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Abstract
We study the static and the dynamic response of coherently coupled two component Bose–Einstein
condensates due to a spin-dipole perturbation. The static dipole susceptibility is determined and is
shown to be a key quantity to identify the second order ferromagnetic transition occurring at large
inter-species interaction. The dynamics, which is obtained by quenching the spin-dipole perturbation,
is verymuch affected by the systembeing paramagnetic or ferromagnetic and by the correlation
between themotional and the internal degrees of freedom. In the paramagnetic phase the gas exhibits
well defined out-of-phase dipole oscillations, whose frequency can be related to the susceptibility of
the systemusing a sum rule approach. In particular in the interaction SU(2) symmetric case, i.e., all the
two-body interactions are the same, the external dipole oscillation coincides with the internal Rabi
flipping frequency. In the ferromagnetic case, where linear response theory in not applicable, the
system shows highly non-linear dynamics. In particular we observe phenomena related to ground
state selection: the gas, initially trapped in a domainwall configuration, reaches a final state
corresponding to themagnetic ground state plus small density ripples. Interestingly, the time during
which the gas is unable to escape from its initial configuration is found to be proportional to the square
root of thewall surface tension.

1. Introduction

Ultra-cold gases allow the realizations ofmulti-component Bose–Einstein condensates (BECs). The latter are
novel systems, whose behaviour is very different with respect to that of a single component BEC. In particular
they showdifferent zero-temperature phases, each described by a proper vector order parameter. The possibility
of tuning a number of systemparameters, in particular the interaction strength through Feshbach resonances,
makes such systems ideal for studying the structure of the various phases and the nature of the phase transitions.

One of the easiest, but still intriguing realizations is represented by a two-component BEC, also known as a
spinor condensate. Spinor condensates allow us to addressmany interesting phenomena from theAndreev–
Bashkin effect [1, 2] and fast decay of persistent currents [3], to the (internal) Josephson effect [4, 5], or
Schrödinger-cat- and twin-Fock-like states [6, 7], fromdimerized vortices [8–10], to the study of quenching in
classical bifurcations [11–13]. They represent also the basis formost of the recent realizations of artificial gauges
in cold gases[14] .

In this paperwe specifically consider a zero-temperature trapped two-component BECwith an external field
that drives the population transfer (spin-flipping) between the two atomic levels (see section 2) forming the
condensate. It is common to refer to the interconversion term as a Rabi coupling. The system is indeed a
generalization to non-linear atomoptics of thewell-known linear Rabi problem and in general is an extension of
quantumoptics concepts to condensates [15, 16]. It is the interplay between the intra- and inter-species two-

OPEN ACCESS

RECEIVED

15 July 2015

ACCEPTED FOR PUBLICATION

19August 2015

PUBLISHED

21 September 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/9/093036
mailto:recati@science.unitn.it
http://dx.doi.org/10.1088/1367-2630/17/9/093036
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093036&domain=pdf&date_stamp=2015-09-21
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093036&domain=pdf&date_stamp=2015-09-21
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


body interaction strengths and the Rabi coupling strength thatmakes the physics of the system very rich. The
Rabi coupling—which acts as aσx operators on each atom—tries to create an equal superposition of the two
possible internal levels. However, differences in the three possible atom–atom interaction strengths try to favour
a situationwhere the population of the two internal levels is unbalanced. It turns out that the system exhibits a
second order phase transition, a classical bifurcation at themean-field level (see, e.g., [17, 18] and in particular
the experiment [5]), which is analogous to themean-field ferromagnetic transition of the Isingmodel in
transverse field.Moreover, if the two components feel different external potentials the internal and external
degrees of freedom are inseparable leading to interesting spin–orbit coupled dynamics as has already been
shown some years ago in [19, 20].

In the followingwe show that the static and the dynamic response to an out-of-phase (spin) dipole
perturbation is very rich and capturesmany relevant phenomena related to the paramagnetic/ferromagnetic-
like phase transition of the system. A relative component perturbation is accessible in cold gases by applying
different trapping potentials for different atomic internal levels. The spin-dipole configuration is realized by
applying trapping potentials that have the same shape, but that are displaced for the two components of the gas.
The dynamics is obtained bymonitoring the gas after the displacement is suddenly set to zero. Notice that in
[19, 20] a similar situation has already been realized, but instead the external potentials were heldfixed and the
Rabi couplingwas suddenly turned on.

Themain results of our analysis can be summarized as follows:

(i) In the region before the bifurcation occurs, i.e., in the paramagnetic phase, the system exhibits well-defined
out-of-phases oscillations around the equilibriumposition in the new trapping potential. The oscillation
frequency is in good agreement with a sum-rule approach calculation. The latter allows us to identify the
main quantity determining the spin-dipolemode frequency and its relationwith the susceptibility of the
system. In the case of equal interaction strength, the sum rule gives an exact result. The latter is practically
twice the Rabi coupling, i.e., themain contribution is not proportional, contrary to the usual case, to the
harmonic trapping frequency. This effect can be traced back in themodification of the f-sum rule, which is
eventually due to the absence of relative number conservation.

(ii) In the broken 2 , i.e., ferromagnetic phase, the situation is very different. The response of the system to the
spin-dipole perturbation is not linear and therefore the initial state in the displaced potentials is far from
the equilibrium state when the potentials are the same. In particular the initial configuration shows a
polarization domainwall at the centre of the cloud, but zero global polarization, while in the new
equilibrium state it will show a symmetric structure with a global polarization. The dynamics is highly non-
linear. After a certain period—in which the system is trapped in the domainwall configuration—the cloud
is able to reach the new equilibriumquickly by spontaneously selecting one of the two possible
polarizations. The excess energy of the initial configuration gives rise to small ripples in the cloud.

It is worthmentioning here that the very samemean-field descriptionwe use in the following (see section 2)
can be applied, in certain regimes, to describe polariton systemswhere the role of the polarization is relevant (see
e.g., [21, 22]), as well as some properties of type-1.5 superconductors (see [23] and reference therein).

The paper is organized as follows: In section 2we introduce the system and its description in terms of two
coupledGross–Pitaevskii (GP) equations.We revisit the emergence of a paramagnetic/ferromagnetic-like
transition and the effect of the external harmonic trapping potential. In section 3we study the effect of a spin-
dependent potential and the role of the spin-dipole susceptibility. The latter is shown to bear a clear signature of
the phase transition. Thenwe address the problemof the dynamics of the spin-dipolemode, both in the para-
and in the ferromagnetic phase. In the former case (section 4.1) linear response theory combinedwith a sum-
rule approach provides an accurate estimate of the spin-dipolemode frequency, which compareswell with the
numerical solution of theGP equation. In the ferromagnetic case (section 4.2)we show that the system exhibits
ground state selection, after awaiting time inwhich the system is unable to leave the initial domainwall
configuration.We found phenomenologically that this characteristic time is proportional to the square root of
the domainwall energy.

2.Gross–Pitaevskii equation for coherently coupledBECs

Weconsider an atomic Bose gas at zero temperature, where each atomofmassmhas two internal levels a∣ ñand
b∣ ñ. The latter are typicallymagnetically trappable hyperfine levels of 87Rb, like a F m1, 1F∣ ∣ñ = = = - ñ
( F m1, 1F∣ = = ñ) and b F m2, 1F∣ ∣ñ = = = ñ ( F m2, 1F∣ = = - ñ). An externalfield is applied that coupled
the a∣ ñ to the b∣ ñ state via usually a two-photon transition, characterized by a Rabi splittingΩ. At the densities of
ultra-cold gases the atomic interactions are simply described by a contact potential with a strength proportional
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to the s-wave scattering length. For a spinor system three scattering lengths, aaa, abb and aab are present
describing the intra- and the inter-species collisions, respectively. Finally, the condensed phase for a two-
component Bose gas is described by a complex spinor order parameter t tr r, , ,a b( ( ) ( ))y y , whereψi, i a b,{ }Î
is thewave functionmacroscopically occupied by atoms in the internal state i∣ ñ. The latter is normalized to the
total number of atomsNi in the state i∣ ñ. The dynamics of the order parameter is determined by coupledGross–
Pitaevskii equations [15, 24]

t m
V g g

t m
V g g

i
2

,

i
2

, 1

a a a a ab b a b

b b b b ab a b a

2 2 2 2

2 2 2 2
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
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where the couplings gi, with i a b ab, ,{ }Î , are the intra- and interspecies atomic interaction strengths and are
given by g ai iµ [24], andVa andVb are the external trapping potentials.We consider the confinement to be
harmonic, which is themost relevant and typical experimental situation. In the following, if not differently
specified, we consider g g ga b= º . Due to the presence of the Rabi coupling, only the total number of atoms
N N Na b= + is conserved, but not its polarization P N N Na b( )= - . The (gauge) symmetry of the system is
therefore reduced fromU(1)×U(1) toU 1 2( ) ´ , leading from an homogeneous condensate to a gapless
density or in-phasemode—Goldstonemode of the brokenU(1) symmetry—and a gapped spin or out-of phase
mode (see, e.g., [17, 18]). Depending on the interaction strengths and theRabi coupling, the ground state can
also spontaneously breaks the 2 symmetry leading to P 0¹ .

In order to describe the ground state, wewrite as usual the condensate wave function as density and phase
n ei i

i iy = f and use local density approximation (LDA), i.e., neglecting the gradient term, also known as
quantumpressure, in equations (1). The time derivative on the lhs of equation (1) is replaced by the chemical
potentialμ, whose valuewill befixed by requiring a total number of particleN. Notice that in the absence ofΩ
one can have two different chemical potentials reflecting that alsoP isfixed. The Rabi coupling originates a term
of the form cos a b( )f fW - for the energy.Without any loss of generality we also assumedΩ to be real and
positive, which fixes the phases in the ground state to satisfy a bf f f p= - =- . Finally onefinds that the
densities of the two components obey the relations (see, e.g. the review [25] and reference therein)

g g
n n

n n V V , 2ab
a b
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W
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For the sake of simplicity and clarity, we consider amean-field one-dimensional situation. The latter is
experimentally realized bymaking two of the trapping frequencies strong enough for themotion along such
directions to be frozen. The coupling constants are in this case renormalized and can be simply related to the
scattering length and the trapping transverse frequency ŵ by g a2i iw= ^ for i a b ab, ,{ }Î . It is worth
noticing that our results do not qualitatively change in the two- or three-dimensional case.

From equation (3) it is clear that, for equal potentials,Va=Vb, the system can sustain afinite polarization
only if gab is sufficiently large. In that case it turns out that the P 0¹ states are the ground states of the system.
Notice that both the critical value of gab andP are density dependent. It is easy tofind that the pointsXP at which
the polarized phase can exist isfixed by the condition

g g n X2 4ab P( ) ( )> + W

with n x n x n xa b( ) ( ) ( )= + the total local density. Since in the harmonic trap the density decreases going
outward from the trap centre the system can exhibit two different regions: unpolarized tails with na= nb and a
polarized corewith n na b¹ . Clearly, if the condition equation (4) is not satisfied at the centre of the trap, where
the total density ismaximum, then thewhole system is unpolarized. This allows us to introduce a critical value of
Rabi coupling defined by

n x g g
1

2
0 5abcr ( )( ) ( )W = = -

For valuesΩ�Ωcr the system is unpolarized everywhere.WritingV V m x 2a b ho
2 2w= = , the density profile

na= nb is easily obtained from equation (3):
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wherewe introduced the so-called Thomas–Fermi radius R m2TF
2

ho
2( ) ( )m w= + W [24] and the chemical

potential can bewritten as

N g g
m3

8 2
. 7ab

2 3
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1 3
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⎞
⎠m

w
= + - W

In the case crW < W a typical configurationwithin LDA is shown infigure 1.
Let us hgive a brief reminder here that for a Bose–Bosemixture in the absence of Rabi coupling (Ω= 0),

where the relative particle number can be chosen at will, the situation is very different. In that case there exists a
first order phase transition to a phase separated state once g gab > and the system in the trap is formed by two
distinct regions of only one of the two components of the gas (see for a detailed discussion, e.g. [26–28]). An
example of the structure for an equal number of atoms in both hyperfine levels is shown infigure 2(a1).

Figure 1.Density profiles within Thomas–Fermi approximation for an harmonic trapping: na (dashed blue), nb (light grey) and na+
nb (black) for gab/g= 1.3 andΩ/μ= 0.1.

Figure 2.Ground states of a trapped coherently-coupled Bose gas for different values of potential displacement d andRabi couplingΩ.
We use coupling constant strength gab/g= 1.1 and g x 5ho ho( )w = . Plots (a1)–(a4) correspond to d/xho= 0, while plots (b1)–(b4)
to d/xho= 0.05. For the ground state in panels 2, 3, and 4we use the valuesΩ/Ωcr= 0.31, 0.93, 3.11, respectively. For comparisonwe
report also the ground state for a Bose–Bosemixture, i.e.,Ω= 0. In the latter case, with the number of particles in each component
fixed, no global polarization appears, and the ground states (a1) and (b1) are essentially equal. The effect of quantumpressure can be
clearly noticed in the plots (a2) and (a3) (analogues tofigure 1). The bifurcation points are not sharp as instead predicted by the
Thomas–Fermi approximation.
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3. Static dipole polarizability

In this sectionwe calculate the static response of a trapped spinor gas to a spin-dipole perturbation. A spin-
dipole perturbation corresponds to a shift of the harmonic traps for the two components by a quantity d xho
with x mho ho( ) w= ,

V m x d

m x m xd d

1

2
1

2
O , 8

a b, ho
2 2

ho
2 2

ho
2 2( )

( )

( )

w

w w

= 

=  +

where the plus sign is for particles of component a and theminus one for those of component b. In the case of
hyperfine atomic levels the displacement can be realized by adding amagnetic field gradient to the harmonic
potential.

TheGP ground state solution for the spinor gas in the displaced potentials is reported infigure 2 (see also
[15]), where for the sake of concreteness we assume g gab > to show the difference between amixture and a
coherently driven spinor gas. For d= 0 (row a)we see the features of theΩ-induced phase transition: below the
critical value the linear coupling prevents the phase separation by creating a global polarization in the system
(figure 2 plots (a2) and (a3)), while amixture without anyRabi couplingΩ= 0would be in a phase separated
state (figure 2 plots (a1)). Above the critical value the gas is unpolarized (figure 2 plot (a4)). Applying a potential
displacement (row b)makes the local polarization different from zero as shown in equation (2). In this case even
a small potential differencemakes the ferromagnetic part of the gas strongly polarized and as a result amagnetic
domainwall is created at the centre of the trap.

In order to calculate the spin-dipole susceptibility we first determine the spin-dipolemomentD, defined as

D
N

x n x n x x
1

d . 9a b( ) ( ) ( )⎡⎣ ⎤⎦ò= -

The spin-dipole susceptibility is then defined by the limit

Dlim 10
d

sd
0

( )c l=


where dm ho
2l w= is the perturbation associatedwith the spin-dependent component of the potential (8).

In the global paramagnetic phase ( crW > W ) it is easy to obtain an analytical expression forχsd within LDA. In
this case one can employ the energy functional

E n n x n n xd 11s a b a b
1 2( ) ( ) ( )⎡⎣ ⎤⎦ò c l= - - --

relative to the spin degrees of freedomof the problem,where

g g n

2
12

ab
s

0

( )c =
- + W

is the spin (magnetic) susceptibility for an homogeneous systemof density 2n0 (see, e.g., [25]). Variationwith
respect to the spin density (na− nb) yields the result

n x n x x n x , 13a b s 0( )( ) ( ) ( ) ( )lc- =

and the spin-dipole polarizability finally reads
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After integratiionwe obtain the result
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for the dimensionless ratio D d m ho
2

sdw c= wherewe have introduced the dimensional function
f 3 1 1 arccoth 1( ) ( ( ))a a a a= - + + 4 and used the notation n n 00 0 ( )= .

A couple of comments are duehere. First of all, let us consider the case of a Bose–Bosemixture, i.e., 0W  .
In this case, f 0 0( )a   and the spin-dipole susceptibility is simply proportional to themagnetic
susceptibility equation (12). Therefore, alsoχsd diverge at the (miscible/immiscible) transitionpoint g gab  -5.
Physically, this is due to the fact that the twogases become globally immiscible at the transition point since the

4
Notice that the domain of the function f(α) (to be real), i.e., 1/α�−1, is precisely where the system is fully paramagnetic.

5
At the same point, but for finiteΩ, one has f 1 2 5( ) ( )a a ¥  - + and therefore D d gn 50 ( )= W .
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latter condition is density independent. Aswewill see in the next section, the divergenceofχsd leads to a zero
frequency (soft) spin-dipolemode.

By contrast, forfiniteΩ the paramagnetic/ferromagnetic transition point, namely g g nab 0= + W ,
depends on the density. Therefore, the spinor gas starts becoming ferromagnetic at the centre of the trap only.
The quantityχsd, being density integrated, remainsfinite at the transition point (indeed f(−1)=−3) leading (see
next section) to afinite frequency for the spin-dipolemode. This behaviour is very general and it has already
been pointed out for the Stoner (or itinerant ferromagnetic) instability in the context of cold gases by two of
us [29].

Above the critical point the response of the system is no longer linear. The system is partially ferromagnetic
and has the tendency to form amagnetic domainwall at the centre of the trap (see appendix).

A detailed analysis of the behaviour ofD/d is shown infigure 3wherewe calculate numerically the spin-
dipole of the gas as a function of the trap separation dwith the choice gab/g= 1.1. Above the critical Rabi
frequencywe see that indeed linear response applies and the analytical expression equation (15)works verywell.
Notice that the spin-dipolemoment allows for a clear identification of the phase transition point, abovewhich
the induced dipolemomentD changes its behaviour as a function of d.

4. Spin dipole dynamics

In this sectionwe study the dynamics of the system. In particular we prepare the system initially in the ground
state of very slightly displaced external potential and then suddenly set the displacement to zero. As one can
expect, the physics is completely different depending onwhether the system is paramagnetic or ferromagnetic.
In the earlier case the system shows awell defined out-of-phase oscillation, the spin-dipolemode. The previously
calculated spin-dipole polarizability plays an important role in characterizing the behaviour of the spin-dipole
frequency [29, 30]. Notice in particular that for two independent condensates (Ω= gab= 0) the spin-dipole
frequency simply coincides with the trap frequencyωho. In the ferromagnetic case the system evolves according
to a highly non-linear dynamics and it shows ground state selection.We analyze the two cases separately in the
next two sections. Some details on the numerical solution of theGP equations can be found in appendix B and
reference therein. For the interested readerwe include in the supplementarymaterial the real time evolution of
the system in different regimes.

4.1. Paramagnetic phase: sum rule approach
In the paramagnetic phase, as shown infigures 2(a4)–(b4), a small trap displacement corresponds to a small
deviationwith respect to the ground state at zero displacement and therefore linear response theory can be
applied. The dynamics we consider in this case coincides with the dynamical response of the spinor gas to the
spin-dipole operator S xi

N
i z id 1 ,

ˆ ŝ= å = . A very powerful tool to estimate the frequency of collectivemodes is the
so-called sum rule approach [31, 32]. This approach has been very successfully employed for the dynamics of

Figure 3.DipoleD as a function of traps displacement d for different values ofΩ/Ωcr and for gab/g= 1.1 as infigure 2.Dotted lines are
analytical results from equation (15) for the four bigger values ofΩ, points are numerical data and grey full lines are only a visual guide.

6

New J. Phys. 17 (2015) 093036 A Sartori et al



both cold gases and nuclei.We give a simple reminder here that sum rules are defined for an operator F̂ as

m F F n E E0 , 16k
n

n
k2

0( )( ) ∣ ∣ ˆ ∣ ∣ ( )å= á ñ -

and they represents themoments of the strength distribution function relative to F̂ . The sum rule approach has
themerit of providing a direct way to obtain an upper bound of collectivemode frequency through the ratio of
different sum rules, and therefore gives an understanding of the collectivemode frequency in terms of static
macroscopic quantities [32].

In our case the operator of interest is Sd̂ andwewe use the energy weighted and inverse energyweighted sum
rule, i.e.,

m S

m S
. 172

SD
2

1 d

1 d

( )
( ) ( ) w

-

They are particularly suitable in our case. The energy weighted one (m1) is easily rewritten in terms of a
double commutator as m S H S1 2 0 , , 01 d d( ) ∣[ [ ]]∣= á ñ. The only terms inH that do not commutewith Sd are
the kinetic energy and the Rabi coupling H i x iR ,ŝ= -Wå . The former gives the usual N m22 ( ) contribution,
while the latter is straightforwardly evaluated as x4 x

2ŝ- W . Averaging on the ground state, we obtain the result

m N
m

x n x x
2

8 d . 18
R

1

2

0

2
0

TF

( ) ( )
ò= + W

The inverse energy weighted sum rule (m−1 ) is directly related to the susceptibility of the ground state through
the relation

m
N

2
, 191 sd ( )c=-

and using the definition equation (10) togetherwith the result equation (14)we obtain the following upper
bound to the spin-dipole frequency
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Notice that the equality in equation (17) is attainedwhen thewhole strength is exhausted by a single state.
Infigure 4 the sum-rule result is comparedwith the predictions of the solutions of a time dependent Gross–

Pitaevskii calculation. As alreadymentioned from the numerical or experimental point of view, the excitation of
the spin-dipolemode is achieved startingwith an equilibrium configuration in the presence of slightly displaced
trapping potentials, as described by equation (8), and suddenly setting d= 0.

Notice that at the transition point the frequency does not go to zero, since for the reasons explained in the
previous sectionχsd (orm−1) does not diverge at that point. This has to be comparedwith themixture case,
which is recovered sending 0W  . In this case the spin-dipole frequency vanishes close to the critical point
following the law

Figure 4. Spin-dipole frequency as a function ofΩ for different values of interactions. Lines are analytical results from equation (20)
and points are numerical data. In order to have a fully paramagnetic phase for g g ,ab > one needsΩ�Ωcr (see text and equation (5)),
the value ofΩcr for gab/g= 1.02 (blue diamonds) is shown by the dashed line. In the supplementarymaterial, two videos show the
oscillations of the clouds for gab/g= 0.9 and gab/g= 1 (both at 0.5 howW = ): 1.0 sec of the video corresponds to 1.0ωhot.
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g g

g g
0 , 21ab

ab

SD ho( ) ( )w wW = =
-

+

and the sum-rule approach gives the exact result as shown infigure 5.
Sum-rules give the exact result also for the intrinsic SU(2) symmetric point gab= g (and 0W ¹ in general)

and gab= g as it can be seen infigure 4) (red triangles). Themagnetic energy of the spinor gas in this regime
depends on the relative density only through the Rabi coupling, which breaks the SU(2) symmetry of the system.
The spin-dipole frequency behaves in this case as

g g
gn

2 1
5

16
22abSD

ho
2

0
( ) ( )

w
w

= = W +
W

which is essentially twice the Rabi frequency and therefore almost independent of the tapping frequency. The
latter unusual result for a trapped gas is due to the correlation between the internal and external degrees of
freedom that in particular lead to themodification of the f-sum rule, see equation (18).

In themore general case, when bothΩ and (gab− g) are different from zero, the frequency is given by the full
equation (20) inwhich both the coherent and the interspecies s-wave couplings play a role. In thismore general
case one observes that the sum rule approach provides only an upper bound to the numerical solution, due to the
appearance ofmore frequencies in the numerical signal resulting in beating effects.

In the supplementarymaterial we include two videos showing the oscillations of the clouds in the
paramagnetic case for gab/g= 0.9 and gab/g= 1 andΩ= 0.5ÿωho. The real time evolution shows clearly the
presence of only one frequency in the intrinsic SU(2) symmetric case and the appearance ofmore frequencies
when g gab ¹ .

4.2. Ferromagnetic phase: ground state relaxation
In the previous sectionwe studied the dynamics for a completely paramagnetic gas, i.e., crW > W . The behaviour
is very different when the systempresents a ferromagnetic behaviour. In this case the ground state of the system
with equal trapping potentials is polarized as shown infigure 2 plots (a2) and (a3).When the traps are shifted, the
ground state is instead globally unpolarized (Na=Nb) butwith a large spin-dipolemoment (depending on the
values ofΩ and d) as one can see infigure 2, plots (b2) and (b3). Therefore, the initial state and the ground state
are very far from each other. This circumstance results in a non-trivial non-linear dynamics as shownby the
dynamics of the spin-dipole and of the polarization reported infigure 6. At the beginning, the spinor gas
oscillates around the initial configuration, trapped in the unpolarized state. After a certain time, waitt , the
domainwall startsmoving and afinite polarization appears. The system then bounces back and forth between
the initialmagnetic state and itsmagnetic ground state to eventually relax to the latter one6. An example of such
dynamics can be viewed in the video in the supplementarymaterial. If the global polarization of the ground state
is large, the effects of non-linearity and the number of bounces are large.When the system is slightly in the
ferromagnetic regime, no bounces are observed and the system after waitt soon reaches its ground state (see right
lower panel infigure 6). Notice that even if the system is isolated, it can approach in the long time limit an
asymptotic steady state, as a result of destructive interference of several time oscillating factors, present in the
evolution of expectation values of observables. Specifically, in the case of a large and dense collection of

Figure 5. Spin-dipole frequency for a Bose–Bosemixture, i.e.Ω= 0, as a function of the ratio gab/g. Line is the analytical result and
points are numerical data. In this case the spin-dipole frequency goes to zero at the phase separation transition point.

6
The system is closed and energy conserving and still able, in the long time limit, to approach and select one of the two possible ground

states. The final state obviously presents still (small) oscillations around its ground state.
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frequencies, the interference phenomenon results in a dephasingmechanism similar to inhomogeneous
dephasing.

The total energy of the system is still conserved, the algorithmused (see appendix B) does not contains any
dissipativemechanism andwe explicitly check that the total energy does not change during the evolution. At the
end of the real time evolutionwe get the ground state profile superposedwith some high frequency
perturbations carrying the extra energy.

Aswe have alreadymentioned in section 2, the initial configuration in the ferromagnetic case contains a
domainwall at the centre of the trap.We have identified a close relation between the observedwaiting time and
the square root of the domainwall energy (see appendix A)

g g n 2
. 23

ab

3 2( )
( )s µ

- + W

W

From an intuitive point of view, the higher is the energy of the domainwall,σ, themore time is required for the
system to relax from the kink into one of the ground states of the system; accordingly, there is expected to be a
relation of proportionality between thewaiting time andσ. A standard field theoretical estimate of the average
tunnelling time cannot be straightforwardly performed since only close to the transition does ourfield theory
resemble an ordinaryf4 theory (see appendix A for details); for this reason, we took advantage of a numericalfit
to extract with surprising accuracy the relation, waitt sµ , as shown infigure 6.

The fact that for 0W  thewaiting time diverges can be easily understood noticing that the initial state and
the ground state are very far from each other (see, e.g., panels (a2) and (b2) offigure 2). Eventually, in the strict
Ω= 0 case, the system cannot reach the totally polarized ground state and it remains in the phase separated state
(see panels (a1) and (b1) offigure 2).

5. Conclusions

In the present workwe analyze in details the static and dynamic response of a trapped coherently driven two-
component condensate to spin-dipole probe.We show that the spin-dipole susceptibility is a good quantity able
to identify the appearance of a ferromagnetic-like region in the cloud.

For the dynamics we study the spin-dipolemode frequency by starting in a configurationwith displaced
harmonic potentials, which are suddenly brought to the same value.When the system is paramagnetic, such a
frequency is well reproduced by a sum-rule approach. In particular the f-sum rule is stronglymodified by the
Rabi coupling in the symmetric interaction case ((g= gab) and the inverse energy sum rule is proportional to the
spin-dipole susceptibility and coincides with the second spatialmomentumof the localmagnetic susceptibility
(see equation (14)).

When the systemhas a ferromagnetic domain, a linear response cannot be applied anymore and the
dynamics is highly non-linear. The initial configurationwithin displayed potentials is unpolarized and contains

Figure 6. (a) and (b): real time spin-dipole oscillation (black solid lines), polarization of the system (blue solid lines) and ground state
polarization values (dashed lines); parameters are g g1.1ab = , g x 5ho ho( )w = and 1.5howW = (a), 2howW = (b). In the
supplementarymaterial a video shows the oscillation of the clouds of panel (a), 1.0 sec of the video corresponds to t1.0 how . (c):
waiting time as a function ofΩ; points are numerical data and line is a fit of datawith function A s whereσ is the surface tension of
equation (23).
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amagnetic kink centred at the origin. The dynamics is trapped for a time, waitt , in the initial configuration, after
which the system is able to relax to its polarized ground state.We find that waitt is proportional to the square root
of the kink surface tension.

Our study improves the characterization of coherently driven BECs, enlightening their differences with
respect to Bose–Bosemixtures.Moreover,measuring the spin-dipole dynamics opens new perspective to
experimentally access importantmagnetic properties of the system, e.g., its susceptibility or the domainwall
surface tension.
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AppendixA.Magnetic domainwall surface tension

In this appendixwe briefly showhow to approximate the energy functional for themagnetization for a spinor
condensate with a classical one-dimensionalf4 (Ginzburg–Landau for the phase transition) theory [33]. From
the latter it is easier to show the existence of a kink or domainwall in themagnetization, andwe compute in this
regime its surface tension. In the symmetric case g g ga b= = and considering a uniform total density
n n na b= + , the relative density ormagnetization M n n na b( )= - , enters in the energy density

E M dx
n M

m M
W M

8 1
, A.1

2 2

2( )( ) ( ) ( ) ( )
⎡

⎣
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⎤

⎦
⎥⎥


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
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+

where thefirst term arises from the kinetic energy and the term

W M
n

g g M n M
4

1 , A.2ab

2
2 2( )( ) ( )= - - W -

accounts for the density–density interaction and the Rabi terms For a homogeneousmagnetization,
minimisation δE/δM= 0 leads to the usual equation for the paramagnetic- and ferromagnetic-like states. From
equation (A.1) one sees that close to the phase transition, i.e., M 1 a standardGinzburg–Landau theory for
the order parameterM, is valid, where the kinetic energy is just the square of the gradient ofM and the effective
potential takes the usual quadratic plus quartic form

W M
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As usual, the 2 symmetry broken ground state is obtained for r 0< . A kink inM is thefield solution
interpolating between the two degenerateminima. Its surface tension,σ, which coincides with its energy in a
one-dimensional situation, can be easily computed [34] yielding the result
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Appendix B.Numericalmethod

All numerical data presented in this paper have been obtained solving theGP coupled equations bymeans of the
split-operatormethod and by treating the kinetic term in Fourier space [35, 36]. The initial wave functionsψa(x,
t) andψb(x, t) are evolved for a time stepΔt alternately by the kinetic, potential andRabi terms ofHamiltonians
in equation (1):

k t k t

x t x t

x t t x t t x t

, e ,

, e ,
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i
ik t

i

i
i V g g t
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
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where i a b j,= ¹ and equation (B.1) is for the imaginary time evolution. One can simply obtain the same set
of equations for real time evolution by changingΔ t in tiD .

An algorithmof this typ is symplectic; thismeans that themethod exactly simulates aHamiltonianHΔ twith
HΔ t−H a power series inΔ t. The advantages of using symplectic integrators are that there is no drift in energy
due to the exact conservation ofHΔ t and the phase-space volume is exactly conserved.

In order to obtain the ground states we ran the imaginary time evolution starting from an initial trial wave
function built fromboth randomdensity and phase distributions, in order to prevent the algorithm from
reaching falsemetastable states. For the dynamics we loaded the ground states obtainedwith displaced traps and
let them evolve using the same algorithmbutwith real time andwith the equal trapping potential Hamiltonian.
The values of polarization P and of spin-dipolemomentD are calculated and saved at each time step and then
analyzed to obtain the frequencies. This last step is not always so straightforward—sometimes the signal
containsmore than one frequency and damping occurs. In such cases we perform a Fourier analysis of the data
andwe keep themaximum-amplitude frequency.
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