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Abstract

We study the static and the dynamic response of coherently coupled two component Bose—Einstein
condensates due to a spin-dipole perturbation. The static dipole susceptibility is determined and is
shown to be a key quantity to identify the second order ferromagnetic transition occurring at large
inter-species interaction. The dynamics, which is obtained by quenching the spin-dipole perturbation,
is very much affected by the system being paramagnetic or ferromagnetic and by the correlation
between the motional and the internal degrees of freedom. In the paramagnetic phase the gas exhibits
well defined out-of-phase dipole oscillations, whose frequency can be related to the susceptibility of
the system using a sum rule approach. In particular in the interaction SU(2) symmetric case, i.e., all the
two-body interactions are the same, the external dipole oscillation coincides with the internal Rabi
flipping frequency. In the ferromagnetic case, where linear response theory in not applicable, the
system shows highly non-linear dynamics. In particular we observe phenomena related to ground
state selection: the gas, initially trapped in a domain wall configuration, reaches a final state
corresponding to the magnetic ground state plus small density ripples. Interestingly, the time during
which the gas is unable to escape from its initial configuration is found to be proportional to the square
root of the wall surface tension.

1. Introduction

Ultra-cold gases allow the realizations of multi-component Bose—Einstein condensates (BECs). The latter are
novel systems, whose behaviour is very different with respect to that of a single component BEC. In particular
they show different zero-temperature phases, each described by a proper vector order parameter. The possibility
of tuning a number of system parameters, in particular the interaction strength through Feshbach resonances,
makes such systems ideal for studying the structure of the various phases and the nature of the phase transitions.

One of the easiest, but still intriguing realizations is represented by a two-component BEC, also known as a
spinor condensate. Spinor condensates allow us to address many interesting phenomena from the Andreev—
Bashkin effect [1, 2] and fast decay of persistent currents [3], to the (internal) Josephson effect [4, 5], or
Schrodinger-cat- and twin-Fock-like states [6, 7], from dimerized vortices [8—10], to the study of quenching in
classical bifurcations [11-13]. They represent also the basis for most of the recent realizations of artificial gauges
in cold gases[14].

In this paper we specifically consider a zero-temperature trapped two-component BEC with an external field
that drives the population transfer (spin-flipping) between the two atomic levels (see section 2) forming the
condensate. It is common to refer to the interconversion term as a Rabi coupling. The system is indeed a
generalization to non-linear atom optics of the well-known linear Rabi problem and in general is an extension of
quantum optics concepts to condensates [ 15, 16]. It is the interplay between the intra- and inter-species two-
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body interaction strengths and the Rabi coupling strength that makes the physics of the system very rich. The
Rabi coupling—which acts as a o operators on each atom—tries to create an equal superposition of the two
possible internal levels. However, differences in the three possible atom—atom interaction strengths try to favour
asituation where the population of the two internal levels is unbalanced. It turns out that the system exhibits a
second order phase transition, a classical bifurcation at the mean-field level (see, e.g., [17, 18] and in particular
the experiment [5]), which is analogous to the mean-field ferromagnetic transition of the Ising model in
transverse field. Moreover, if the two components feel different external potentials the internal and external
degrees of freedom are inseparable leading to interesting spin—orbit coupled dynamics as has already been
shown some years agoin [19, 20].

In the following we show that the static and the dynamic response to an out-of-phase (spin) dipole
perturbation is very rich and captures many relevant phenomena related to the paramagnetic/ferromagnetic-
like phase transition of the system. A relative component perturbation is accessible in cold gases by applying
different trapping potentials for different atomic internal levels. The spin-dipole configuration is realized by
applying trapping potentials that have the same shape, but that are displaced for the two components of the gas.
The dynamics is obtained by monitoring the gas after the displacement is suddenly set to zero. Notice that in
[19,20] a similar situation has already been realized, but instead the external potentials were held fixed and the
Rabi coupling was suddenly turned on.

The main results of our analysis can be summarized as follows:

(i) In the region before the bifurcation occurs, i.e., in the paramagnetic phase, the system exhibits well-defined
out-of-phases oscillations around the equilibrium position in the new trapping potential. The oscillation
frequency is in good agreement with a sum-rule approach calculation. The latter allows us to identify the
main quantity determining the spin-dipole mode frequency and its relation with the susceptibility of the
system. In the case of equal interaction strength, the sum rule gives an exact result. The latter is practically
twice the Rabi coupling, i.e., the main contribution is not proportional, contrary to the usual case, to the
harmonic trapping frequency. This effect can be traced back in the modification of the f~sum rule, which is
eventually due to the absence of relative number conservation.

(i) In the broken Z,, i.e., ferromagnetic phase, the situation is very different. The response of the system to the
spin-dipole perturbation is not linear and therefore the initial state in the displaced potentials is far from
the equilibrium state when the potentials are the same. In particular the initial configuration shows a
polarization domain wall at the centre of the cloud, but zero global polarization, while in the new
equilibrium state it will show a symmetric structure with a global polarization. The dynamics is highly non-
linear. After a certain period—in which the system is trapped in the domain wall configuration—the cloud
is able to reach the new equilibrium quickly by spontaneously selecting one of the two possible
polarizations. The excess energy of the initial configuration gives rise to small ripples in the cloud.

Itis worth mentioning here that the very same mean-field description we use in the following (see section 2)
can be applied, in certain regimes, to describe polariton systems where the role of the polarization is relevant (see
e.g.,[21,22]), as well as some properties of type-1.5 superconductors (see [23] and reference therein).

The paper is organized as follows: In section 2 we introduce the system and its description in terms of two
coupled Gross—Pitaevskii (GP) equations. We revisit the emergence of a paramagnetic/ferromagnetic-like
transition and the effect of the external harmonic trapping potential. In section 3 we study the effect of a spin-
dependent potential and the role of the spin-dipole susceptibility. The latter is shown to bear a clear signature of
the phase transition. Then we address the problem of the dynamics of the spin-dipole mode, both in the para-
and in the ferromagnetic phase. In the former case (section 4.1) linear response theory combined with a sum-
rule approach provides an accurate estimate of the spin-dipole mode frequency, which compares well with the
numerical solution of the GP equation. In the ferromagnetic case (section 4.2) we show that the system exhibits
ground state selection, after a waiting time in which the system is unable to leave the initial domain wall
configuration. We found phenomenologically that this characteristic time is proportional to the square root of
the domain wall energy.

2. Gross—Pitaevskii equation for coherently coupled BECs

We consider an atomic Bose gas at zero temperature, where each atom of mass #1 has two internal levels |a) and
|b). The latter are typically magnetically trappable hyperfine levels of *Rb, like [a) = |F = 1, mp = —1)
(F=1,mp =1))and|b) = |F =2, mp = 1) (F = 2, mp = —1)). An external field is applied that coupled
the |a) to the | b) state via usually a two-photon transition, characterized by a Rabi splitting 2. At the densities of
ultra-cold gases the atomic interactions are simply described by a contact potential with a strength proportional
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to the s-wave scattering length. For a spinor system three scattering lengths, a,,,, a;, and a,,;, are present
describing the intra- and the inter-species collisions, respectively. Finally, the condensed phase for a two-
component Bose gas is described by a complex spinor order parameter (¢, (xr, t), ¥, (x, t)), where ), i € {a, b}
is the wave function macroscopically occupied by atoms in the internal state | 7). The latter is normalized to the
total number of atoms N; in the state |i). The dynamics of the order parameter is determined by coupled Gross—
Pitaevskii equations [15, 24]

0 V2
i L= = 2 v 4
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where the couplings g;, with i € {a, b, ab}, are the intra- and interspecies atomic interaction strengths and are
givenby g; o< a;[24], and V,, and V}, are the external trapping potentials. We consider the confinement to be
harmonic, which is the most relevant and typical experimental situation. In the following, if not differently
specified, we consider g, = g, = g. Due to the presence of the Rabi coupling, only the total number of atoms
N = N, + Ny is conserved, but not its polarization P = (N, — N,)/N. The (gauge) symmetry of the system is
therefore reduced from U(1) x U(1)to U (1) x Z,,leading from an homogeneous condensate to a gapless
density or in-phase mode—Goldstone mode of the broken U(1) symmetry—and a gapped spin or out-of phase
mode (see, e.g., [17, 18]). Depending on the interaction strengths and the Rabi coupling, the ground state can
also spontaneously breaks the Z, symmetry leadingto P = 0.

In order to describe the ground state, we write as usual the condensate wave function as density and phase
Y = /m;e'” and use local density approximation (LDA), i.e., neglecting the gradient term, also known as
quantum pressure, in equations (1). The time derivative on the lhs of equation (1) is replaced by the chemical
potential 11, whose value will be fixed by requiring a total number of particle N. Notice that in the absence of €2
one can have two different chemical potentials reflecting that also Pis fixed. The Rabi coupling originates a term
of the form €2 cos(¢, — ¢,) for the energy. Without any loss of generality we also assumed €2 to be real and
positive, which fixes the phases in the ground state to satisfy ¢ = ¢, — ¢, = . Finally one finds that the
densities of the two components obey the relations (see, e.g. the review [25] and reference therein)

(g — &t —%)(” - m) =V = Vi @
(g T N )(n“ + nb) =2u = (Vh + V;‘)' ©

For the sake of simplicity and clarity, we consider a mean-field one-dimensional situation. The latter is
experimentally realized by making two of the trapping frequencies strong enough for the motion along such
directions to be frozen. The coupling constants are in this case renormalized and can be simply related to the
scattering length and the trapping transverse frequency w| by g, = 2/aw, a;fori € {a, b, ab}.Itis worth
noticing that our results do not qualitatively change in the two- or three-dimensional case.

From equation (3) it is clear that, for equal potentials, V,, = V, the system can sustain a finite polarization
onlyif g, is sufficiently large. In that case it turns out that the P = 0 states are the ground states of the system.
Notice that both the critical value of g, and P are density dependent. It is easy to find that the points Xpat which
the polarized phase can exist is fixed by the condition

2 > 8+ 292/n(Xp) 4

with n(x) = n,(x) + n,(x) the total local density. Since in the harmonic trap the density decreases going
outward from the trap centre the system can exhibit two different regions: unpolarized tails with n, = n,and a
polarized core with n, = n,. Clearly, if the condition equation (4) is not satisfied at the centre of the trap, where
the total density is maximum, then the whole system is unpolarized. This allows us to introduce a critical value of
Rabi coupling defined by

Q= %n(x = 0)(gub - g) %)

For values €2 > (), the system is unpolarized everywhere. Writing V, = Vj, = mw?, x?/2, the density profile
n, = nyis easily obtained from equation (3):

+Q 2
oy () = no(x) = & b—%} ©6)
8§+ 8 Rtr
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Figure 1. Density profiles within Thomas—Fermi approximation for an harmonic trapping: n, (dashed blue), n;, (light grey) and n,, +
ny, (black) for g,,/g=1.3and Q/p=0.1.
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Figure 2. Ground states of a trapped coherently-coupled Bose gas for different values of potential displacement d and Rabi coupling 2.
We use coupling constant strength g,,/g=1.1and g/(/awnexn,) = 5. Plots (al)—(a4) correspond to d/xy,, = 0, while plots (b1)—-(b4)
to d/xno = 0.05. For the ground state in panels 2, 3, and 4 we use the values €2/, = 0.31,0.93, 3.11, respectively. For comparison we
reportalso the ground state for a Bose-Bose mixture, i.e., {2 = 0. In the latter case, with the number of particles in each component
fixed, no global polarization appears, and the ground states (al) and (b1) are essentially equal. The effect of quantum pressure can be
clearly noticed in the plots (a2) and (a3) (analogues to figure 1). The bifurcation points are not sharp as instead predicted by the
Thomas—Fermi approximation.

where we introduced the so-called Thomas—Fermi radius Rz = 2(u + €)/(mwy,?) [24] and the chemical
potential can be written as

3 2/3 Mo 1/3
=[] (7)o ?

Inthe case 2 < ), atypical configuration within LDA is shown in figure 1.

Let us hgive a brief reminder here that for a Bose—-Bose mixture in the absence of Rabi coupling ({2 =0),
where the relative particle number can be chosen at will, the situation is very different. In that case there exists a
first order phase transition to a phase separated state once g, > g and the system in the trap is formed by two
distinct regions of only one of the two components of the gas (see for a detailed discussion, e.g. [26-28]). An
example of the structure for an equal number of atoms in both hyperfine levels is shown in figure 2(al).
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3. Static dipole polarizability

In this section we calculate the static response of a trapped spinor gas to a spin-dipole perturbation. A spin-
dipole perturbation corresponds to a shift of the harmonic traps for the two components by a quantity d < xpo

with x,, = /i/(mwho) >

Vg = s’ (x 2 d
= %mwfmxz + mwpoxd + O(dz), (8)

where the plus sign is for particles of component a and the minus one for those of component b. In the case of
hyperfine atomic levels the displacement can be realized by adding a magnetic field gradient to the harmonic
potential.

The GP ground state solution for the spinor gas in the displaced potentials is reported in figure 2 (see also
[15]), where for the sake of concreteness we assume g, > g to show the difference between a mixture and a
coherently driven spinor gas. For d = 0 (row a) we see the features of the Q2-induced phase transition: below the
critical value the linear coupling prevents the phase separation by creating a global polarization in the system
(figure 2 plots (a2) and (a3)), while a mixture without any Rabi coupling 2 = 0 would be in a phase separated
state (figure 2 plots (al)). Above the critical value the gas is unpolarized (figure 2 plot (a4)). Applying a potential
displacement (row b) makes the local polarization different from zero as shown in equation (2). In this case even
asmall potential difference makes the ferromagnetic part of the gas strongly polarized and as a result a magnetic
domain wall is created at the centre of the trap.

In order to calculate the spin-dipole susceptibility we first determine the spin-dipole moment D, defined as

1
D= fo[na(x) — () |d. ©)
The spin-dipole susceptibility is then defined by the limit
Xeq = lim D /A (10)
d—0

where A\ = dmuwi, is the perturbation associated with the spin-dependent component of the potential (8).
In the global paramagnetic phase (€2 > €),) itis easy to obtain an analytical expression for xq within LDA. In
this case one can employ the energy functional

E= f[x;l(na - nb)z - )\x(na - nb)] dx (11)

relative to the spin degrees of freedom of the problem, where
. 2
8 — 8 + /10

is the spin (magnetic) susceptibility for an homogeneous system of density 2n, (see, e.g., [25]). Variation with
respect to the spin density (1, — n,,) yields the result

Xs (12)

1o () — 1y (x) = 2Ax (10 (), (13)
and the spin-dipole polarizability finally reads
_ 1 2
Xsd = N X Xs(”O(x))- (14
After integratiion we obtain the result
D + Q
D_¢& gah1+f , (15)
d g g (8= )10

for the dimensionless ratio D /d = mwj,, x4 where we have introduced the dimensional function
f (@) = 3a(l — {1 + aarccoth(y1 + a)) * and used the notation 1y = 114 (0).

A couple of comments are due here. First of all, let us consider the case of a Bose—Bose mixture, i.e., {2 — 0.
Inthis case, f (& — 0) — 0 and the spin-dipole susceptibility is simply proportional to the magnetic
susceptibility equation (12). Therefore, also y . diverge at the (miscible/immiscible) transition point g, — g~
Physically, this is due to the fact that the two gases become globally immiscible at the transition point since the

* Notice that the domain of the function fla) (tobereal), i.e., 1/ > —1, is precisely where the system is fully paramagnetic.

SAt the same point, but for finite €2, one has f (o« — 00) — —1 + 2/(5«) and therefore D/d = gn,,/(5Q).
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Figure 3. Dipole D as a function of traps displacement d for different values of 2/, and for g,;,/g = 1.1 as in figure 2. Dotted lines are
analytical results from equation (15) for the four bigger values of 2, points are numerical data and grey full lines are only a visual guide.

latter condition is density independent. As we will see in the next section, the divergence of x;qleads to a zero
frequency (soft) spin-dipole mode.

By contrast, for finite {2 the paramagnetic/ferromagnetic transition point, namely g, = g + €/n,
depends on the density. Therefore, the spinor gas starts becoming ferromagnetic at the centre of the trap only.
The quantity x4, being density integrated, remains finite at the transition point (indeed f(—1) = —3) leading (see
next section) to a finite frequency for the spin-dipole mode. This behaviour is very general and it has already
been pointed out for the Stoner (or itinerant ferromagnetic) instability in the context of cold gases by two of
us [29].

Above the critical point the response of the system is no longer linear. The system is partially ferromagnetic
and has the tendency to form a magnetic domain wall at the centre of the trap (see appendix).

A detailed analysis of the behaviour of D/d is shown in figure 3 where we calculate numerically the spin-
dipole of the gas as a function of the trap separation d with the choice g,;,/¢ = 1.1. Above the critical Rabi
frequency we see that indeed linear response applies and the analytical expression equation (15) works very well.
Notice that the spin-dipole moment allows for a clear identification of the phase transition point, above which
the induced dipole moment D changes its behaviour as a function of d.

4. Spin dipole dynamics

In this section we study the dynamics of the system. In particular we prepare the system initially in the ground
state of very slightly displaced external potential and then suddenly set the displacement to zero. As one can
expect, the physics is completely different depending on whether the system is paramagnetic or ferromagnetic.
In the earlier case the system shows a well defined out-of-phase oscillation, the spin-dipole mode. The previously
calculated spin-dipole polarizability plays an important role in characterizing the behaviour of the spin-dipole
frequency [29, 30]. Notice in particular that for two independent condensates (€2 = g,;, = 0) the spin-dipole
frequency simply coincides with the trap frequency wy,. In the ferromagnetic case the system evolves according
to a highly non-linear dynamics and it shows ground state selection. We analyze the two cases separately in the
next two sections. Some details on the numerical solution of the GP equations can be found in appendix B and
reference therein. For the interested reader we include in the supplementary material the real time evolution of
the system in different regimes.

4.1. Paramagnetic phase: sum rule approach

In the paramagnetic phase, as shown in figures 2(a4)—(b4), a small trap displacement corresponds to a small
deviation with respect to the ground state at zero displacement and therefore linear response theory can be
applied. The dynamics we consider in this case coincides with the dynamical response of the spinor gas to the
spin-dipole operator §4 = 3 N x:6,,;. Avery powerful tool to estimate the frequency of collective modes is the
so-called sum rule approach [31, 32]. This approach has been very successfully employed for the dynamics of

6
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Figure 4. Spin-dipole frequency as a function of §2 for different values of interactions. Lines are analytical results from equation (20)
and points are numerical data. In order to have a fully paramagnetic phase for g, > g, oneneeds {2 > (), (see text and equation (5)),
the value of Q. for g,;,/¢g = 1.02 (blue diamonds) is shown by the dashed line. In the supplementary material, two videos show the
oscillations of the clouds for g,,/g= 0.9 and g,;,/g =1 (bothat 2 = 0.5/iwp,): 1.0 sec of the video corresponds to 1.0wh,t.

both cold gases and nuclei. We give a simple reminder here that sum rules are defined for an operator F as
. k
mi(F) = 321(01 £ |n) P (Ex — Eo) (16)

and they represents the moments of the strength distribution function relative to £. The sum rule approach has
the merit of providing a direct way to obtain an upper bound of collective mode frequency through the ratio of
different sum rules, and therefore gives an understanding of the collective mode frequency in terms of static
macroscopic quantities [32].

In our case the operator of interest is $4 and we we use the energy weighted and inverse energy weighted sum

rule, i.e.,
nm (Sd)

They are particularly suitable in our case. The energy weighted one (11,) is easily rewritten in terms of a
double commutator as m; = (1/2)(0|[Sg, [H, Sq11|0). The only terms in H that do not commute with S, are
the kinetic energy and the Rabi coupling Hr = —Q3_,6,;. The former gives the usual N/?/(2m) contribution,
while the latter is straightforwardly evaluated as —4€x%6,. Averaging on the ground state, we obtain the result

7wy <

7)

2 Ry
m = NZ— 4 80 f X210 () dx. (18)
2m 0

The inverse energy weighted sum rule (m_; ) is directly related to the susceptibility of the ground state through
the relation
N
Mo = X (19)

and using the definition equation (10) together with the result equation (14) we obtain the following upper
bound to the spin-dipole frequency

N [RLHEINLE "

g+ga)| 1 +f(Q/((g - gah)no))

Notice that the equality in equation (17) is attained when the whole strength is exhausted by a single state.

In figure 4 the sum-rule result is compared with the predictions of the solutions of a time dependent Gross—
Pitaevskii calculation. As already mentioned from the numerical or experimental point of view, the excitation of
the spin-dipole mode is achieved starting with an equilibrium configuration in the presence of slightly displaced
trapping potentials, as described by equation (8), and suddenly setting d = 0.

Notice that at the transition point the frequency does not go to zero, since for the reasons explained in the
previous section X4 (or m_;) does not diverge at that point. This has to be compared with the mixture case,
which is recovered sending €2 — 0. In this case the spin-dipole frequency vanishes close to the critical point
following the law

2 2
Wsp = Who (
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Figure 5. Spin-dipole frequency for a Bose-Bose mixture, i.e. €2 = 0, as a function of the ratio g,;,/g. Line is the analytical result and
points are numerical data. In this case the spin-dipole frequency goes to zero at the phase separation transition point.

wsp(Q = 0) = wyy |5 Bab @1)
g + gub

and the sum-rule approach gives the exact result as shown in figure 5.

Sum-rules give the exact result also for the intrinsic SU(2) symmetric point g,, = g (and €2 = 0 in general)
and g,;, = gasit can be seen in figure 4) (red triangles). The magnetic energy of the spinor gas in this regime
depends on the relative density only through the Rabi coupling, which breaks the SU(2) symmetry of the system.
The spin-dipole frequency behaves in this case as

/ 5 Jwi
= =201 4+ =— o 22
Wwsp (gab g) 16 gnOQ (22)

which is essentially twice the Rabi frequency and therefore almost independent of the tapping frequency. The
latter unusual result for a trapped gas is due to the correlation between the internal and external degrees of
freedom that in particular lead to the modification of the f~sum rule, see equation (18).

In the more general case, when both 2 and (g,;, — ) are different from zero, the frequency is given by the full
equation (20) in which both the coherent and the interspecies s-wave couplings play a role. In this more general
case one observes that the sum rule approach provides only an upper bound to the numerical solution, due to the
appearance of more frequencies in the numerical signal resulting in beating effects.

In the supplementary material we include two videos showing the oscillations of the clouds in the
paramagnetic case for g,;,/g=0.9 and g,;,/¢ = 1 and {2 = 0.5fwy,,. The real time evolution shows clearly the
presence of only one frequency in the intrinsic SU(2) symmetric case and the appearance of more frequencies
wheng, = g.

4.2. Ferromagnetic phase: ground state relaxation

In the previous section we studied the dynamics for a completely paramagnetic gas, i.e., 2 > §2,. The behaviour
is very different when the system presents a ferromagnetic behaviour. In this case the ground state of the system
with equal trapping potentials is polarized as shown in figure 2 plots (a2) and (a3). When the traps are shifted, the
ground state is instead globally unpolarized (N, = N;) but with a large spin-dipole moment (depending on the
values of 2 and d) as one can see in figure 2, plots (b2) and (b3). Therefore, the initial state and the ground state
are very far from each other. This circumstance results in a non-trivial non-linear dynamics as shown by the
dynamics of the spin-dipole and of the polarization reported in figure 6. At the beginning, the spinor gas
oscillates around the initial configuration, trapped in the unpolarized state. After a certain time, 7yaj;, the
domain wall starts moving and a finite polarization appears. The system then bounces back and forth between
the initial magnetic state and its magnetic ground state to eventually relax to the latter one’. An example of such
dynamics can be viewed in the video in the supplementary material. If the global polarization of the ground state
is large, the effects of non-linearity and the number of bounces are large. When the system is slightly in the
ferromagnetic regime, no bounces are observed and the system after 7,;; soon reaches its ground state (see right
lower panel in figure 6). Notice that even if the system is isolated, it can approach in the long time limit an
asymptotic steady state, as a result of destructive interference of several time oscillating factors, present in the
evolution of expectation values of observables. Specifically, in the case of alarge and dense collection of

® The system is closed and energy conserving and still able, in the long time limit, to approach and select one of the two possible ground
states. The final state obviously presents still (small) oscillations around its ground state.
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Figure 6. (a) and (b): real time spin-dipole oscillation (black solid lines), polarization of the system (blue solid lines) and ground state
polarization values (dashed lines); parameters are g, = 1.1g, g/(/avpoXno) = 5and 0/ favp, = 1.5 (a), 2/ /avy, = 2 (b). Inthe
supplementary material a video shows the oscillation of the clouds of panel (a), 1.0 sec of the video corresponds to 1.0wh . (¢):
waiting time as a function of (2; points are numerical data and line is a fit of data with function A+/o where o is the surface tension of
equation (23).

frequencies, the interference phenomenon results in a dephasing mechanism similar to inhomogeneous
dephasing.

The total energy of the system is still conserved, the algorithm used (see appendix B) does not contains any
dissipative mechanism and we explicitly check that the total energy does not change during the evolution. At the
end of the real time evolution we get the ground state profile superposed with some high frequency
perturbations carrying the extra energy.

As we have already mentioned in section 2, the initial configuration in the ferromagnetic case contains a
domain wall at the centre of the trap. We have identified a close relation between the observed waiting time and
the square root of the domain wall energy (see appendix A)

3/2

‘(g—gab)n + ZQ‘
x

O (23)

From an intuitive point of view, the higher is the energy of the domain wall, o, the more time is required for the
system to relax from the kink into one of the ground states of the system; accordingly, there is expected to be a
relation of proportionality between the waiting time and o. A standard field theoretical estimate of the average
tunnelling time cannot be straightforwardly performed since only close to the transition does our field theory
resemble an ordinary ¢* theory (see appendix A for details); for this reason, we took advantage of a numerical fit
to extract with surprising accuracy the relation, T,i < /o, as shown in figure 6.

The fact that for {2 — 0 the waiting time diverges can be easily understood noticing that the initial state and
the ground state are very far from each other (see, e.g., panels (a2) and (b2) of figure 2). Eventually, in the strict
Q) =0 case, the system cannot reach the totally polarized ground state and it remains in the phase separated state
(see panels (al) and (b1) of figure 2).

5. Conclusions

In the present work we analyze in details the static and dynamic response of a trapped coherently driven two-
component condensate to spin-dipole probe. We show that the spin-dipole susceptibility is a good quantity able
to identify the appearance of a ferromagnetic-like region in the cloud.

For the dynamics we study the spin-dipole mode frequency by starting in a configuration with displaced
harmonic potentials, which are suddenly brought to the same value. When the system is paramagnetic, such a
frequency is well reproduced by a sum-rule approach. In particular the f-sum rule is strongly modified by the
Rabi coupling in the symmetric interaction case ((§ = g,5) and the inverse energy sum rule is proportional to the
spin-dipole susceptibility and coincides with the second spatial momentum of the local magnetic susceptibility
(see equation (14)).

When the system has a ferromagnetic domain, a linear response cannot be applied anymore and the
dynamics is highly non-linear. The initial configuration within displayed potentials is unpolarized and contains
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amagnetic kink centred at the origin. The dynamics is trapped for a time, T, in the initial configuration, after
which the system is able to relax to its polarized ground state. We find that 7, is proportional to the square root
of the kink surface tension.

Our study improves the characterization of coherently driven BECs, enlightening their differences with
respect to Bose—Bose mixtures. Moreover, measuring the spin-dipole dynamics opens new perspective to
experimentally access important magnetic properties of the system, e.g., its susceptibility or the domain wall
surface tension.
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Appendix A. Magnetic domain wall surface tension

In this appendix we briefly show how to approximate the energy functional for the magnetization for a spinor
condensate with a classical one-dimensional ¢* (Ginzburg—Landau for the phase transition) theory [33]. From
the latter it is easier to show the existence of a kink or domain wall in the magnetization, and we compute in this
regime its surface tension. In the symmetric case g, = g, = g and considering a uniform total density

n = n, + my, the relative density or magnetization M = (n, — n;,)/n, enters in the energy density

72 (VM)

EM) :fdx (1 — A + W, (A1)

where the first term arises from the kinetic energy and the term
2
W (M) = ”I(g — g )M? = Q1 = M?, (A2)

accounts for the density—density interaction and the Rabi terms For a homogeneous magnetization,
minimisation § E/§ M = 0 leads to the usual equation for the paramagnetic- and ferromagnetic-like states. From
equation (A.1) one sees that close to the phase transition, i.e., M < 1astandard Ginzburg-Landau theory for
the order parameter M, is valid, where the kinetic energy is just the square of the gradient of M and the effective
potential takes the usual quadratic plus quartic form

2
W (M) = ”_(g — g, + @)MZ + M
4 n 8

=2 4 B, (A.3)
2 4
As usual, the Z, symmetry broken ground state is obtained for r < 0. A kink in M is the field solution

interpolating between the two degenerate minima. Its surface tension, o, which coincides with its energyin a
one-dimensional situation, can be easily computed [34] yielding the result

2n? |rP? o /itn? |6gn + 2QP72
m u m Q

g X

(A4)

Appendix B. Numerical method

All numerical data presented in this paper have been obtained solving the GP coupled equations by means of the
split-operator method and by treating the kinetic term in Fourier space [35, 36]. The initial wave functions ¢,(x,
1) and 1,(x, t) are evolved for a time step At alternately by the kinetic, potential and Rabi terms of Hamiltonians
in equation (1):

/lLi (k) t) = eiikZAt/z{/}i (k’ t)

2
+8&ab

i (x, 1) — efi(‘/i+g‘7/"f wf‘z)mi/)i(x, t)
i (x, t) = cosh(=QANY;(x, 1) + sinh(=QA)Y; (x, 1) (B.1)
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where i = a, b = j and equation (B.1) is for the imaginary time evolution. One can simply obtain the same set
of equations for real time evolution by changing A ¢in iAt.

An algorithm of this typ is symplectic; this means that the method exactly simulates a Hamiltonian Hx , with
Hpa ,— Hapower series in A t. The advantages of using symplectic integrators are that there is no drift in energy
due to the exact conservation of Hx ,and the phase-space volume is exactly conserved.

In order to obtain the ground states we ran the imaginary time evolution starting from an initial trial wave
function built from both random density and phase distributions, in order to prevent the algorithm from
reaching false metastable states. For the dynamics we loaded the ground states obtained with displaced traps and
let them evolve using the same algorithm but with real time and with the equal trapping potential Hamiltonian.
The values of polarization P and of spin-dipole moment D are calculated and saved at each time step and then
analyzed to obtain the frequencies. This last step is not always so straightforward—sometimes the signal
contains more than one frequency and damping occurs. In such cases we perform a Fourier analysis of the data
and we keep the maximum-amplitude frequency.
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