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Abstract

Graphene foams have recently attracted a great deal of interest for their possible use in technological applications, such
as electrochemical storage devices, wearable electronics, and chemical sensing. In this work, we present computational
investigations, performed by using molecular dynamics with reactive potentials, of the mechanical and thermal properties
of graphene random nanofoams. In particular, we assess the mechanical and thermal performances of four families of
random foams characterized by increasing mass density and decreasing average pore size. We find that the foams’
mechanical performances under tension cannot be rationalized in terms of mass density, while they are principally
related to their topology. Under compression, higher-density foams show the typical slope change in the stress–strain
curve at 5 − 10 % strain, moving from linear elasticity to bending stress plateau. At variance, lower density foams
display a quasi-linear behaviour up to 35 % strain. Furthermore, we assess the thermal conductivity of these random
foams using the Green–Kubo approach. While foam thermal conductivity is affected by both connectivity and defects,
nevertheless we obtain similar values for all the investigated families.
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1. Introduction

Recently, an increasing interest has been paid to
nanoporous materials. Porosity, indeed, can strongly in-
crease the surface-to-volume ratio and enhance the specific
mechanical properties, such as the specific modulus and
strength, with respect to bulk material. For example, a
high surface-to-volume ratio is desirable for gas adsorption
and separation (Garberoglio et al., 2015), while improving
specific mechanical properties using carbon-based porous
materials are of interest for building lightweight structural
components (Signetti et al., 2017).

Moreover, after the discovery of novel bi-dimensional
materials (Novoselov et al., 2005), such as the hexagonal
allotrope of boron nitride (h-BN) and graphene, several
investigations have been focused onto the search of uncon-
ventional 3D structures that inherit the outstanding elec-
trical (Haberer et al., 2010, 2011), thermal and mechanical
properties of their 2D counterpart in order to achieve spe-
cific requirements.

In particular, graphene shows excellent tensile proper-
ties, such as fracture strength (σ ' 130 GPa) and Young’s
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modulus (E ' 1 TPa) coupled with relatively low density
due to its bidimensionality, and thus it is the best candi-
date material to be used in the synthesis of foam assemblies
with superior properties. Graphene-based nanofoams can
be synthesised by using CVD on a metallic scaffold as well
as nanoparticles assemblies (Drieschner et al., 2016; Chris-
tian et al., 2017; Taioli, 2014) or chemically derived by re-
ducing graphene oxide (Tao et al., 2016). In mechanical
and thermal applications, critical parameters are the con-
centration of defects, the topology as well as the interflake
contact. Despite this technological interest, only a few
computational investigations have been performed to char-
acterize their electronic, thermal and mechanical proper-
ties (Alonso, 2012; Wu et al., 2013; Pedrielli et al., 2017).
In particular, mechanical properties of porous materials
at microscale can be studied by the Ashby-Gibson theory,
in which a unit cell approach is combined with dimen-
sional analysis (Ashby, 2006). While this approach can
be useful to perform dimensional analysis and deliver scal-
ing laws of mechanical properties with respect to density,
however the effective properties of porous materials are
not often a simple function of porosity. At odds, they usu-
ally strongly depend on features at the nanoscale, where
local atomic interactions start to play a crucial role or the
presence of struts and of random pores with very special
shapes destroy the cell periodicity. Furthermore, deforma-
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tion mechanisms at the mesoscale can be very different at
the nanoscale, where the fine details of graphene topology
come into play, and a multiscale approach should be de-
vised (Signetti et al., 2017). Furthermore, it turns out that
carbon-based nanoporous materials with random porosity
distribution exhibit poor scaling of the mechanical prop-
erties with decreasing density, even more pronounced than
that of metal and polymeric foams (Qin et al., 2017). How-
ever, nanoporous graphene foams easily outperform poly-
meric foams at high density and can compete with their
high-performance rivals, such as the metal foams. Thus,
the interest in studying these random porous structures
for energy storage and damping devices remains high.

Moreover, the high porosity of random foams suggests
a concurrent application of these materials as thermal
insulators. In particular, our goal is to assess the de-
pendence of the thermophysical properties on pore den-
sity and size, and to compare thermal insulation perfor-
mances of graphene-based 3D structures with other widely
used carbon-based foams, such as polyurethane and metal
foams.

This work is thus aimed at shedding some light on the
mechanical and thermal properties of random graphene
nanofoams. In particular, we present molecular dynam-
ics (MD) simulations of random-pore foams under tension
and compression by modelling atomic interactions via re-
active potentials. Several random-pore foams, character-
ized by different density and porosity, are produced us-
ing a tailored while reproducible recipe, which consists in
preparing families of random networks to which graphene
is attached. Mechanical properties are assessed by com-
puting stress–strain curves, Young moduli, Poisson ratio,
and specific toughness for each family of random foams.
Furthermore, to assess the efficiency of our random-pore
nanofoams as thermal insulators we report in this study
the calculation of the effective phonon thermal conductiv-
ity by using the equilibrium Green-Kubo formalism.

2. Modeling graphene random foams

To generate families of graphene foams, we use an ap-
proach basically composed by two steps (Taioli et al.,
2016; Pedrielli et al., 2017): first, we generate a tessella-
tion of the surface to be decorated with graphene by using
triangles; second, we apply a Voronoi partitioning (dual-
ization) of the triangulation points.

More in details, we start by filling the simulation unit
cell with a random ensemble of particles interacting via a
pair-wise Lennard-Jones (LJ) potential (Fig. 1a). As a sec-
ond step, the unit cell is slowly expanded to obtain random
aggregation of particles (Fig. 1b). In the third step we fill
the simulation cell with a second type of particles arranged
into a regular grid and characterized by different LJ pa-
rameters with respect to the previous ones (Fig. 1c). The
first type of particles (support particles) acts as a frame-
work to support the particles used in the triangulation
(foam particles). The latter are deleted if they are too

Average Atoms with
Foam type density coordination 3

(g/cm3) (%)

A 0.55 97.3
B 0.68 95.9
C 0.78 93.0
D 0.83 93.1

Table 1: Parameters characterizing the four foam families investi-
gated in this work.

close (below 0.8 nm) to the support particles in order to
avoid convergence issues during molecular dynamics sim-
ulations. The fourth step consists in the optimization of
the foam particle positions, performed by clamping down
the framework degrees of freedom with a viscous damping
force (Fig. 1d). The particles found at a distance from
the support particles larger than 0.32 nm were deleted to
obtain a smooth mono-layer structure (Fig. 1e). As a last
step, the Voronoi partition of the triangles tessellating the
surface was performed to obtain pentagonal, hexagonal
and heptagonal carbon rings (Fig. 1f) (for further details
on this procedure see (Taioli et al., 2016)). These configu-
rations were finally annealed by MD using reactive poten-
tials to optimize the carbon positions within the foams.

By using this recipe, four families of carbon foams were
produced (called A, B, C, and D, see Fig. 1a). Each family
is characterized by a different initial number of randomly-
positioned support particles while, within each family, the
only difference is the initial random distribution of the
support points (Fig. 1a). During the whole procedure we
imposed periodic boundary conditions.

The LJ parameters used for the support (S) and foam
(F) particles, respectively, are the following: εSS =
100.0 eV, σSS = 0.3 nm, cutoffSS = 0.5 nm, εFF = 0.1 eV,
σFF = 0.32 nm, cutoffFF = 0.23 nm, εSF = 10.0 eV,
σSFF = 1.0 nm. The starting cell side length is 6.0 nm,
expanded up to a length of 12.5 nm.

These parameters were chosen in such a way that the
typical distance between the support particles was smaller
than the equilibrium length between the foam and the sup-
port particles. In this way, the support particle surface is
smooth, being obtained by several atoms lying nearby.

The topology of the nanofoams studied here is inspired
by the graphene foams grown on nickel scaffolds (Fig. 2),
which are substantially different from those presented in
Ref. (Qin et al., 2017). However, we note that the pore
size in the experimentally synthesized samples is larger
than in our computational models.

3. Characterization of graphene foams

Five different samples for each of the four families were
prepared by varying the initial distribution of the sup-
port particles. In Fig. 3 we report representative models
(3.0 nm slices) for each of these foam families. From A to
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(a) (b) (c)

(d) (e) (f)

Figure 1: The step sequence for obtaining random foams. Panel a) shows the initial condition in which the support particles are randomly
arranged in a regular grid. Subsequently, the box is slowly expanded while the supporting particle positions are optimized (panel b). Foam
particles are created on a regular grid and deleted if excessively close to the supporting ones (panel c). The particle positions are optimized
and an attractive potential towards the supporting particles is switched-on during a molecular dynamics run (panel d). Finally, the particles
that do not belong to the first layer are deleted to avoid multilayer structures (e). The LJ net is finally dualized by patterning the surface
triangular tiling via a Voronoi procedure. A graphene-like net eventually emerges (panel f). Color codes have been used for visualization
purposes only and have no physical meaning.

Figure 2: Scanning electron microscopy image of a graphene random
foam with a topology similar to those studied in this work (pore size
is of course much larger, of the order of a few micrometers, with
respect to that of our samples. (Courtesy of CNR-IMM Bologna,
Italy.))

D the foams present a decreasing average pore size, and
an increasing mass density.

The geometrical analysis of the graphene porous foams
and of their voids was carried out using the simulation
code Zeo++(Willems et al., 2012). In particular, we char-
acterize our prepared structures using the Pore Size Dis-
tribution (PSD) function, which can be experimentally
obtained by adsorption/desorption measurements. PSD
analysis delivers a quantitative description of the range of
pore sizes present in a given sample.

Moreover, we perform a coordination analysis to find
possible signature of under- or over-coordination of the
carbon atoms usually forming a network of sp2 hybrid
bonds. The computed quantities are reported in Tab 1.

4. Characterization of graphene foams

The averaged PSDs for all our graphene foam families
are reported in Fig. 4 (continuous lines), showing the stan-
dard deviation within each group as a colored shaded area.
By comparing these PSDs with those obtained in the case
of regular pore foams (Pedrielli et al., 2017), reported in

3



(a) A (b) B (c) C (d) D

Figure 3: A 3.0 nm slice of the unit cells for each of the four foam families with different porosity.

Figure 4: Pore Size Distribution of the four families of random
nanofoams. The average pore size of the considered foam families
is a decreasing function of mass density.

Figure 5: Pore Size Distribution of the four types of regular
nanofoams, such as those presented in Ref. Pedrielli et al. (2017).
The average pore size is 2 nm, comparable with the random foam
studied here, in particular with foams type B and C reported in Fig.
4.

Fig. 5, we notice that the random foams present similar
average pore dimension and similar mass density. Indeed,
the random foam PSDs are characterized by a maximum,
representing the most likely pore size in each case, decreas-
ing from 2.3 nm to 1.7 nm from A to D foam type. These
values compare reasonably well with those reported for
regular foams, where PSD peaks at about 2 nm (see Fig.
5). Finally, while regular foams present mass densities in
the range 0.6− 0.7 g cm−3, our families of random foams
have mass densities in the range 0.5−0.8 g cm−3 (see Tab.
1).

5. Computational methods

To perform molecular dynamics simulations, carbon-
carbon interatomic forces were modeled using the
AIREBO potential (Stuart et al., 2000). To find the min-
imum energy structures with respect to defect positions,
the samples were annealed at 3500 K, equilibrated at this
temperature for 100 ps, and eventually cooled down to
700 K in 100 ps using a viscous damping force. The an-
nealing was performed using the standard value for the
cutoff parameter for the REBO part of the potential and
performed within the microcanonical ensemble (NVE). For
the simulations of compressive and tensile regimes, all sam-
ples were equilibrated at zero pressure and at the temper-
ature of 1 K using the Nosé–Hoover barostat and thermo-
stat. Furthermore, the adaptive cut-off parameter of the
potential was set to 0.2 nm to better describe the near-
fracture regime (Shenderova et al., 2000). The equations
of motion were integrated via the velocity-Verlet algorithm
with time step of 1 fs. Mechanical properties were assessed
in the isobaric-isothermal ensemble (NPT), adding a drag
term to smooth out the pressure oscillations.

A uni-axial tensile strain was applied up to sample frac-
ture in each case. The strain parallel to the direction of
deformation is defined as

ε =
L− L0

L
=

∆L

L
(1)

where L0 and L are the starting and current length of the
sample in the direction of loading. To determine the stress,
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the pressure stress tensor components in response to the
external deformation are computed as (Thompson et al.,
2009)

Pij =

∑N
k mkvki

vkj

V
+

∑N
k rki

fkj

V
(2)

where i and j label the coordinates x, y, z; k runs over the
atoms; mk and vk are the mass and velocity of k-th atom;
rki

is the position of k-th atom; fkj
is the j-th component

of the total force on the k-th atom due to the other atoms;
and, finally, V is the volume of the simulation box.

The pressure in Eq. 2 includes both kinetic energy (tem-
perature) and virial terms. Notice that the forces appear-
ing in Eq. 2 are the sum of the pairwise, angle, dihedral,
improper and long-range contributions. The computed
stress is the true stress because the pressure is measured
with respect to the instantaneous section area of the sam-
ples. The uni-axial compressive strain was applied up to
reaching 35 % total strain. The applied strain rate is cho-
sen equal to 0.001 ps−1, that we tested appropriately in
case of regular nanofoams (Pedrielli et al., 2017). Stress
and strain were saved every 1000 time steps.

The stress–strain curve was computed at 1 K, since
molecular dynamics is usually computationally faster than
minimization procedures. The same approach has been
previously adopted by other groups dealing with similar
problems (see e.g. Wu et al. (2013)). The observables
that we calculate to characterize the mechanical properties
of the nanofoams are the Young modulus, fracture stress
and fracture strain. The toughness is also evaluated as the
area under the stress–strain curve up to the fracture stress.
Indeed, the samples have no plastic deformation but sev-
eral sequential fractures. Stress–strain characteristics of
carbon random nanofoams present a linear behaviour at
low strain. Thus, the Young modulus is obtained as the
tangent at zero strain.

We also performed the calculation of the Poisson ratio
ν, defined as the negative ratio between the transverse εT
and the longitudinal deformations εL:

ν = −εT
εL

(3)

Here we extend the concept of Poisson ratio to deforma-
tions beyond the linear regime, and use it to quantify the
lateral deformation of the material. A similar extension is
done for the Young modulus.

Phonon thermal conductivity was assessed using the
equilibrium Green-Kubo approach (Green, 1954; Kubo,
1957) for it is less sensitive to the simulation box dimension
than non-equilibrium molecular dynamics methods (Sellan
et al., 2010). To this aim, first the atomic positions were
relaxed and equilibrated at 300 K using the Berendsen
thermostat method (NVT ensemble).

Then, in the NVE ensemble, the equilibrium thermal
conductivity k according to the Green-Kubo formalism,

can be calculated as follows:

k =
V

3KBT 2

∫ ∞
0

〈 ~J(0) · ~J(t)〉dt (4)

where V is the volume of the simulation cell, t is the
correlation time, KB is the Boltzmann constant, ~r identi-
fies the particle positions. The heat current ~J , appearing
in Eq. 4, is defined by:

~J =
1

V

(∑
i

Ei~vi +
1

2

∑
i<j

(~Fij · (~vi + ~vj)~rij)
)

(5)

where ~v is the velocity of a particle, ~rij and ~Fij are the
distance and force between the particles i and j, and Ei is
the total energy per atom. The first term in the right hand
side corresponds to convection, while the second term to
conduction. The integrand in the expression for thermal
conductivity is the heat current auto-correlation function
(HCACF). To get a proper sampling of the phase space
multiple runs are required with different initial conditions.
Simulations to obtain MD trajectories to perform accu-
rate ensemble averages were performed over a time span
of 500 ps, using a step of 0.5 fs. HCACF has been com-
puted by dividing the total time of computation into 250 fs
beads and by performing the integral in Eq. 4 by sampling
every 5 fs. Finally, we average over all the beads.

The thermal conductivity was calculated by using a ver-
sion of the Tersoff potential (Lindsay and Broido, 2010) op-
timized to reproduce accurately the experimental phonon
dispersion curves and the thermal properties of carbon
structures, such as graphene and graphite.

Molecular dynamics simulations were carried out using
LAMMPS (Plimpton, 1995). Atomic configurations were
visualized by using the OVITO package (Stukowski, 2010)
or VMD (Humphrey et al., 1996).

6. Results and discussion

6.1. Tension

In Fig. 6, we report the stress–strain characteristics for
the four foam families investigated in this work, while in
Fig. 7 the stress–strain curves are normalized with respect
to the mass density.

The stress–strain curves show a typical elastic behavior
for small deformations up to the tensile strength, followed
by a decreasing tail corresponding to the sample fracture.
We notice that the stress–strain characteristics of graphene
foams do not present a region that can be associated to a
plastic deformation. Indeed, these 3D graphene structures
are essentially brittle, presenting a comparable fracture
strain with a corresponding stress specific of the family.
Notably, the same behaviour is found in the mass density
weighted stress–strain curves (see Fig. 6). This finding
tells us that the different mechanical performances of the
four foam families are due basically to features other than
mass density, such as the pore size distribution or the con-
nectivity.
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Figure 6: Stress–strain curves of the four graphene foam families
under uni-axial tension along with the standard deviation for each
family, reproduced by a colored shaded area on the top of the relevant
curve.

Figure 7: Stress–strain curves of the four foam families weighted by
the sample density under uni-axial tension along with the standard
deviation for each family, reproduced by a colored shaded area on
the top of the relevant curve.

Young Tensile Fracture
Foam type modulus strength strain

(GPa) (GPa) (%)

A 3.9 0.5 19
B 14.0 1.5 15
C 27.3 3.1 12
D 36.6 4.6 13

Table 2: Young modulus, tensile strength, and fracture strain of the
four families of random foams under tension.

Specific Specific Specific
Foam type modulus strength toughness

(MNm kg−1) (MNm kg−1) (MJ kg−1)

A 8.3 0.9 0.1
B 25.4 2.2 0.2
C 34.8 3.9 0.3
D 44.0 5.4 0.4

Table 3: Specific modulus, specific strength and specific toughness
of the four families of random foams under tensile strain. Specific
toughness is calculated as the area below the stress–strain curve up
to fracture strain per mass density.

Moreover, we report in Tab. 2 the Young modulus and
the tensile strength for the four foam families, and in
Tab. 3 the specific modulus and the specific strength (val-
ues per mass density). Furthermore, in the fourth col-
umn of Tab. 3 we show the specific toughness, calculated
as the total area below the stress–strain curves of Fig. 7
up to the fracture strain. Specific Young modulus and
tensile strength of random foams can be compared with
those previously calculated for carbon nanotruss networks,
studied in Ref. (Pedrielli et al., 2017). For nanotruss
network, at 5% to 8% strain the stress is in the range
90− 130 MNm kg−1, while for random foams at the same
strain the values are in the range 3.9 − 36.6 MNm kg−1.
This makes clear that regular foams are mechanically
stiffer than the random ones here studied. Graphene ran-
dom foams can be also compared to 3D graphene assem-
blies reported in Ref. (Qin et al., 2017). Graphene assem-
blies have a specific Young modulus of 7.65 MNm kg−1

(mass density: 0.366 g/cm3, Young modulus: 2.8 GPa),
which compares with the lowest mass density foam fam-
ily studied here (see Tab. 3). At variance, the specific
strength of 7.4 MNm kg−1 found in these graphene struc-
tures is only sligthly higher than in our random foams,
mainly due to the higher connectivity of graphene sheets
composing the assemblies. For completeness, we notice
that the mechanical tests reported in Ref. (Qin et al.,
2017) have been performed at a temperature of 300 K,
while our simulations are performed at 1 K.

6.2. Compression

In this section we present the results obtained for our
samples under compressive load. In Fig. 8 we report the
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Figure 8: Stress–strain curves of the four random foam families un-
der uni-axial compression up to 35% strain. Shaded areas represent
standard deviation within each foam family.

(a) A (b) D

Figure 9: A 2.0 nm slice of a sample from the foam families A and
D under 12% compressive strain. As by Fig. 8 this strain value sets
the transition between the elastic regime and the collapsing plateau.
This transition for foams of higher porosity, such as those belonging
to the type A, is related to the closure of the interstitial space when
graphene sheets touch upon, as those highlighted by red circles.

stress–strain curves for the four foam families. The maxi-
mum deformation reaches 35% strain for the largest com-
pression load. Beyond 35% strain the foams are mechan-
ically unstable. From Fig. 8, we observe that at small
strain foams are in the elastic regime, and the material is
characterized by a full recovery to the original shape when
the load is removed. Subsequently, we find a plateau with
a slope similar for all our foam families, which models the
structural collapse at a nearly constant stress by bending
or fracture of the building blocks.

Finally, at higher strain (not shown) one finds a steep
ramp in the stress–strain curve, representing the complete
collapse of the structures. The random foam family A,
characterized by the lowest density, presents this ramp at
70% compressive strain. At variance, higher density ran-
dom foams are not stable under compression before their
respective final ramps, and present a structural transition

from graphene ordered layers to amorphous carbon, with
a strong stress decrease followed by an increase.

Figure 10: Specific stress–strain curves of the four random foam
types under uni-axial compression up to 35% strain. Shaded areas
represent deviation within each foam family.

The most visible mechanical characteristics of our fami-
lies of random foams (see the stress–strain curves in Fig. 8)
is that, with increasing foam density and decreasing pore
size average dimension, the elastic part presents an in-
creasing slope, while beyond 5 − 10% strain the slopes
are very similar. This behavior suggests a change in the
compression mechanism: below 5−10% strain the slope is
mainly due to the connectivity among graphene layers and
this regime is characterized by structural stability, while
beyond that the structures start collapsing with a rela-
tively small increase of the stress, due to the bending of
the graphene sheets inside the foams.

The foam family with the lowest mass density presents
an almost linear stress–strain characteristic. This suggests
that the collapse is dominated by bending. In higher den-
sity foams the slope change is more marked, showing that
bending of graphene sheets occurs at higher strain.

We notice that the similarity of the slope of the stress–
strain curves between 10% and 30% strain is due to a simi-
lar mechanism for collapse. This similarity can be rational-
ized by observing Fig. 9, where a 2.0 nm slice of a sample
from the foam families A and D under 12% compressive
strain is reported. As by Fig. 8 this strain value sets the
transition between the elastic regime and the collapsing
plateau. This transition for foams of higher porosity, such
as those belonging to the type A, is related to the closure
of the interstitial space when graphene sheets touch upon,
as those highlighted by red circles.

In Fig. 10 we report (as performed in the case of tensile
load) the specific stress–strain curves, which are normal-
ized per mass density. Similarly to the tensile case, the
stress–strain characteristics are almost unaffected by this
normalization, once more confirming that the mechanical
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Figure 11: Stress–strain curves of the four random foam types under
uni-axial compression up to 15% strain.

Young Plateau
Foam type modulus slope

(GPa) (GPa)

A 3.5 1.6
B 12.3 3.0
C 24.4 3.7
D 31.8 3.1

Table 4: Young modulus and plateau slope of the four foam families
studied under compression.

performances of random foams are related to the connec-
tivity and the topology of the foams rather than to the
mass density.

Moreover, under compression the behavior of the ran-
dom foam families C and D, characterised by higher den-
sity, is very similar to that of regular nanofoams presented
in Ref. (Pedrielli et al., 2017) with comparable plateau
specific stress. At variance, lower density random foams
present an almost linear behavior under compression that
differs from that of regular nanofoams. Young modulus
and plateau slope for the four random foam families under
compressive load are reported in Tab. 4.

Finally, in Fig. 11 we report the stress–strain curves of
the four random foam families, initially loading the sam-
ples up to 15% strain and subsequently unloading them.
At odds with regular foams that can fully recover their ini-
tial shape when unloaded after reaching high deformations
(up to 25%) (Pedrielli et al., 2017), the higher density of
defects in random foams and the local concentration of
stress cause an incomplete elastic behavior even for rela-
tively small strain (15%).

6.3. Poisson Ratio

To better characterize the four random foam families, we
computed the Poisson ratio of these structures. The Pois-
son ratio for each sample is computed as the average in

Figure 12: Plot of the Poisson ratio as a function of tension strain for
the four random foam families. The shaded areas across the curves
represent the standard deviation within each foam family.

Figure 13: Plot of the Poisson ratio as a function of compression
strain for the four random foam families. The shaded areas across
the curves represent half of standard standard deviation within each
foam family.

8



the two directions transverse to the loading. The Poisson
ratios under uni-axial tension and compression regimes are
plotted in Figs. 12 and 13, respectively. Notably, the Pois-
son ratios are positive over the whole deformation range
for all our random foam families.

In particular, for near zero strain under tension, the
Poisson ratio is in the range 0.1 − 0.25 with values in-
creasing with mass density and foam connectivity. Fur-
thermore, up to in 15% strain there is a small increment
(0.02−0.05) in the Poisson ratio for all the foams families.
Finally, the Poisson ratio at higher tensile strain goes to
zero. This behaviour is explained as mainly due to the
fracture of the samples in this deformation regime, which
prevents the sample from further contraction.

At variance, under compression the decrease of the Pois-
son ratio is due to the internal rearrangement of the
graphene layers. At higher strain (about 30 %) the Poisson
ratio ranges between (0.05− 0.1).

It can be worth noting that in Figs. 12 and 13, the stan-
dard deviation, reported as a shaded area across the rel-
evant curve, is significantly smaller for lower density ran-
dom foam families than that for higher densities.

6.4. Thermal conductivity

Figure 14: Time averaged HCACF vs. simulation time of the four
random foam families calculated as by Eq. 4. The asymptotic values
after 300 ps provide the thermal conductivity of the samples. The
shaded area for each relevant curve represents the standard deviation.

The thermal conductivity was assessed for all the sam-
ples by using the averaging procedure of the HCACF ex-
plained before. In general, HCACF dies off within 100 ps
and subsequently oscillates. This makes possible the time
bead division. In Fig. 14 we plot the average of the integral
of HCACF as a function of simulation time for each foam
family. The thermal conductivity is given by the asymp-
totic values of the time-integrated HCACFs. These values
for the four foam families, obtained by averaging in the
range 400− 500 ps, are reported in Tab. 5.

Thermal Standard
Foam type conductivity deviation

(Wm−1· K−1) (Wm−1· K−1)

A 0.83 0.13
B 1.02 0.20
C 1.29 0.20
D 1.36 0.22

Table 5: Thermal conductivity of the four foam families computed
via the Green-Kubo approach using an optimized Tersoff potential.

We notice that two major factors affect the thermal con-
ductivity, that are the foam connectivity and the presence
of defects. In the foam families studied here, we devise that
the low connectivity found in lower density foams is coun-
terbalanced by the higher number of three-coordinated
atoms, while the opposite trends occurs in higher density
foams. Thus, these two factors balance each others. The
thermal conductivity of random foams is similar to that
of glass (1 Wm−1 · K−1) for lower density foams, with an
small increase (1.5 Wm−1 · K−1) for higher density foams.

7. Conclusions

In this work, we investigated the mechanical proper-
ties of carbon random foams with a topology experimen-
tally achievable by growing graphene on stacked nickel
nanoparticles. In particular, we tested the mechanical per-
formances of four families of random foams characterized
by different mass density and pore size distribution un-
der tension and compression by means of MD simulations
with reactive potentials. The samples were prepared using
a multi-step approach based on the Voronoi partitioning of
a triangulated surface, obtained by tessellation of the sim-
ulation cell using a LJ potential forcing the carbon atoms
towards a rigid support.

Under compression, we found the typical elastic defor-
mation regime with a Young modulus significantly increas-
ing with a decreasing average pore size dimension. A
behavior, common to all the random foam families here
studied, was found for compressive strain in the bend-
ing plateau zone, with a positive slope of the stress–strain
curve similar for all the four foam families. For the lowest
density random foam family the stress–strain characteris-
tic is almost linear.

Finally, we calculated the Poisson ratio, a quantity used
to assess the transverse response of materials to deforma-
tion, of these random foams. Under tension, the Poisson
ratio is positive for all the random foam families, indicat-
ing a transverse contraction under tensile load. The values
of the Poisson ratio under compression are again positive
for all the considered strain and tend to stabilize as the
strain increases.

As a major outcome of our computational analysis, we
find that mechanical properties under tension are charac-
terized by an overall decrease of Young modulus with re-

9



spect to regular nanofoams, while a tensile strength of the
same order of that found for regular foams was obtained
for higher density random foams.

Due to the interest of using foams as a mean for achiev-
ing thermal resistance, we computed the thermal conduc-
tivity of random foams using the Green-Kubo approach
with a Tersoff potential optimized for these simulations.
The thermal conductivity is comparable to that of glass,
thus higher than materials typically used as thermal in-
sulators, such as polyurethane rigid foams. Still, random
foams do not display good thermal conductive properties,
which can be related to the low connectivity in case of high
porosity foams and to the presence of defects in low poros-
ity foams. Nevertheless, combining outstanding mechani-
cal performances with light weight, low density and good
thermal insulating properties, carbon random foams could
be promising candidates as reinforcing fillers in nanocom-
posites or elastomers to tailor their properties or to replace
polymer materials in applications where thermal stability
and mechanical strength are needed.
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