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Summary

We propose a new framework exploiting realized measures of volatility to esti-
mate and forecast extreme quantiles. Our realized extreme quantile (REQ) com-
bines quantile regression with extreme value theory and uses a measurement
equation that relates the realized measure to the latent conditional quantile.
Model estimation is performed by quasi maximum likelihood, and a simulation
experiment validates this estimator in finite samples. An extensive empirical
analysis shows that high-frequency measures are particularly informative of the
dynamic quantiles. Finally, an out-of-sample forecast analysis of quantile-based
risk measures confirms the merit of the REQ.

1 INTRODUCTION

Quantitative financial risk management has become a fundamental tool for investment decisions, capital allocation, and
regulation. The subprime mortgage crisis emphasized how the changing nature of financial risk requires accurate risk
measures and models that respond quickly to the most recent events.

Value at risk (VaR) is considered the standard measure of market risk, and is used for both internal control of financial
institutions and regulatory purposes. This measure owes its success to the fact that it quantifies risk in a single number,
summarizing how much a portfolio of stocks can lose within a given time period, for a given confidence level. More
formally, let {rt}t∈N be a time series of portfolio returns. The conditional VaR at level 𝛼 is defined as the 𝛼-quantile of the
conditional distribution of the portfolio returns:

VaR𝛼t = inf{x ∈ R ∶ Pr(rt ≤ x|t−1) ≥ 𝛼},

where t−1 denotes the information set available at t − 1. Although VaR is a simple concept, its estimation poses very
challenging problems. From a statistical point of view, it is sufficient to estimate the quantile of the conditional return
distribution, but the fact that the latter changes over time makes the task difficult.

This paper proposes a novel dynamic approach to estimate VaR that combines elements from quantile regression,
extreme value theory (EVT), and high-frequency (HF) financial econometrics. Engle and Manganelli (2004) propose a
class of conditional autoregressive quantile models to estimate VaR called CAViaR. This approach allows one to model
time-varying conditional quantiles without specifying the data-generating process; however, the lack of a distributional
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assumption makes inference unstable in the tails where data are sparse. A possible solution consists of integrating quan-
tile regression with EVT (Chernozhukov & Fernández-Val, 2011; Wang, Li, & He, 2012). EVT provides limiting results for
the largest and smallest values in an i.i.d. sample and allows for estimation of quantiles beyond the range of the observed
data. To the extent that the quantile regression model is able to capture the time variation in the returns, a combined
quantile–EVT model allows for more accurate estimates of extreme quantiles.

The contribution of this paper is twofold. First, our realized extreme quantile (REQ) approach boosts any quantile
model with an EVT estimator for the extreme quantiles. Second, it exploits realized measures built from HF data to feed
the dynamic system. Analogously to the realized generalized autoregressive conditional heteroskedasticity (GARCH) of
Hansen, Huang, and Shek (2012), the realized measures are used as observable quantities to infer the behavior of the
latent quantiles of the conditional return distribution. The intuition behind our approach is that, as long as the quantiles
vary with the volatility level, the dynamic behavior of the volatility level should be informative of the dynamic behavior
of the quantiles.

The remainder of the paper is organized as follows. Section 2 reviews several existing VaR methodologies; Section 3
presents the general REQ framework, along with estimation and inference therein; Section 4 presents a linear REQ model;
Section 5 provides a simulation study; Section 6 contains the empirical analysis; Section 7 discusses future investigations.
Proofs appear in the Supporting Information Appendix.

2 A TAXONOMY OF VAR METHODOLOGIES

There exist several dynamic models for estimating VaR. We propose a simple taxonomy, summarized in Figure 1, where
the models are classified with respect to the type of information they exploit (high frequency or low frequency) and the
approach they take (volatility, EVT or quantile).

The volatility approach dates back to the ARCH class of models of Engle (1982), generalized to the GARCH class by
Bollerslev (1986). These models completely define the conditional return distribution and express the conditional variance
as the sum of autoregressive components plus past squared innovations. With the availability of HF data, new nonparamet-
ric estimators of the daily asset price variation, called realized measures, have been proposed in the financial econometrics
literature. These measures are theoretically grounded in the powerful theory of quadratic variation (Barndorff-Nielsen &
Shephard, 2002) and bear valuable information content to estimate the conditional variance. Engle (2002) includes the
realized volatility in the standard GARCH equation and finds that it significantly contributes to explain the conditional
volatility. Engle and Gallo (2006) and Shephard and Sheppard (2010), respectively, propose the multiplicative error model
(MEM) and high-frequency-based volatility (HEAVY) frameworks that fully specify the conditional distributions of both
the returns and the realized measures. In a different but related manner, Hansen et al. (2012) propose the realized GARCH
class of models, where the realized measures are used within a measurement equation.

FIGURE 1 Taxonomy of VaR methodologies [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


400 BEE ET AL.

The EVT approach requires the specification of a dynamic model that can take into account the dependence and the time
variation in the return distribution. A two-step procedure (McNeil & Frey, 2000) pre-whitens the returns with a GARCH
model and then applies the peaks-over-threshold (POT) method of Davison and Smith (1990) to the tails of the esti-
mated residuals. This mixed volatility–EVT approach outperforms several GARCH specifications in terms of VaR forecast.
Bee, Dupuis, and Trapin (2016) extend this approach to several HF-based volatility models and find that using realized
measures provides better VaR forecasts than McNeil and Frey (2000). A pure EVT approach appears in Chavez-Demoulin,
Davison, and McNeil (2005) and Chavez-Demoulin, Embrechts, and Sardy (2014), where the POT model is extended to a
dynamic framework. These dynamic POT models focus directly on the tails of the conditional return distribution and use
past extreme returns as covariates in the extreme value models to account for the dependence in the returns. Building on
this idea, Bee et al. (2015) propose the realized POT approach (RPOT), which introduces realized measures as covariates
in the standard POT approach. They show that HF data add information beyond that conveyed by low-frequency (LF)
data and that the RPOT provides better forecasts than dynamic POT models based on past exceedances.

The quantile approach focuses directly on the quantiles of the conditional return distribution. Engle and Manganelli
(2004) propose the CAViaR model endowed with autoregressive components and covariates obtained as functions of past
returns. Chen, Gerlach, Hwang, and McAleer (2012) and Jeon and Taylor (2013) further extend the CAViaR class of models
and find that including other covariates, such as the daily range (Parkinson, 1980) and the implied volatility, provides
additional information on the quantiles. Hua and Manzan (2013) and Žikeš and Baruník (2016) propose quantile models
based on realized measures, and show that HF information allows for a much more reactive response to the impact of
recent news.

Although quantile regression models perform well, inference in the tails is unstable because of their semi-parametric
nature, particularly when the true process is heavy tailed. To overcome this issue, Manganelli and Engle (2004) extend
the CAViaR suggesting a quantile–EVT approach where returns are divided by the estimated quantile at a specified level,
and then an EVT estimator is applied to the tails of the estimated quantile residuals. Following these ideas, Yi, Feng, and
Huang (2014) augment the conditional quantile model for GARCH processes of Xiao and Koenker (2009) with EVT. Our
framework allows one to augment a general quantile model with EVT.

Figure 1 summarizes the current VaR modeling options. Although there exist quantile regression models based on HF
data and quantile regression models with EVT based on LF data, a model that exploits HF data in the quantile–EVT
framework is still missing and our REQ model fills this gap.

3 REALIZED EXTREME QUANTILE

3.1 The general framework
Let rt be the portfolio return at time t and xt a realized measure observable at time t. We define realized measure as an
estimator of the daily volatility, and not of the daily variance as it is common in the literature. Considering the square
root of a standard estimator of the quadratic variation, the quantile and the realized measure are on the same scale. Let 𝜃
be the probability associated with the quantile regression model and let (𝛽(𝜃), 𝛾(𝜃)) be a vector of parameters associated
respectively with past conditional quantiles and the realized measure. The general structure of the REQ model at the level
𝜃, for 0 ≤ 𝜃 ≤ 1, is given by the following system of equations:

rt = q𝜃t + 𝜖
𝜃
t , (1)

q𝜃t = 𝑓 (q𝜃t−1, … , q𝜃t−𝑝, xt−1, … , xt−q; 𝛽(𝜃), 𝛾(𝜃)), (2)

xt = 𝜔(𝜃) + 𝜙(𝜃)q𝜃t + 𝜏1(𝜃)z𝜃t + 𝜏2(𝜃)[(z𝜃t )
2 − 1] + ut, (3)

where 𝜖𝜃t is such that 𝜃(𝜖𝜃|t−1) = 0, with 𝜃(·) the quantile function evaluated at the probability level 𝜃, t−1 =
𝜎{rt−1, xt−1, rt−2, xt−2, … } is the information set available at time t−1, z𝜃t = rt∕q𝜃t , ut ∼ N(0, 𝜎2

u), and𝜔, 𝜙, 𝜏1, 𝜏2 are param-
eters possibly depending on 𝜃. We refer to (Equations 1–3) respectively as the return equation, the quantile equation, and
the measurement equation. No specific assumptions are made on the innovations of the return process, as it is standard
in quantile regression. We add the return equation as it makes our quantile approach more intuitive.

The quantile equation (Equation 2) allows for a very general structure with the t−1-measurable function, f(·),
accommodating several possible specifications.
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Example 1. Assuming that f(·) is a linear function and taking as realized measure the absolute returns |rt|, one
recovers the symmetric absolute value (SAV) model of Engle and Manganelli (2004), q𝜃t = 𝛽0(𝜃)+𝛽1(𝜃)q𝜃t−1+𝛾(𝜃)|rt−1|.
Example 2. Neglecting the autoregressive component and considering as realized measures the realized volatility
(RV) in a heterogeneous autoregressive (HAR) structure (Corsi, 2009), one obtains the heterogeneous autoregressive
quantile (HARQ) model of Žikeš and Baruník (2016), q𝜃t = 𝛽0(𝜃) + 𝛾1(𝜃)RVt−1 + 𝛾2(𝜃)RVt−1,t−5 + 𝛾3(𝜃)RVt−1,t−22, where
RVt−1,t−k = k−1 ∑k

i=1 RVt−i.

Note that the quantile equation (Equation 2) allows the parameters to depend on the probability 𝜃, but in what follows
we assume that the covariates have a constant effect on the quantiles q𝜃t for 𝜃 ∈ (0, 𝜃c] with 𝜃c close to zero. This restricts
the behavior in the lower tail, where we estimate the VaR, and leaves unspecified the behavior for 𝜃 ∈ (𝜃c, 1].

Assumption 1. Let Fz𝜃
t be the conditional distribution of z𝜃t . We assume that Fz𝜃

t = Fz𝜃 for all z𝜃t > 1.1

The main novelty of our quantile regression framework with respect to past quantile models used in a time series context
is the inclusion of a measurement equation. Hansen et al. (2012) use a measurement equation to link an observed realized
measure to the latent conditional volatility. We use the measurement equation (Equation 3) to link an observed realized
measure to the latent conditional quantile. This is reasonable to the extent that the conditional quantile varies according
to the degree of variation in the asset prices. Our use of a measurement equation differentiates our approach from that of
Žikeš and Baruník (2016) where a noisy proxy of the volatility appears in the quantile equation. The following example
further makes the point.

Example 3. Consider the close-to-close return process rt = 𝜎t𝜖t, where 𝜎t is the latent volatility and 𝜖t an i.i.d. sym-
metric random variable. A quantile model for such a process can be defined as rt = q𝜃t + 𝜖𝜃t , with q𝜃t = 𝜎tq𝜃 and
𝜖𝜃t = 𝜖𝜃t 𝜎t, where q𝜃 = 𝜃(𝜖t) and 𝜖𝜃t is such that 𝜃(𝜖𝜃t ) = 0. In this case, the quantile varies according to 𝜎t and we
can use the realized volatility as an observable for this latent quantity. However, the realized volatility xt is a noisy
estimator of 𝜎t, based on observations that cover only part of the day. The relationship between 𝜎t and xt can thus be
represented as measurement equation xt = f(𝜎t) + 𝜂t where f(·) is a functional and 𝜂t a noise term, naturally linking
the two quantities.

3.2 Quasi-maximum likelihood quantile estimation
Consider a sample y1, … , yn from the quantile regression model,

𝑦t = x′t𝛽 + 𝜖
𝜃
t , 𝜃(𝜖𝜃t ) = 0,

where xt is a vector of K regressors and 𝛽 ∈ RK is a vector of parameters. The regression quantile estimator 𝛽 proposed by
Koenker and Bassett (1978) and obtained as the solution to

min
𝛽

1
n

n∑
t=1
𝜌𝜃t (𝑦t, 𝑓t(𝛽)),

where 𝜌𝜃t (𝑦t, 𝑓t(𝛽)) = [𝜃 − I {𝑦t < 𝑓t(𝛽)}] [𝑦t − 𝑓t(𝛽)] is the tick-loss function, ft(𝛽) =x′t𝛽, and I{·} the indicator function, is
consistent and asymptotically normal. Engle and Manganelli (2004) prove that these asymptotic results also hold in the
CAViaR framework, under several specifications of the function f(·), provided that it satisfies some regularity conditions.

Adding realized measures built from HF data in the quantile regression, as in Hua and Manzan (2013) and Žikeš and
Baruník (2016), does not affect the properties of the regression quantile estimator 𝛽. In contrast, the REQ framework
in Equations 1–3 requires performing a joint estimation of the quantile and measurement equations, and the regression
quantile estimator 𝛽 cannot be used.

For conditional quantiles, we consider the quasi-maximum likelihood (QML) estimator of Komunjer (2005). Based on
the tick-exponential density, it provides a class of estimators consistent for the parameters of a correctly specified model
of a given conditional quantile.

Definition 1. (Komunjer, 2005)
A probability measure on R with density 𝜙𝜃t indexed by 𝜂, 𝜂 ∈ Mt ⊂ R belongs to the tick-exponential family of order
𝜃 if for 𝑦 ∈ R:

1We are implicitly assuming that q𝜃t < 0. Observations below q𝜃t therefore correspond to z𝜃t greater than one.
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𝜙𝜃t (𝑦, 𝜂) = exp(−(1 − 𝜃)[at(𝜂) − bt(𝑦)]I{𝑦 ≤ 𝜂} + 𝜃[at(𝜂) − ct(𝑦)]I{𝑦 > 𝜂}),

where at ∶ Mt → R is continuously differentiable and bt, ct ∶ R → R. The functions at, bt, and ct are such that for
𝜂 ∈ Mt, 𝜙𝜃t is a probability density and 𝜂 is the 𝜃-quantile of 𝜙𝜃t .

Proposition 1. Let at(𝜂) = 𝜂

𝜃(1−𝜃)
and bt(𝑦) = ct(𝑦) = 𝑦

𝜃(1−𝜃)
, then

log𝜙𝜃t (𝑦, 𝜂) = − 1
𝜃(1 − 𝜃)

𝜌𝜃t (𝑦, 𝜂).

Proof. See the Supporting Information Appendix.

Proposition 1 states that the logarithm of the tick-exponential density is proportional to the function 𝜌𝜃t , yielding the
regression quantile estimator 𝛽 of Koenker and Bassett (1978). In particular, minimizing 𝜌𝜃t corresponds to maximizing
log𝜙𝜃t . We can thus write the quasi log-likelihood of the REQ model in Equations 1–3 as

𝓁(r, x; 𝛿) = −
n∑

t=1
[𝜃(1 − 𝜃)]−1 [𝜃 − I

(
rt < q𝜃t (𝛽, 𝛾)

)] [
rt − q𝜃t (𝛽, 𝛾)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝓁(r;𝛿)

− 1
2

n∑
t=1

[
log(2𝜋) + log(𝜎2

u) + u2
t ∕𝜎

2
u
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝓁(x|r;𝛿)

,

(4)

where 𝛿 = (𝛽, 𝛾, 𝜔, 𝜙, 𝜏, 𝜎2
u). The log-likelihood has two components: (i) 𝓁(r; 𝛿), based on the tick-exponential density

and corresponding to the quantile regression estimator of Koenker and Bassett (1978) plus a constant; (ii) the conditional
Gaussian component 𝓁(x|r; 𝛿), where the conditioning is with respect to the observed returns, as in the realized GARCH
model of Hansen et al. (2012).

Consistency and asymptotic normality of the QML estimators based on the tick-exponential density are established
in Komunjer (2005) under very general specifications of the quantile function f in Equation 2. The quasi log-likelihood
function in Equation 4 depends on a tick-exponential component for the quantile equation and a Gaussian component for
the measurement equation. This makes the asymptotic analysis of our model more complicated than that of the standard
quantile regression. A full asymptotic analysis of this QML estimator is beyond the scope of this paper. However, we show
below that the score is a martingale difference sequence. This result can be used to establish the asymptotic properties in
future research.

Proposition 2. Suppose that (i) E(utzt|t−1) = 0, (ii) E(z2
t |t−1) = 1, (iii) E(u2

t |t−1) = 𝜎2
u, then E

(
𝜕𝓁t(r,x;𝛿)
𝜕𝛿

|t−1

)
= 0.

Proof. See the Supporting Information Appendix.

Proposition 2 can be used to adapt the necessary conditions for consistency in Theorem 2 of Komunjer (2005). If the
conditions in Theorems 2.1, 7.2, and 7.3 of Newey and McFadden (1994) are satisfied, we have consistency and asymptotic
normality of the QML estimator and consistency of the plug-in estimator of the asymptotic covariance, so that√

n−1∕2
𝛿

𝛿
(
𝛿 − 𝛿

)
→ N(0, 1), ̂ (𝛿)

𝑝
→𝛿, ̂(𝛿)

𝑝
→𝛿,

where  = E
(
𝜕2𝓁t(r,x;𝛿)
𝜕𝛿𝜕𝛿

)
and  = E

(
𝜕𝓁t(r,x;𝛿)
𝜕𝛿

𝜕𝓁t(r,x;𝛿)′

𝜕𝛿

)
.

In Section 4, we provide the analytical expressions of both the score and the Hessian matrix for a linear REQ model.
We validate the QML estimation procedure via simulations in Section 5.

3.3 The REQ estimator
The system of equations (Equations 1–3) provides an HF extension of the CAViaR framework of Engle and Manganelli
(2004), alternative to the one proposed in Hua and Manzan (2013) and Žikeš and Baruník (2016), as it also takes into
account the measurement error intrinsic in the realized measures. Following the taxonomy of Figure 1, we are still in the
pure quantile approach. We make our methodology extreme by modeling z𝜃t with an EVT-based model.
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Assumption 2. Fz𝜃 is regularly varying with extreme value index 𝜉 > 0; that is, it satisfies

F̄z𝜃 (z) = (z)z−
1
𝜉 ,

where (z) is such that limz→∞(tz)∕(z) = 1+k(t)𝜙(z)+o(𝜙(z)) for each t > 0, with 𝜙(z) > 0 and 𝜙(z) → 0 as z → ∞,
and limz→∞𝜙(tz)∕𝜙(z) = z𝜚 with 𝜚 ≤ 0. as in Smith (1987).

Assumptions 1 and 2 define the asymptotic behaviour of the upper tail of Fz𝜃 . In particular, Assumption 2 implies
that Fz𝜃 is a heavy-tailed distribution (Embrechts, Klüppelberg, & Mikosch, 1997). This is a quite plausible assumption
given the better fit of heavy-tailed conditional distributions in the volatility literature (Bollerslev, 1987; Nelson, 1991).
Furthermore, the condition on (z) allows for a very general functional form of the tail and is standard in the extreme
value literature (De Haan & Ferreira, 2006).

Proposition 3. Let ẑ𝜃1 , … , ẑ𝜃n be the quantile residuals and ẑ𝜃(1) > · · · > ẑ𝜃(n) the corresponding descending-order
statistics. Under Assumptions 1 and 2, the REQ estimator for VaR𝛼t , with 𝛼 < 𝜃, is defined as

V̂aR
𝛼
t = q̂𝜃t ẑ𝜃(k)

(
k

n𝛼

)𝜉
, (5)

where q̂𝜃t is the QML 𝜃-quantile estimator,

𝜉 = 1
k

k∑
𝑗=1

log

(
ẑ𝜃(𝑗)
ẑ𝜃(k)

)
, (6)

and k is an integer such that k = kn → ∞ and k∕n → 0 as n → ∞.

Proof. See the Supporting Information Appendix.

Asymptotic theory for models combining quantile regression and EVT has been developed in Chernozhukov (2005),
Chernozhukov and Fernández-Val (2011), and Wang et al. (2012). Asymptotic properties of the REQ estimator can be
obtained from Theorems 1 and 2 of Wang et al. under an explicit functional form for k(t) and 𝜙(z). Intuitively, z𝜃t = rt∕q𝜃t
can be approximated by rt∕q̂𝜃t , with q𝜃t = 𝑓 (·, 𝛿) and q̂𝜃t = 𝑓 (·, 𝛿). To the extent that sup1≤t≤n| rt

𝑓 (·,𝛿)−𝑓 (·;𝛿)
| is small enough to

satisfy a condition equivalent to (S.1) in the supplementary material of Wang et al., then under Assumptions 1 and 2 and
other regularity conditions one has that √

k(𝜉 − 𝜉)
d
−→N

(
𝜛

1 − 𝜚
, 𝜉2

)
,

where 𝜚 controls the second-order behavior of the tail of Fz𝜃 and𝜛 is a bias term. Furthermore, under the conditions of

Theorem 2 of Wang et al. (2012), one has that
(

k
n𝛼

)𝜉 ẑ(k)
𝛼 (z𝜃)

= 1+
√

k
log{k∕(n𝛼)}

(Wn+o𝑝(1))with Wn ∼ N
(
𝜛

1−𝜚
, 𝜉2

)
and, assuming

that sup1≤t≤n| q̂𝜃t
q𝜃t

− 1| = sup1≤t≤n| 𝑓 (·;𝛿)𝑓 (·;𝛿)
− 1| is small, from Proposition 1 of Wang et al. we have that, for

√
k

log{k∕(n𝛼)}
→ 0,√

k
log{k∕(n𝛼)}

{
V̂aR

𝛼
t

VaR𝛼t
− 1

}
𝑝
→N

(
𝜛

1 − 𝜚
, 𝜉2

)
.

The asymptotic results for the REQ estimator thus strongly depend on the function f in Equation 2 and the properties of the
estimator 𝛿. For example, for the case of the GARCH quantile model, Yi et al. (2014) were able to establish the asymptotic
properties of 𝜉 and V̂aR

𝛼
t . Note that the asymptotic bias 𝜛

1−𝜚
arises as a consequence of Assumption 2, which specifies

a very general tail decay of the distribution of z𝜃t . We can make this bias disappear if we are willing to use the stronger
assumption that the tail has a remainder term without second-order behavior, assuming, for instance, that asymptotically
the tail follows a Pareto distribution. See Wang et al. (2012) for a similar discussion.

Assumption 2 requires that the conditional return distribution be heavy tailed; however, this may not always be true.
This condition can be replaced by the following more general assumption.

Assumption 3. Fz𝜃 is in the maximum domain of attraction of an extreme value distribution G𝜉 , written F ∈ D(G𝜉),
where 𝜉 is the extreme value index.

Note that this assumption coincides with Assumption 2 if 𝜉 > 0. When 𝜉 is either equal to or less than zero, one obtains
a distribution with exponential decay and a thin-tailed distribution respectively. Under Assumption 3, the REQ estimator
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in Equation 5 is still valid but we cannot use Equation 6 to estimate 𝜉. Another estimator could be used, such as the
moment estimator of De Haan and Ferreira (2006), though this is less efficient (Wang & Li, 2013).

4 A LINEAR REQ MODEL

A REQ model with a linear specification can be defined by the following quantile and measurement equations:

q𝜃t = 𝛽0 + 𝛽1q𝜃t−1 + 𝛾
′xt−1,

xt = 𝜔 + 𝜙q𝜃t + 𝜏1z𝜃t + 𝜏2((z𝜃t )
2 − 1) + ut,

(7)

where xt is a realized measure, (𝛽0, 𝛽1, 𝛾, 𝜔, 𝜙, 𝜏1, 𝜏2) are parameters with 𝛽0 < 0, 𝛽1 > 0, 𝛾 < 0, to guarantee that q𝜃t < 0,
and ut ∼ N(0, 𝜎2

u). The structure of this model is very appealing in finance, as it allows the current quantile to depend
smoothly on the previous quantile, reflecting the common dynamics found in the volatility literature. When 𝜏1 = 𝜏2 = 0,
the quantile equation can be rewritten in a compact CAViaR form as

q𝜃t = 𝛽0 + 𝛽1q𝜃t−1 + 𝛾
′ut,

with 𝛽0 = (𝛽0 + 𝛾𝜔) and 𝛽1 = (𝛽1 + 𝛾𝜙).
To estimate this model we rely on the QML quantile estimator described in Section 3.2. As discussed in Komunjer (2005),

estimation of quantile regression models is complicated by the fact that the likelihood function includes a nonsmooth
component, that is, the indicator function. We use an optimization routine similar to that of Engle and Manganelli (2004)
to estimate the parameters of the model. We start by fitting the following linear realized GARCH model:

rt = 𝜎t𝜖t,

𝜎t = 𝛽0 + 𝛽1𝜎t−1 + 𝛾̃xt−1,

xt = 𝜔̃ + 𝜙̃𝜎t + 𝜏1𝜖t + 𝜏2(𝜖2
t − 1) + ut,

where 𝜖t ∼ N(0, 1) and ut ∼ N(0, 𝜎̃2
u), and obtain estimates ̂̃𝛽0, ̂̃𝛽1, ̂̃𝛾 , ̂̃𝜔, ̂̃𝜙, ̂̃𝜏1, ̂̃𝜏2, 𝜎̃2

u. Under this model we have q𝜃t =
𝜎t𝜃(𝜖) and we can recover model in Equation 7 if we multiply the linear realized GARCH model by 𝜃(𝜖) and adjust the
parameters. Starting values (sv) for the QML quantile estimator are thus obtained as

𝛽sv
0 = ̂̃𝛽0N−1(𝜃), 𝛽sv

1 = ̂̃𝛽1, 𝛾sv = ̂̃𝛾N−1(𝜃), 𝜔sv = ̂̃𝜔,

𝜙sv = ̂̃𝜙∕N−1(𝜃), 𝜏sv
1 = −̂̃𝜏1, 𝜏sv

2 = ̂̃𝜏2, 𝜎2,sv
u = 𝜎̃2

u,

where N−1(𝜃) is the Gaussian quantile function evaluated at the probability level 𝜃. We use these starting values to initialize
the Nelder–Mead simplex algorithm. We then use the estimated parameters to feed a quasi-Newton algorithm and take
the new optimal parameters as input values to run the simplex algorithm a second time. We repeat this procedure until
some convergence criterion is satisfied. Tolerance level for the function and the parameter values is set to 10−8. All the
computations are done with the optim function of R, with the core loops coded in Rcpp.

Standard error estimates for the model parameters are obtained by plugging the parameter estimates into the asymptotic
covariance matrix. Analytical expressions for the score and the Hessian matrix are given in the following proposition.

Proposition 4. Let 𝛿 = (𝜆′
, 𝜓

′ ), 𝜆 = (𝛽0, 𝛽1, 𝛾), 𝜓 = (𝜔,𝜙, 𝜏1, 𝜏2), gt = (1, q𝜃t ,ut), and vt = (1, q𝜃t , z
𝜃
t , (z

𝜃
t )

2 − 1). The score
of the model in Equation 7 is 𝜕𝓁

𝜕𝛿
=
∑n

t=1
𝜕𝓁t
𝜕𝛿

with

𝜕𝓁t

𝜕𝛿
=

{(
[𝜃(1 − 𝜃)]−1[𝜃 − I{rt ≤ q𝜃t }] −

ut

𝜎2
u

u̇t

)
q̇t,

ut

𝜎2
u

vt,−
1
2

(
𝜎2

u − u2
t

𝜎4
t

)}
,

where u̇t =
𝜕ut
𝜕q𝜃t

= −𝜙 − (𝜏1 + 2𝜏2)żt, żt =
𝜕zt
𝜕q𝜃t

= − rt
(q𝜃t )2
, q̇t =

𝜕q𝜃t
𝜕𝜆

=
(
𝛽1 − 𝛾 ′u̇t−1

)
q̇t−1 + gt and q̇1 = 0. The Hessian matrix

is given by 𝜕2𝓁
𝜕𝛿𝜕𝛿′

=
∑n

t=1
𝜕2𝓁t
𝜕𝛿𝜕𝛿′

with

𝜕2𝓁t

𝜕𝛿𝜕𝛿′
=

⎛⎜⎜⎜⎜⎝
−
{
𝑓 (q𝜃t )
𝜃(1−𝜃)

+ u̇2
t +utüt

𝜎2
u

}
q̇tq̇′

t +
{

[𝜃−I{rt≤q𝜃t }]
𝜃(1−𝜃)

− ut
𝜎2

u
u̇t

}
q̈t • •

u̇t
𝜎2

u
vtq̇′

t +
ut
𝜎2

u
btq̇′

t − 1
𝜎2

u
vtv′t •

ut
𝜎4

u
u̇tq̇′

t
ut
𝜎2

u
v′t

1
2

(
𝜎2

u−2u2
t

𝜎6
u

)
⎞⎟⎟⎟⎟⎠
,
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where üt = 𝜕2u
𝜕q𝜃t 𝜕q𝜃t

= −𝜏1żt − 2𝜏2(ż2
t + ztz̈t), z̈t = 𝜕2z

𝜕q𝜃t 𝜕q𝜃t
= 2 rt

(q𝜃t )3
and bt = (0, 1, żt, 2ztżt).

Proof. See the Supporting Information Appendix.

In the next section, we perform a simulation experiment for this simple linear model to assess the small-sample
properties of our QML estimator and the REQ estimator for the VaR.

5 SIMULATION

We consider the linear REQ model in Equation 7 and assume that the conditional random process is t distributed with 6
degrees of freedom, t(6), implying that 𝜉 = 0.17. More specifically, define the return process as

rt = 𝜎t𝜖t,

𝜎t = 0.02 + 0.6𝜎t−1 + 0.15xt−1,

xt = 0.1 + 0.9𝜎t − 0.02𝜖t + 0.02(𝜖2
t − 1) + ut,

(8)

where ut ∼ N(0, 0.0009). This process is similar to the linear realized GARCH of Hansen et al. (2012), but models 𝜎t
instead of 𝜎2

t . Multiplying the process in Equation 8 by the 𝜃 quantile of the t(6) and adjusting the parameters, we obtain
the corresponding quantile regression model:

q𝜃t = −0.023 + 0.6q𝜃t−1 − 0.17xt−1,

xt = 0.1 − 0.76q𝜃t + 0.02z𝜃t + 0.02((z𝜃t )
2 − 1) + ut,

(9)

where 𝜖𝜃t is such that 𝜃(𝜖𝜃t |t−1) = 0 and z𝜃t = rt∕q𝜃t . We consider 𝜃 = 0.1 and generate B = 500 replications of N = 4, 000
observations drawn from the process in Equation 9. We then use the QML quantile estimator described in Section 3.2 to
estimate the parameters of the model and apply the REQ estimator to obtain the VaR estimates.

Table 1 reports the results for the QML estimator. The averages of the estimated parameters are in line with the true
values, confirming that our estimation procedure performs well. The left-hand panel of Figure 2 displays the estimates
of the parameter 𝜉 obtained with the estimator in Equation 6, when setting k = N · p with p = 0.01. Consistently with
the theoretical results discussed in Section 3.3, the histogram resembles a normal distribution centered on a value greater
than the true value of 𝜉. Indeed, the average of the estimates 𝜉 is equal to 0.22 instead of 0.17. This is a byproduct of
the fact that the quantile residuals follow a Student's t-distribution. Although this is a heavy-tailed distribution, the tails
do not follow an exact Pareto distribution asymptotically. Referring to Assumption 2, the Student's t-distribution with 𝜈
degrees of freedom has a tail with second-order behavior controlled by 𝜚 = −2∕𝜈 (see Wang et al., 2012). The right-hand
panel of Figure 2 compares the true VaR at level 𝛼 = 0.01 and the VaR obtained with the REQ estimator for one simulated
sample. If the REQ estimator perfectly recovers the true VaR, then the dots in the figure should lie on the 45◦ line. The
REQ performs well and this is confirmed by the box plot of the ratio of estimated and true VaR for all samples at the
bottom of Figure 2.

TABLE 1 QML quantile estimator

Parameter 𝛽0 𝛽1 𝛾1 𝜔 𝜙 𝜏1 × 102 𝜏2 × 102 𝜎2
u × 102

True −0.023 0.600 −0.170 0.100 −0.760 2.000 2.000 0.090
Mean −0.023 0.590 −0.170 0.100 −0.790 2.000 1.900 0.090
SD 0.006 0.033 0.022 0.012 0.092 0.120 0.120 0.002
Mean ASE 0.004 0.036 0.019 0.011 0.076 0.070 0.090 0.002

Note. QML results for 500 replications of the process in Equation 9. Parameter values used in the simulation
(True), mean of the estimated parameters (Mean), standard deviation of the estimated parameters (SD), mean
of the plug-in estimates of the asymptotic standard errors (Mean ASE).
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FIGURE 2 REQ estimator performance. The left-hand panel reports the estimates of 𝜉 for 500 replications of the process in Equation 9.
The right-hand panel reports the 4,000 estimated and true VaR for one sample with the 45◦ line. The bottom panel reports the ratio of the
estimated and true VaR for all 500 replications [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Data description

Asset Abbr. T Asset Abbr. T

Amsterdam Exchange Index AEX 3,816 IBEX 35 IBX 3,782
All Ordinaries Index AOI 3,743 IPC Mexico IPC 3,748
Bovespa Index BVP 3,664 Korea Composite Index KCI 3,690
CAC 40 CAC 3,817 Nasdaq 100 NSQ 3,747
DAX 30 DAX 3,795 Nikkei 225 NK 3,630
Dow Jones Industrial DJ 3,746 Russel 2000 Index RUS 3,745
Euro Stoxx 50 ESX 3,794 SP 500 SPX 3,744
FTSE MIB MIB 3,778 Swiss Market Index SMI 3,749
FTSE 100 FT 3,764

Note. List of time series considered (Asset), the abbreviation (Abbr.) used throughout the paper, and
their length (T). The starting date and the ending date of the samples are, respectively, January 2, 2000
and December 31, 2014. Stock exchanges respect different holidays and the number of observations T
subsequently differs.

6 EMPIRICAL ANALYSIS

The empirical analysis is based on the Oxford-Man Institute “Realized Library” version 0.2 (Heber, Lunde, Shephard, &
Sheppard, 2009) recording the daily observations of several realized measures for 17 different stock indices from the begin-
ning of 2000 to the end of 2014 (see Table 2). We consider the following five realized measures: the absolute returns (AR),
the daily range (DR) of Parkinson (1980), the realized volatility (RV) of Andersen, Bollerslev, Diebold, & Labys (2001),
the bipower variation (BV) of Barndorff-Nielsen and Shephard (2004), and the realized kernel (RK) of Barndorff-Nielsen,
Hansen, Lunde, & Shephard (2008). Table 3 reports details regarding the measures used in the analysis.

6.1 In-sample fit
In this section we assess the in-sample fit of the linear REQ model at the quantile level 𝜃 = 0.1. The choice of quantile
level is justified by the following argument: We need to select a quantile level that allows for a reliable estimation of the
quantile model, but that at the same time guarantees the validity of Assumption 1; that is, that observations below the
specified quantile level belong to the same distribution. A well-known result in EVT states that the distribution of the
exceedances over a high threshold of a sample drawn from an i.i.d. distribution goes to a generalized Pareto (GP) as the
threshold goes to the upper bound of the underlying distribution (Pickands, 1975). It is also standard to model the size of
exceedances over some sufficiently high threshold using the GP. Under Assumption 1, the latter practice can be restated
in our dynamic context as the distribution of −(rt − qt) given that rt falls below qt should be GP. The validity of our choice

http://wileyonlinelibrary.com
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TABLE 3 Realized measures

Name Type Frequency Formula Details

AR LF Daily ARt = |rt| rt is the difference of log-prices between
consecutive days

DR LF Daily DRt =
√

(ht−lt)
4log2

ht and lt are the max and min log-prices

recorded on day t.

RV HF 5 min RVt =
√∑1∕Δ

i=1 r2
t−1+i·Δ rΔ is the Δ-period intra-day return. We use

Δ = 5 min

BV HF 5 min BVt = 𝜋

2

√∑1∕Δ
i=2 |rt−1+(i−1)·Δ||rt−1+i·Δ|

RK HF All RKt =
√∑H

h=−H k
(

h
H+1

)
𝛾h 𝛾h =

∑1∕Δ
i=|h|+1 rt−1+i·Δrt−1+(i−|h|)·Δ, k(x)

is a weight function

FIGURE 3 In-sample fit of linear REQ model for S&P 500. Q–Q plot for the GP distribution fitted to the residuals −(rt − q𝜃t ) obtained at
level 𝜃 = 0.1 using the realized measures defined in Table 3

of 𝜃 can therefore be checked by assessing the goodness of fit of the GP distribution to the latter −(rt−qt) using a Q–Q plot.
Figure 3 reports the Q–Q plots for the S&P 500, and the plots show that choosing 𝜃 = 0.1 yields a good fit. Unreported
plots for the other series show similar patterns.

Table 4 reports the QML estimates of both the quantile and measurement error equations, the value of the partial
log-likelihood for the quantile model 𝓁(r), and the tail index estimates obtained for the 17 equity indices listed in Table 2.
For the sake of conciseness, we report the detailed results for the S&P 500 and the average results obtained across all the
indices. We now highlight some key results from Table 4.

To assist with the interpretation, consider the case where the realized volatility captures all of the conditional volatility
and the error term is normally distributed. Following the notation in Section 4, this means that 𝜙̃ = 1. We would then
obtain 𝜙 = 𝜙̃∕N−1(𝜃) = −0.78. Estimates in Table 4 are close to this value but show some departure in the case of DR.

The parameter 𝛾 is significant regardless of the realized measure used. The parameters 𝛾 associated with the HF-based
realized measures have higher magnitude, and the value of 𝛽1 is reduced when the HF-based measures are included in
the model. The first two rows of plots in Figure 4 show this very well. This behavior is also observed in Žikeš and Baruník
(2016) and signals the additional information content conveyed by the HF-based realized measures.

Another interesting aspect is that the leverage parameter 𝜏1 is always positive and significant. The z𝜃t , which we use to
account for the leverage effect, are positive when a negative shock occurs, so one should observe a positive 𝜏1 if negative
shocks have a higher impact on the volatility than positive shocks. The results in Table 4 and the last row of Figure 4
confirm that this is the case, consistently with what is typically found in the volatility literature.

The importance of adding a leverage component is shown in Figure 5, where the scatter plots of the residuals
(

ẑ𝜃t ,ût
)
,

obtained from the linear REQ specification with and without leverage component, appear. The asymmetric effect left in
the residuals of the model without the leverage component is not negligible, and regressing ẑ𝜃t on ût returns a strongly
significant positive slope coefficient equal to 0.0007. This finding is coherent with the observations of Hansen et al. (2012)
and it is relevant for the validity of condition (i) in Proposition 2.

To highlight the importance of adding HF-based realized measures, we perform an out-of-sample analysis of the partial
log-likelihood, 𝓁(r). We use the partial log-likelihood to compare the REQ model across the different realized measures, as
the full log-likelihood is misleading given that the time series of the realized measures are different. We split the available
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TABLE 4 In-sample fit

RM 𝛽0 × 103 𝛽1 × 103 𝛾 × 103 𝜔 × 103 𝜙 × 103 𝜏1 × 103 𝜏2 × 103 𝜎u 𝓁(r) 𝜉

Details for S&P 500
AR −1.000 850 −70 −4 −920 −0.300 3.600 0.010 −8.095 0.230

0.100 0.010 0.100 0.900 0.010 0.200 0.190 0.002 0.050
DR −3.000 730 −200 −5 −980 0.200 4.100 0.008 −8.003 0.200

0.080 0.010 0.100 0.370 0.010 0.100 0.380 0.001 0.040
RV −4.000 460 −680 −3 −700 0.900 1.500 0.007 −7.857 0.190

0.070 2.200 1.800 0.320 0.390 0.110 0.250 0.001 0.040
BV −2.00 470 −710 −1 −670 0.900 0.700 0.007 −7.883 0.170

0.050 1.600 1.200 0.220 0.210 0.090 0.150 0.001 0.030
RK −3.000 500 −610 −3 −730 1.000 1.800 0.009 −7.897 0.190

0.050 1.700 1.500 0.250 0.25 0.120 0.210 0.001 0.040
Average across all assets

AR −3.400 700 −100 −0.600 −7.80 −0.190 5.850 0.013 −8.430 0.200
0.210 1.400 3.200 0.290 0.120 0.170 0.640 0.001 0.040

DR −2.900 710 −200 −5.400 −1040 0.320 4.090 0.009 −8.307 0.180
0.090 0.900 1.200 0.480 0.140 0.100 0.420 0.001 0.030

RV −3.300 530 −530 −3.400 −800 0.770 1.530 0.008 −8.238 0.170
0.060 1.020 0.920 0.350 0.140 0.100 0.210 0.001 0.030

BV −3.700 500 −590 −3.800 −770 0.800 1.350 0.007 −8.310 0.170
0.060 1.100 0.001 0.390 0.150 0.100 0.210 0.001 0.030

RK −3.200 540 −510 −3.600 −820 0.730 1.610 0.009 −8.206 0.180
0.060 1.010 0.900 0.370 0.130 0.110 0.220 0.001 0.030

Note. QML estimates and standard errors for the quantile and measurement equation parameters, partial log-likelihood value 𝓁(r)
and estimates of the tail index 𝜉 for the linear REQ model.

FIGURE 4 QML estimates of quantile equation parameters 𝛽1 and 𝛾 , and measurement equation parameters 𝜙 and 𝜏1, for the 17 indices
when using realized measures defined in Table 3 [Colour figure can be viewed at wileyonlinelibrary.com]

time series into three subsamples of 5 years: 2000–2004, 2005–2009, and 2010–2014. We fit the REQ model on the first
subsample and then use the estimated parameters to produce the values of the partial log-likelihood on the other two
samples. Figure 6 reports the gain in terms of log-likelihood obtained across the 17 time series when a high-frequency
realized measure is used instead of the daily range (DR). Like Brownlees and Gallo (2010) and Gerlach and Chen (2016),
we use DR as the benchmark since it is well known that it provides highly accurate estimates of the volatility compared

http://wileyonlinelibrary.com
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FIGURE 5 Leverage effect. Residuals
(

ẑ𝜃t ,ût
)

from the linear REQ model with and without leverage component. Results are for the
returns and RV of the S&P 500 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Partial log-likelihood. Difference between the partial return log-likelihood obtained when using the high-frequency realized
measures RV, BV, and RK, instead of the daily range for the 17 series listed in Table 2. The in-sample fit (2000–2004) is in light gray. The
out-of-sample fits (2005–2009 and 2010–2014) are in medium and dark gray, respectively

to other daily estimators (Alizadeh, Brandt, & Diebold, 2002; Parkinson, 1980). The predominantly positive average gains
in Figure 6 confirm that HF measures contain extra information about the dynamics of the daily quantile.

Finally, we also use 𝓁(r) to compare our quantile model with measurement equation to the corresponding quantile
model without measurement equation, trying to assess the relevance of accounting for the measurement error. A com-
parison is difficult, however, as 𝓁(r) is only the partial log-likelihood in the first case, and in the second case 𝓁(r), which
we note 𝓁(q) in the empirical results, is the optimized object. Moreover, the contribution of the measurement component
to the quantile likelihood dwarfs that of the quantile component (see Table 5). Given this, while the standard quantile
model presents slightly larger log-likelilood values (see Table 5), we think that the inclusion of a measurement equation
is worthwhile when adding a valid proxy for the latent volatility. We can see that the use of a high-frequency realized
measure makes the difference between 𝓁(r) and 𝓁(q) close to zero.

6.2 Out-of-sample forecasting
In this section, we compare the out-of-sample forecasting performance of several specifications of our quantile model,
each one encompassing a different class according to our taxonomy in Figure 1. We consider linear quantile models as in
Equation 7 and denote them as realized quantile (RQ) models. Next, we consider linear REQ models, using the estimator
in Equation 5 to produce the EVT-based VaR estimate. In both cases, we employ either LF or HF measures. Our goal
is to assess the value added by EVT and HF information to a quantile model against pure quantile models and mixed
quantile–EVT models with LF measures.

We perform an out-of-sample analysis across the 17 indices, using a rolling window scheme with a window of size
S = 2, 000 observations and daily updates. We estimate the VaR at level 𝛼 as follows: QML estimation of RQ models is

http://wileyonlinelibrary.com
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TABLE 6 Note. Evaluation of VaR forecasts at 1% level

UC-RQ UC-REQ
AR DR RV BV RK AR DR RV BV RK

AEX 0.000 0.031 0.669 0.442 0.513 0.782 0.669 0.844 0.513 0.669
AOI 0.000 0.000 0.201 0.727 0.405 0.019 0.087 0.201 0.134 0.087
BVP 0.000 0.422 0.018 0.039 0.018 0.569 0.681 0.139 0.229 0.504
CAC 0.000 0.000 0.382 0.601 0.190 0.0189 0.052 0.011 0.006 0.019
DAX 0.000 0.353 0.008 0.019 0.133 0.805 0.990 0.353 0.481 0.481
DJ 0.000 0.034 0.024 0.000 0.164 0.136 0.055 0.715 0.294 0.897
ESX 0.000 0.8220 0.218 0.008 0.039 0.352 0.479 0.352 0.249 0.479
MIB 0.000 0.037 0.004 0.004 0.009 0.244 0.690 0.516 0.244 0.877
FT 0.000 0.002 0.349 0.958 0.496 0.001 0.004 0.001 0.001 0.000
IBX 0.000 0.001 0.781 0.461 0.844 0.000 0.008 0.008 0.025 0.025
IPC 0.000 0.206 0.095 0.095 0.000 0.296 0.296 0.163 0.094 0.095
KCI 0.000 0.615 0.015 0.006 0.068 0.123 0.015 0.123 0.123 0.320
NSQ 0.000 0.011 0.899 0.387 0.909 0.909 0.387 0.720 0.543 0.717
NK 0.000 0.008 0.161 0.394 0.512 0.863 0.863 0.677 0.557 0.940
RUS 0.000 0.000 0.011 0.051 0.051 0.003 0.033 0.913 0.713 0.293
SPX 0.000 0.001 0.001 0.000 0.725 0.0877 0.202 0.292 0.406 0.088
SMI 0.090 0.716 0.094 0.004 0.094 0.034 0.716 0.413 0.413 0.720

IND-RQ IND-REQ
AR DR RV BV RK AR DR RV BV RK

AEX 0.078 0.349 0.504 0.112 0.483 0.149 0.504 0.526 0.483 0.504
AOI 0.684 0.722 0.309 0.586 0.253 0.081 0.371 0.433 0.413 0.393
BVP 0.010 0.485 0.781 0.754 0.781 0.507 0.601 0.702 0.676 0.626
CAC 0.154 0.088 0.462 0.594 0.423 0.332 0.366 0.315 0.299 0.332
DAX 0.097 0.459 0.789 0.763 0.687 0.524 0.546 0.459 0.480 0.480
DJ 0.798 0.435 0.760 0.865 0.683 0.338 0.059 0.518 0.453 0.540
ESX 0.638 0.568 0.663 0.789 0.737 0.459 0.480 0.459 0.439 0.480
MIB 0.195 0.359 0.813 0.813 0.787 0.660 0.588 0.612 0.660 0.565
FT 0.018 0.279 0.097 0.544 0.613 0.249 0.294 0.249 0.264 0.236
IBX 0.038 0.642 0.197 0.479 0.009 0.133 0.310 0.531 0.344 0.460
IPC 0.074 0.035 0.709 0.709 0.865 0.002 0.279 0.683 0.709 0.709
KCI 0.562 0.208 0.782 0.809 0.730 0.704 0.782 0.704 0.704 0.653
NSQ 0.490 0.322 0.540 0.634 0.574 0.563 0.634 0.586 0.610 0.517
NK 0.323 0.504 0.061 0.090 0.217 0.168 0.168 0.192 0.107 0.147
RUS 0.143 0.772 0.786 0.734 0.734 0.579 0.436 0.563 0.517 0.453
SPX 0.645 0.155 0.839 0.865 0.586 0.370 0.036 0.453 0.474 0.394
SMI 0.394 0.587 0.709 0.812 0.709 0.357 0.587 0.475 0.475 0.518

CC-RQ CC-REQ
AR DR RV BV RK AR DR RV BV RK

AEX 0.000 0.063 0.722 0.208 0.624 0.337 0.722 0.794 0.624 0.722
AOI 0.000 0.000 0.259 0.804 0.363 0.014 0.153 0.320 0.230 0.158
BVP 0.000 0.561 0.058 0.113 0.058 0.675 0.794 0.308 0.441 0.704
CAC 0.000 0.000 0.515 0.750 0.303 0.039 0.099 0.023 0.013 0.039
DAX 0.000 0.488 0.028 0.060 0.296 0.783 0.824 0.488 0.601 0.601
DJ 0.000 0.076 0.077 0.002 0.347 0.206 0.027 0.751 0.429 0.813
ESX 0.000 0.821 0.423 0.028 0.113 0.487 0.600 0.487 0.377 0.600
MIB 0.000 0.074 0.014 0.014 0.034 0.457 0.790 0.706 0.457 0.829
FT 0.000 0.005 0.162 0.822 0.692 0.001 0.010 0.001 0.002 0.001
IBX 0.000 0.005 0.414 0.586 0.033 0.000 0.018 0.025 0.051 0.061
IPC 0.000 0.049 0.229 0.229 0.002 0.005 0.318 0.345 0.229 0.229
KCI 0.000 0.395 0.051 0.022 0.177 0.282 0.051 0.282 0.282 0.547
NSQ 0.000 0.024 0.814 0.609 0.840 0.832 0.609 0.801 0.723 0.751
NK 0.000 0.024 0.064 0.164 0.372 0.377 0.377 0.387 0.228 0.344
RUS 0.000 0.001 0.037 0.140 0.140 0.011 0.075 0.832 0.749 0.428
SPX 0.000 0.001 0.006 0.002 0.803 0.153 0.048 0.427 0.542 0.159
SMI 0.163 0.800 0.228 0.016 0.228 0.068 0.800 0.548 0.548 0.753

Note. p-values for the unconditional coverage (UC), independence (IND) and conditional coverage (CC) tests of Christoffersen
(1998) obtained with the realized quantile (RQ) and REQ models. Rejections at the 5% level are in bold.
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TABLE 7 DM tests on VaR at 1% level

RQ vs. REQ LF vs. HF
AR DR RV BV RK RV BV RK

AEX 0.007 0.195 0.024 0.210 0.312 0.178 0.191 0.149
AOI 0.311 0.023 0.032 0.009 0.082 0.226 0.091 0.207
BVP 0.012 0.377 0.306 0.104 0.013 0.077 0.056 0.060
CAC 0.047 0.043 0.014 0.151 0.134 0.201 0.231 0.191
DAX 0.136 0.209 0.276 0.061 0.211 0.270 0.161 0.268
DJ 0.124 0.298 0.075 0.009 0.043 0.007 0.005 0.012
ESX 0.028 0.438 0.001 0.064 0.000 0.291 0.126 0.497
MIB 0.079 0.087 0.005 0.000 0.000 0.158 0.146 0.098
FT 0.007 0.245 0.131 0.441 0.250 0.190 0.181 0.144
IBX 0.172 0.242 0.045 0.167 0.133 0.067 0.091 0.054
IPC 0.558 0.042 0.005 0.040 0.002 0.007 0.004 0.048
KCI 0.025 0.087 0.000 0.000 0.002 0.052 0.171 0.133
NSQ 0.020 0.080 0.161 0.042 0.034 0.293 0.192 0.192
NK 0.086 0.101 0.250 0.084 0.024 0.084 0.109 0.046
RUS 0.002 0.057 0.008 0.065 0.018 0.032 0.037 0.028
SPX 0.170 0.556 0.088 0.154 0.142 0.037 0.041 0.058
SMI 0.807 0.420 0.022 0.058 0.028 0.144 0.161 0.188

Note. p-values of DM tests: (RQ vs. REQ) realized quantile (RQ) models against REQ models
using the same realized measure. Rejection of the null hypothesis supports superior perfor-
mances of the REQ; (LF vs. HF) REQ model with DR against REQ models with HF measures.
Rejection of the null supports the use of a high-frequency measure. Rejections at the 0.05
significance level appear in bold.

performed at the 𝛼-quantile; QML estimation of REQ models is performed at the 0.1-quantile and then we apply the REQ
estimator in Equation 5 at level 𝛼, setting the threshold zk at the probability level 𝛼k = 0.025.

Table 6 reports the p-values from the unconditional coverage (UC), independence (IND), and conditional coverage (CC)
tests of Christoffersen (1998) computed on the VaR forecasts at level 𝛼 = 1%. The quantile models with LF measures
directly fitted at the 1% quantile perform quite poorly as they often reject the null of correct unconditional coverage. RQ
models with HF measures perform better, recording seven rejections with RV, eight with BV, and just four with RK. REQ
models perform definitely better than RQ models in terms of unconditional coverage. These results are closely mimicked
by the conditional coverage test, while all the models perform well with respect to the independence of the violations.

To emphasize the added value of EVT and the contribution of the HF measures, we perform a series of Diebold–Mariano
(DM) tests using the tick-loss function 𝜌𝜃t (rt, q𝜃t ) as loss criterion (Brownlees & Gallo, 2010). We first test the null of equal
predictive accuracy between RQ and REQ models under the same realized measure against the alternative that REQ
outperforms RQ. Results reported in Table 7 for the VaR forecasts at the 1% level show that the null is often rejected at the
5% level, thus favoring the REQ models. We then use a DM test to assess whether REQ models based on an HF measure
outperform the REQ model based on daily range, our LF benchmark. The results in Table 7 show that the null of equal
predictive accuracy of the forecasts at the level 𝛼 = 1% is rejected at least four times out of 17 on each HF measure, and in
general the p-values are quite low. In conclusion, HF measures apport meaningful information also from the forecasting
perspective. The conclusions drawn from the VaR at the 1% level carry over at level 𝛼 = 0.5% (results available upon
request).

Given the similarity between our model and the realized GARCH framework of Hansen et al. (2012), we perform an
out-of-sample forecast analysis using a realized GARCH(1, 1) model with the realized kernel (RK) and applying extreme
value theory to the tails of the estimated residuals. We use again a rolling window scheme with a window size of S = 2, 000
observations to produce VaR forecasts at level 𝛼 = 1%. Table 8 reports the p-values of the performance statistics for VaR
forecasts at level 𝛼 = 1%, and they are similar to those reported for the REQ model with RK in Table 6. We also perform a
Diebold and Mariano (1995) test of equal predictive accuracy against the alternative that the realized GARCH outperforms
the REQ model. The p-values in the rightmost column of Table 8 show that the null is never rejected. Unreported forecasts
at level 𝛼 = 0.5% confirm the results. The realized GARCH with EVT refinements and the REQ model thus have similar
a performance on the time series considered.
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TABLE 8 Realized GARCH VaR forecasts at level 𝛼 = 1%

UC IND CC DM

AEX 0.844 0.526 0.794 0.334
AOI 0.549 0.609 0.727 0.301
BVP 0.504 0.626 0.704 0.130
CAC 0.042 0.367 0.099 0.429
DAX 0.820 0.568 0.820 0.410
DJ 0.911 0.563 0.833 0.145
ESX 0.803 0.523 0.783 0.159
MIB 0.517 0.612 0.706 0.691
FT 0.025 0.344 0.050 0.237
IBX 0.461 0.247 0.385 0.213
IPC 0.004 0.812 0.016 0.237
KCI 0.461 0.488 0.593 0.223
NSQ 0.089 0.404 0.164 0.793
NK 0.557 0.107 0.229 0.141
RUS 0.055 0.375 0.106 0.362
SPX 0.088 0.403 0.162 0.134
SMI 0.539 0.610 0.721 0.651

Note. p-values for the unconditional coverage (UC), independence
(IND) and conditional coverage (CC) tests of Christoffersen (1998) and
the Diebold and Mariano (1995) test (DM) on the null of equal predic-
tive accuracy of the REQ model versus realized GARCH. Rejection of
the null in DM favors the realized GARCH. Realized measure is RK
for both REQ and realized GARCH. Rejections at the 0.05 significance
level appear in bold.

The fact that our approach can compete with a very good model such as the realized GARCH with EVT tails suggests
that it is a valid alternative. While both models perform similarly when the true quantile is a scalar times the volatility
scaling, the REQ should perform better when the latter relationship does not hold as it models the quantile directly.

7 CONCLUSIONS

The financial econometrics literature provides a long list of models delivering accurate estimates of quantile-based risk
measures. In this paper, we fill a gap in the literature by proposing a novel quantile regression approach integrated with
EVT and measures built from HF data.

Model estimation is performed via QML and it is validated through a simulation study. A large empirical analysis
confirms the good in-sample fit and out-of-sample forecasts of this model, which are in line with the models used in the
literature.

There are several open questions that need to be carefully addressed in future research. First, an advantage of our
framework compared to the CAViaR class of models is the possibility of producing multi-day-ahead predictions, as we
model the dynamics of both the quantile and the realized measure. It would therefore be interesting to assess the forecast
performance of our model on longer horizons. Second, Hansen and Huang (2016) find that augmenting the realized
GARCH using multiple realized measures provides better estimates of the volatility. An analogous extension could also
be useful in the REQ framework. In a preliminary simulation study we find that the QML estimation of a linear REQ
model with multiple realized measures provides consistent estimates. Similarly, the REQ estimator for the VaR keeps
performing well. Third, our REQ estimator assumes the tail index 𝜉 to be constant; however, nothing prevents it from
being covariate dependent, that is, 𝜉 = 𝜉(x), adapting the framework of Wang and Li (2013) to our context. Recent findings
by Bollerslev and Todorov (2014) and Kelly and Jiang (2014) provide evidence of time variation in the tail index. This
feature may have important implications in the estimation of quantile-based risk measures, and the merit of including a
covariate-dependent tail index should be investigated.
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Other important issues relate to the multivariate dimension of this model. White, Kim, and Manganelli (2015) propose
a multivariate extension of the CAViaR framework that provides an estimate of dynamic tail dependence. This approach
gives important insights into the spillovers between quantiles and can be used to measure systemic risk. It could be
interesting to extend the REQ framework in this direction.
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