liquid mixtures for a wide range of
concentrations.

IV. CONCLUSIONS

During the last decades, we have witnessed an exponen-
tially increasing computational capacity that allowed us
to simulate enormous systems. In some cases, like the
SPC/E example with V0 = (9.9 nm)3 discussed above,
the system could practically be considered in the ther-
modynamic limit. Usually, this situation constitutes the
exception rather than the rule, and the computation of
bulk thermodynamic quantities from small-sized simula-
tion results remains a challenging task. This limitation
did not prevent pioneer computational scientists to inves-
tigate these properties for various complex systems. On
the contrary, researchers have cleverly used the finite size
effects present in their systems to extrapolate interesting
quantities in the thermodynamic limit.
Inspired by these works, we used finite size variants of in-
tegral equations in the theory of liquids, namely for the
Ornstein-Zernike and Kirkwood-Buff integral equations.
By explicitly including ensemble and boundary size ef-
fects, we have derived analytical expressions that allow
one to accurately calculate isothermal compressibilities
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and Kirkwood-Buff integrals in the thermodynamic limit.
In particular, the accurate estimation of these quantities
for various density/concentration conditions allows one
to determine, upon integration, the chemical potential
for complex liquids and mixtures.
This protocol to compute chemical potentials simply re-
lies on running a standard computer simulation. Pro-
vided that the linear dimension of the simulation box
is larger than the correlation length of the system, the
obtained trajectories can be easily used to compute the
fluctuations of the number of molecules for different sub-
domain sizes. This can be carried out during the postpro-
cessing and without any external sophisticated computa-
tional strategies, in contrast with the standard methods
available in the literature.
The efficiency and accuracy of the method has been
demonstrated by the calculation of shifted chemical po-
tentials of SPC/E water as a function of the density,
and aqueous urea solution as a function of the mole
fraction. The reported results exhibit trends in excel-

lent agreement with state-of-the-art calculations. The
reference chemical potential can be calculated using an
alternative, well-established, method for a single den-
sity/concentration value. Thus, the simple estimation of
density fluctuations, as described here, provides a pow-
erful tool to determine the chemical potential of complex
systems for a wide range of density/concentration condi-
tions.
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