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                                                                      20 

Abstract 21 

We numerically analyze the performance of labyrinthine acoustic metamaterials with internal 22 

channels folded along a Wunderlich space-filling curve to control low-frequency sound in air. In 23 

contrast to previous studies, we perform direct modeling of wave propagation through folded 24 

channels, not introducing effective theory assumptions. As a result, we reveal that metastructures 25 

with channels, which allow wave propagation in the opposite direction to incident waves, have 26 

different dynamics as compared to those for straight slits of equivalent length. The differences 27 

are attributed to activated tortuosity effects and result in 100% wave reflection at band gap 28 

frequencies. This total reflection phenomenon is found to be insensitive to thermo-viscous 29 

dissipation in air. For labyrinthine channels generated by iteration levels, one can achieve 30 

broadband total sound reflection by using a metamaterial monolayer and efficiently control the 31 

amount of absorbed wave energy by tuning the channel width. Thus, the work contributes to a 32 

better understanding of labyrinthine metamaterials with potential applications for reflection and 33 

filtering of low-frequency airborne sound. 34 

 35 

Keywords: low-frequency waves, labyrinthine acoustic metamaterial, space-coiling curve, 36 

Fabry-Perot resonance, hierarchical organization, perfect reflector, tortuous porous material. 37 

 38 
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1. Introduction 40 

Acoustic metamaterials are composites 41 

with an engineered structure governing 42 

remarkable functionalities, e.g. acoustic 43 

cloaking, transformation acoustics, and 44 

subwavelength-resolution imagining [1, 45 

2]. Apart from unusual effective 46 

properties, the metamaterials offer 47 

various possibilities to control 48 

propagation of sound or elastic waves at 49 

deep sub-wavelength scales [3, 4, 5]. This 50 

can be achieved by incorporating heavy 51 

resonators [3], Helmholtz resonators [6, 52 

7], tensioned membranes [8, 9], or sub-53 

wavelength perforations or slits [10, 11, 54 

12, 13] in a material structure. A class of 55 

acoustic metamaterials with internal slits 56 

is also known as “labyrinthine”. They 57 

have recently attracted considerable 58 

attention due to their abilities to exhibit 59 

an exceptionally high refractive index 60 

and efficiently reflect sound waves, while 61 

preserving light weight and compact 62 

dimensions [13, 12, 14]. 63 

Labyrinthine metamaterials enable to 64 

slow down the effective speed of acoustic 65 

waves due to path elongation by means of 66 

folded narrow channels [15, 13]. Their 67 

high efficiency in manipulating low-68 

frequency sound has been experimentally 69 

demonstrated for various channel 70 

geometries. For example, Xie et al. [16] 71 

have shown the appearance of a negative 72 

effective refractive index at broadband 73 

frequencies for labyrinthine 74 

metastructures with zig-zag-type 75 

channels. For the same configuration, 76 

Liang et al [15] have demonstrated 77 

extraordinary dispersion, including 78 

negative refraction and conical 79 

dispersion for low-frequency airborne 80 

sound. Frenzel et al. have used the zig-81 

zag channels to achieve broadband sound 82 

attenuation by means of three-83 

dimensional labyrinthine metastructures 84 

[17, 18]. The issue of poor impedance 85 

matching for labyrinthine metamaterials 86 

has been addressed by exploiting tapered 87 

and spiral channels [19] and 88 
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hierarchically structured walls [20]. 89 

Cheng et al. have proven almost perfect 90 

reflection of low-frequency sound by 91 

sparsely arranged unit cells with circular-92 

shaped channels that can induce artificial 93 

subwavelength Mie resonances [12]. In 94 

our previous work, we have proposed a 95 

simple modification to the latter design 96 

(by adding a square frame) to achieve a 97 

wider tunability [14]. Moleron et al. have 98 

emphasized the importance of thermo-99 

viscous effects on the performance of 100 

labyrinthine structures with sub-101 

wavelength slits [21]. 102 

Most of the studies analyze labyrinthine 103 

metamaterials with curved channels by 104 

replacing a real system with a simplified 105 

one, when dynamics of folded channels is 106 

described by that of straight slits of an 107 

effective length, which equals to the 108 

shortest path taken by a wave within the 109 

structure [13, 21, 17, 15, 20]. This 110 

approach provides reliable results for 111 

channels, in which the direction of wave 112 

propagation does not deviate much from 113 

that that for incident waves. Therefore, it 114 

appears that the channel tortuosity plays 115 

no role. Possible effects of the path 116 

tortuosity, when a wave is allowed to 117 

propagate in the opposite direction 118 

relative to that of the incident field, 119 

remain to be investigated. A limited 120 

number of papers have analyzed 121 

labyrinthine metamaterials of this type. 122 

In [19], Xie et.al have investigated 123 

metastructures with spiral channels to 124 

introduce tunability of effective 125 

structural parameters, such as refractive 126 

index and impedance. Song et. al. have 127 

considered hierarchically organized walls 128 

to achieve a broadband wave absorption 129 

[20]. These works are mainly focused on 130 

the experimental validation of the 131 

mentioned features, and lack a theoretical 132 

analysis of wave behavior in a tortuous 133 

channel. 134 

The goal of this work is to numerically 135 

investigate dispersion and propagation 136 

properties of airborne sound in 137 

labyrinthine metamaterials with channels 138 
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that allow a change in the direction of 139 

wave propagation, and compare their 140 

performance with that of the 141 

corresponding straight slits. For this 142 

purpose, we design sub-wavelength paths 143 

in metamaterial unit cells along a 144 

hierarchically-organized curve. In 145 

particular, we consider a space-filling 146 

curve due to its self-similar organization, 147 

a simple algorithm to derive length 148 

elongation, and an inherent property to 149 

fill in occupied area. We provide a 150 

complete theoretical analysis of the wave 151 

dispersion in the designed metamaterials 152 

complemented by the study of acoustic 153 

transmission, reflection, and absorption 154 

for a mono-slab in the absence or 155 

presence of thermo-viscous losses. Our 156 

results demonstrate that, when a wave 157 

inside a narrow channel is allowed to 158 

propagate in the opposite direction with 159 

respect to the incident wave front, the 160 

wave dynamics is not equivalent to that 161 

in a straight slit of an effective length. 162 

The peculiar channel tortuosity allows to 163 

open sub-wavelength band gaps. At band 164 

gap frequencies, total broadband wave 165 

reflection occurs that is not influenced by 166 

the presence of losses in air. Therefore, 167 

the proposed metamaterials have a great 168 

potential as efficient reflectors for low-169 

frequency airborne sound. Moreover, to 170 

facilitate their practical exploitation, we 171 

propose to assemble reconfigurable 172 

structures from thin panels of constant 173 

thickness (sheets), which is a cheap 174 

alternative to an additive manufacturing 175 

approach. 176 

2. Space-filling curves 177 

As mentioned above, the wave path is 178 

elongated by exploiting the hierarchical 179 

structure of space-filling curves [22]. 180 

First space-filling curves were 181 

discovered by Peano [23] (later named 182 

after him), and since then many other 183 

curves were proposed [24]. An attractive 184 

property of these curves is that they go 185 

through every point of a bounding 186 

domain for an unlimited number of 187 

iterations. After initially being studied as 188 



A.O. Krushynska 
 

6 
 

a curiosity, nowadays space-filling 189 

curves are widely applied, e.g. for 190 

indexing of multi-dimensional data [25], 191 

transactions and disk scheduling in 192 

advanced databases [26], building 193 

routing systems [27], etc. 194 

Among various space-filling curves, we 195 

have chosen the Wunderlich two-196 

dimensional curve filling a square [22], 197 

which is constructed as follows. At the 1st 198 

iteration level, one draws an “S”-shaped 199 

curve starting at the bottom-left corner of 200 

a bounding square and ending at the top-201 

right corner. At the nth (n≥ 2) iteration 202 

level, 3 copies of the (n -1)th-level curve 203 

are arranged along each side of a square 204 

with every copy being rotated by 90° 205 

relative to the previous one. The curves 206 

are joined into an N-shaped route starting 207 

from the up-direction for the left column, 208 

then down for the middle column, and 209 

finally again up for the right column. At 210 

every iteration level �, the length of the 211 

Wunderlich curve is �3� − 1 3�⁄ 
, while 212 

that of e.g. Hilbert’s curves is �2� −213 

1 2�⁄ 
 [22]. Faster length elongation 214 

enables more compact channel folding in 215 

a labyrinthine structure (and thus, 216 

increases the tortuosity effect, as will be 217 

shown later) that justifies the choice of 218 

the Wunderlich curve for this study. 219 

3. Models and analysis 220 

methods 221 

Figure 1 presents square labyrinths with 222 

an internal channel shaped along the 223 

Wunderlich curve of the three iteration 224 

levels, which are used for constructing 225 

“unit cell 1” (UC1), “unit cell 2” (UC2), 226 

and “unit cell 3” (UC3), respectively. The 227 

structural material is aluminum with 228 

mass density ��
 = 2700 kg/m3 and 229 

speed of sound ��
 = 5042 m/s. The 230 

thickness of bounding walls is fixed for 231 

all the unit cells and equals �=0.5mm. 232 

The channel width is �, and the size of a 233 

square domain occupied by a single 234 

labyrinth is � = 3� ∙ �� + �
 + �, 235 

where � is the iteration level. We 236 

preserve an interconnecting cavity of 237 
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width � between adjacent labyrinths. 238 

Thus, the metamaterial unit cell size is 239 

��� = � + � (see Fig. 1a for notations). 240 

We analyze plane waves propagating in 241 

the plane of a unit cell cross-section. The 242 

metamaterial geometry is assumed to be 243 

constant in the out-of-plane direction 244 

without a possibility to excite a 245 

momentum in this direction. Hence, the 246 

pressure field is always constant in the 247 

out-of-plane direction, and the wave 248 

dynamics can be analyzed by considering 249 

a two-dimensional (2D) geometry. The 250 

validity of this assumption is confirmed 251 

by a good agreement with the results of 252 

three-dimensional (3D) simulations 253 

given further in the Section 4. 254 

First, we analyze sound wave dispersion 255 

in the labyrinthine metamaterials that are 256 

infinite in both in-plane directions. By 257 

neglecting any losses in air, small-258 

amplitude variations of harmonic 259 

pressure ���, �
 = ���
 !"# (with 260 

angular frequency $ = 2%&, where & the 261 

frequency in Hz) are governed by the 262 

homogeneous Helmholtz equation: 263 

∇ ∙ (− )
*+ ∇�, − "-.

*+�+-
= 0 (1) 264 

with air density �/ = 1.225 kg/m3 and 265 

speed of sound �/ = 343 m/s at a 266 

temperature of 1 = 20℃. Since 267 

characteristic acoustic impedance of 268 

aluminum is around 4 orders of 269 

magnitude larger than that of air, we 270 

assume zero displacements for the 271 

structural walls and apply sound-hard 272 

boundary conditions at air-structure 273 

interfaces. The pressure distribution at 274 

opposite unit cell boundaries is 275 

constrained by the Floquet-Bloch 276 

periodic conditions: 277 

��� + 3
 = ���
 !4∙3  (2) 278 

with 3 = ���� , ��� , 0
 and wave vector 279 

4 = �56 , 57 , 0
. More details about the 280 

dispersion analysis can be found in [14]. 281 

Next, we evaluate homogeneous wave 282 

propagation through a metamaterial 283 

monolayer. Sketch of the model is 284 
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presented in Fig. 2. Plane wave radiation 285 

occurs at the left domain boundary at 286 

distance of 10auc from the slab. At the 287 

right boundary, a perfectly matched layer 288 

of width 2auc is added to eliminate 289 

unwanted wave reflection. At the bottom 290 

and top boundaries, the Floquet-Bloch 291 

periodic boundary conditions (2) enable 292 

to artificially extend the air domain in the 293 

vertical direction. The reflection 8 =294 

|�: �!⁄ |;, transmission 1 = |�# �!⁄ |;, and 295 

absorption < = 1 − 8 − 1 coefficients 296 

are evaluated by averaging incident �!, 297 

reflected �:, and transmitted �# pressure 298 

fields along the lines located at distance 299 

auc from the structure. 300 

In order to analyze how the tortuosity of 301 

a labyrinthine channel influences sound 302 

wave characteristics, we compare the 303 

evaluated 1 and < values for the 304 

metastructures with those for straight slits 305 

of width � between solid blocks of length 306 

L=Leff or L=��� distributed at distances � 307 

along the vertical direction. In the case of 308 

L=���, the blocks are of the same size as 309 

labyrinthine structures, but do not contain 310 

internal channels. The effective channel 311 

length Leff is approximately equal to the 312 

shortest wave path from the input to the 313 

output through a labyrinthine channel (as 314 

shown e.g. by light-blue lines in Fig. 1b). 315 

If a channel width is small compared to 316 

the wavelength of a propagating wave, 317 

thermal and viscous boundary layers near 318 

walls cause loss effects (lossy air). The 319 

thickness of these layers decreases with 320 

increasing frequency. The thickness of 321 

thermal boundary layer =#> is evaluated 322 

as follows: 323 

=#> = ? @
AB*+CD,  (3) 324 

where 5 = 25.8 mW/(m∙K) is the 325 

thermal conductivity, and F. = 1.005 326 

kJ/(m3∙K) is the heat capacity at constant 327 

pressure. The thickness of the viscous 328 

boundary layer =G!H is  329 

=G!H = ? I
AB*+

,   (4) 330 

with dynamic viscosity J = 1.814e-5 331 

Pa˖s. The graphical representation of Eqs. 332 
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(3)-(4) is given in Fig. 3. At 20°C and 1 333 

atm, the viscous and thermal boundary 334 

layers are of thickness 0.22mm and 335 

0.26mm at 100 Hz, respectively. 336 

As the designed labyrinthine channels are 337 

relatively easy to model, we directly 338 

include thermal conduction and viscous 339 

attenuation into the governing equations. 340 

Thus, the linearized system consists of a 341 

Navier-Stokes equation, a continuity 342 

equation, and an energy equation, which 343 

are given in [28]. This system is solved 344 

for acoustic pressure variations �, the 345 

fluid velocity variations K, and the 346 

acoustic temperature variations 1. The 347 

variations describe small harmonic 348 

oscillations around a steady state. The 349 

mentioned equations are implemented in 350 

Thermoacoustic interface of Comsol 351 

Multiphysics [29]. 352 

The dispersion and transmission analyses 353 

are performed as eigenvalue and 354 

frequency-domain finite-element simula-355 

tions. The described acoustic domains are 356 

discretized with the maximum element 357 

size of LM!N/12, where LM!N = �/ &MP6⁄ , 358 

and &MP6 is the maximum considered 359 

frequency. Such a mesh resolves the 360 

smallest wavelength of the study with 12 361 

elements. To properly capture the wave 362 

field variations within the viscous and 363 

thermal boundary layers, we 364 

implemented a frequency-varying mesh 365 

with 3-5 boundary layers along the 366 

thickness of the viscous layer. 367 

4. Results and discussion 368 

We consider the designed labyrinthine 369 

metamaterials of two dimensions. In the 370 

first case, defined as a “fixed channel” 371 

case, we imply a constant channel width, 372 

� = �QRS�, at each iteration step. 373 

Thereby we aim at evaluating effects of 374 

tortuosity on sound propagation in 375 

elongating paths. For �=4 mm, the 376 

metamaterial unit cell sizes are ��� =18 377 

mm for UC1, 45 mm for UC2, and 126 378 

mm for UC3. For another case, called as 379 

“fixed unit cell” case, we assume a fixed 380 

unit cell size, ��� = �QRS�, with the 381 
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channel width becoming smaller at each 382 

iteration. In particular, we fix ��� = 14 383 

mm that corresponds to the channel width 384 

� = 3 mm for UC1 and 0.9mm for UC2. 385 

For UC3, the internal channel is 386 

disappears for the specified wall 387 

thickness d=0.5 mm. For the chosen 388 

value of ���, the channel width in the 389 

“fixed unit cell” case is smaller than that 390 

in the “fixed channel” case at the same 391 

iteration level. Thus, by comparing wave 392 

propagation for these two cases, we can 393 

evaluate how different amount of thermo-394 

viscous losses influences the wave 395 

dynamics in labyrinthine channels of the 396 

same structure. 397 

In the both described cases, an internal 398 

labyrinthine channel is shaped along the 399 

Wunderlich curve. However, its length is 400 

scaled differently than that of the fractal 401 

curve due to deviations in construction 402 

approaches. Specifically, the algorithm 403 

of the Wunderlich curve construction 404 

assumes that the curve is a compressing 405 

mapping from a low-dimensional space 406 

into a 2D domain, the area of which is the 407 

same at each iteration level [22]. For our 408 

unit cells, we assume the constant wall 409 

thickness that incurs variations in the 410 

channel length relative to that of the 411 

Wunderlich curve. Hence, in the “fixed 412 

channel” case, when the area of a 413 

bounding square increases at each 414 

iteration step (in contrast to the 415 

construction approach of the Wunderlich 416 

curve), the channel length is elongated by 417 

a factor of 3� relative to �. In the “fixed 418 

unit cell” case, the channel length 419 

increases as 3�� − 1. 420 

4.1 “Fixed-channel” case 421 

Figure 4 shows evaluated dispersion 422 

relations for homogeneous waves in 423 

UC1, UC2, and UC3 propagating along 424 

ΓX direction in the reciprocal k-space. 425 

The horizontal axis indicates normalized 426 

wavenumber 5∗ = ���5, and the vertical 427 

axes depict frequencies f in kHz and 428 

normalized frequencies &∗ = &��� �/⁄ . 429 

Note different frequency ranges for each 430 



A.O. Krushynska 
 

11 
 

unit cell. The analyzed frequencies are 431 

limited to a sub-wavelength range, i.e. up 432 

to &��� �/⁄ = 0.5. For UC1, we consider 433 

modes forming the lowest band gap 434 

separated into two parts and extending up 435 

to 9 kHz. For the UC2 and UC3, the 436 

frequency range includes the first 4 437 

separated band gaps, and thus, it is 438 

limited to 4 kHz and 500 Hz, 439 

respectively. 440 

The dash-dot lines represent phase 441 

velocities of sound waves in lossless air 442 

for the lowest fundamental mode within 443 

a unit cell (green curve) and in 444 

homogeneous air, when a unit cell is 445 

removed (red curve). As can be expected, 446 

the velocity is reduced when a wave 447 

propagates through a labyrinthine 448 

channel. The reduction factor is 1.63 449 

(UC1), 2.91 (UC2), and 5.28 (UC3) 450 

compared to homogeneous air. 451 

The dispersion relations in Fig. 4 are 452 

characterized by several frequency band 453 

gaps in the sub-wavelength region. 454 

Hence, the designed labyrinthine 455 

metamaterials can control sound waves at 456 

sub-wavelength scales. As N increases, 457 

the band gaps are shifted down to lower 458 

frequencies. The shifts are directly 459 

related to the path elongation. For 460 

example, the 1st band gap starting from 461 

&�/�/ = 0.21 for UC1, is shifted to about 462 

3 times lower frequency, &�/�/ = 0.069, 463 

for UC2, since the channel length in UC2 464 

is 3 times longer than that in UC1. 465 

The band-gap bounds are formed by flat 466 

parts of dispersion bands that correspond 467 

to localized modes. The pressure 468 

distributions for these modes are given in 469 

the 1st and 3rd columns of Table 1 for the 470 

1st band gap bounds and Table 2 for the 471 

2nd and 3rd band gap bounds. Red and 472 

blue colors represent maximum and 473 

minimum values of pressure, while green 474 

color indicates near-zero pressure. Strong 475 

pressure localization is observed within 476 

the labyrinthine channels. It is easy to 477 

estimate that regardless of the iteration 478 

level, these localized modes correspond 479 
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to Fabry-Perot resonances in a straight 480 

slit of width � and length UVBB [21, 13]: 481 

&
WX = Y�/ 2UVBB⁄ ,  (5) 482 

where Y is a positive integer. In the “fixed 483 

channel” case, UVBB equals 2.305��� for 484 

UC1; UVBB = 5.667��� for UC2, and 485 

UVBB = 16.642��� for UC3 with ��� =486 

���√2. Note that odd Y values correspond 487 

to the lower band gap bounds, while even 488 

Y values allow approximating the upper 489 

band gap bounds in Fig. 4. 490 

The fact that multiple Fabry-Perot 491 

resonances form the band gap bounds 492 

explains a similar structure of the 493 

dispersion bands at various frequencies in 494 

Fig.4, which have close values of phase 495 

and group velocities. 496 

The pressure distributions given in 497 

Tables 1-2 also resemble those of 498 

artificial monopole, dipole and multipole 499 

resonances from Ref. [12]. For example, 500 

the patterns at lower bound of the 1st band 501 

gap (the 1st column in Table 1) is similar 502 

to a monopole, in which the pressure is 503 

concentrated in the central part of a 504 

channel, equally radiating along two 505 

propagation directions [12, 14]. Thus, the 506 

monopole and multipole resonances in 507 

the considered folded channels originate 508 

from the tortuosity effect of the Fabry-509 

Perot resonances. 510 

Since an effective dynamic bulk modulus 511 

(not evaluated in this study) is typically 512 

negative at limited frequencies above the 513 

monopole resonance, one can expect a 514 

high wave reflectance at these 515 

frequencies [12]. This behavior has been 516 

experimentally observed in [12] for 517 

circular-shaped folded channels. The 518 

wave transmission and absorption 519 

coefficients for our metastructures are 520 

discussed below in this section. 521 

Apart from the Fabry-Perot resonances, 522 

wave dispersion in the designed 523 

labyrinthine metamaterials is also 524 

characterized by the presence of bands 525 

within the band gap frequencies. These 526 

bands are found within each band gap for 527 

every analyzed unit cell (see curves 528 
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separating band gaps in Fig. 4). The 529 

pressure distributions for these modes 530 

(the 2nd column in Tables 1-2) resemble 531 

those for the dipole and its higher 532 

harmonics (compare to 3rd column of 533 

Tables 1-2), but it is not localized inside 534 

a channel. Hence, these modes do not 535 

represent standing localized waves, 536 

rather they are propagating waves with 537 

very small (and often negative) group 538 

velocities. They may be analogous to 539 

slow modes inside phononic band gaps 540 

for elastic waves [30, 31]. The 541 

mechanism of the slow mode excitation 542 

in acoustics and their dynamics will be 543 

investigated in more detail in future 544 

work. Here, we consider these modes to 545 

be included in a single band gap (shown 546 

as separated into two parts), since we 547 

have not detected the presence of these 548 

modes in the frequency-domain 549 

simulations (for lossless and lossy air), 550 

even for a very fine frequency step (see 551 

Figs. 5-6). 552 

Frequency-domain simulation results are 553 

given in Figs. 5-6 in terms of 554 

transmission and absorption coefficients 555 

for lossless and lossy air. (Reflection 556 

coefficient can be directly derived from 557 

these data, and thus is not shown here.) 558 

We analyze waves propagating through a 559 

monolayer composed of the labyrinthine 560 

unit cells (Figs. 5a, 6a, 6c) and periodic 561 

straight slits of length UVBB (Fig. 5b, 6b, 562 

6d) or ��� (Fig. 5c). Note that at certain 563 

frequencies for lossy air, the transmission 564 

and absorption coefficients appear to be 565 

mesh-dependent, and hence are not 566 

shown here as unreliable. 567 

When losses in air are neglected, 568 

incoming waves are either transmitted or 569 

reflected for all the considered 570 

geometries, and thus, the absorption 571 

coefficient is zero (not shown in the 572 

graphs). Total transmission is achieved at 573 

frequencies of the Fabry-Perot 574 

resonances given by Eq. (5). As can be 575 

seen, this effect is independent of the 576 

channel tortuosity and occurs in folded 577 



A.O. Krushynska 
 

14 
 

labyrinthine channels of any iteration 578 

level at almost the same frequencies as 579 

for straight slits. For the slit of length ���, 580 

the fundamental Fabry-Perot resonance 581 

appears to be at higher frequencies than 582 

the analyzed frequency range. Thus, 583 

straight slits of length ��� will be not 584 

considered further. 585 

When thermo-viscous losses are 586 

included, the transmission peaks decrease 587 

in magnitude and are shifted to lower 588 

frequencies compared to the lossless air. 589 

The latter occurs due to the reduction of 590 

the propagation velocity in dissipative air 591 

and is confirmed by experimental 592 

measurements in [21]. 593 

The striking difference in wave 594 

propagation through the unfolded 595 

(straight) and hierarchically-structured 596 

channels occurs between the frequencies 597 

of Fabry-Perot resonances. In case of the 598 

straight slits, the main part of incoming 599 

waves is reflected, while about 15-20% 600 

of the wave energy is transmitted through 601 

a slit. For the labyrinthine metamaterials, 602 

the same behavior is observed in the 603 

propagating frequency range, while 604 

within the band gaps total wave reflection 605 

occurs with zero transmission coefficient. 606 

As mentioned above, at the lower band 607 

gap bound, the fundamental Fabry-Perot 608 

resonance corresponds to the monopole, 609 

and thus, total reflectance is justified by a 610 

negative value of effective bulk modulus 611 

within the band gap. Experimental data 612 

for circular-shaped folded channels [12] 613 

show about 84% insertion loss that is in 614 

good agreement with the transmission 615 

results for straight slits at frequencies 616 

between the Fabry-Perot resonances (see 617 

e.g. in Fig. 6b). In contrast to this, for our 618 

labyrinthine structures total zero 619 

transmission is achieved even if thermo-620 

viscous losses are taken into account. We 621 

attribute this to the presence of a wave 622 

path that redirects a propagating wave in 623 

the folded channel to the opposite 624 

direction relative to incident waves, since 625 

all the other structural parameters (as 626 

compared to a straight slit) are the same. 627 
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Therefore, the peculiar tortuosity of the 628 

designed channels significantly modifies 629 

the wave dynamics at band-gap 630 

frequencies, and these effects cannot be 631 

captured by a simplified consideration of 632 

equivalent straight slits. 633 

While the total transmission at Fabry-634 

Perot resonances is eliminated by the loss 635 

mechanisms in air [21], the revealed total 636 

reflection at band-gap frequencies is not 637 

affected by dissipation. As the iteration 638 

level increases, the band gaps, i.e. the 639 

total reflection frequencies, are shifted to 640 

lower frequencies and decrease in size 641 

(compare Figs. 5a, 6a, and 6c). However, 642 

the amount of transmitted energy at 643 

frequencies of propagating modes also 644 

decreases, which is not the case for the 645 

straight slits (compare e.g. Figs. 6c and 646 

6d). Therefore, the incorporation of third 647 

and higher iteration levels for a “fixed 648 

channel” unit cell is beneficial for low-649 

frequency sound control and allows to 650 

achieve broadband sound reflection. 651 

To summarize, we can derive two key 652 

conclusions. First, wave propagation in 653 

the proposed labyrinthine metamaterials 654 

with hierarchically-structured channels 655 

differs from that through straight slits of 656 

the effective length. The physical 657 

mechanism causing this difference is the 658 

channel tortuosity, which allows a wave 659 

to propagate in the opposite direction 660 

relative to an incident pressure field. 661 

When deriving effective characteristics 662 

for metastructures with complex-shaped 663 

wave paths, the mentioned tortuosity 664 

effect must be taken into account. 665 

Second, the designed labyrinthine 666 

metamaterials can be used as broadband 667 

low-frequency sound reflectors of 668 

compact size, since 100% wave 669 

reflection is achieved by using a single 670 

unit cell.  671 

The circular markers in Fig. 5a represent 672 

the transmission coefficient for a 673 

corresponding 3D domain obtained by 674 

extruding the 2D model (Fig.2) in the 675 

out-of-plane direction by a height of 676 
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4���. Excellent agreement between the 677 

3D and 2D results justifies the introduced 678 

assumption of the two-dimensional 679 

character of the analyzed problem. 680 

Finally, we note that the designed 681 

metamaterials can be compared with 682 

tortuous open-porous materials. The 683 

porosity level, evaluated as the ratio of 684 

the area of air inside a unit cell to the total 685 

area of a unit cell, is about 90% for UC1, 686 

88 % for UC2, and 89 % for UC3, which 687 

is rather low as compared to porosity of 688 

typical foams slightly deviating from 689 

100% [32]. The main difference between 690 

porous foams and the designed 691 

labyrinthine metamaterials is the physical 692 

mechanism of wave control. Porous 693 

materials attenuate waves due to inherent 694 

thermo-viscous losses with the 695 

absorption coefficient close to 1 for broad 696 

frequency ranges. In contrast to this, the 697 

proposed metastructures mainly reflect 698 

incident waves with absorption 699 

approaching 0.5 at single frequencies of 700 

Fabry-Perot resonances (see Figs. 6 a,c). 701 

In the next section, we estimate the 702 

metamaterial performance for an 703 

increased level of thermo-viscous losses. 704 

4.2 “Fixed-unit-cell” case 705 

In the “fixed unit cell” case, the unit cell 706 

size ��� = 14 mm is fixed as for all the 707 

iteration levels. Dispersion relations of 708 

UC1 and UC2 are shown in Fig. 7 for 709 

homogeneous waves propagating along 710 

the ΓX direction. The dimensional 711 

frequency ranges here are the same as 712 

those for the corresponding unit cells in 713 

the “fixed channel” case (see Figs. 4 a,b).  714 

The structure of the dispersion relation in 715 

Fig. 7a is similar to that in Fig. 4a, except 716 

that the bands are shifted to higher 717 

frequencies. This occurs due to a shorter 718 

channel length. At first sight, more 719 

differences are found by comparing the 720 

dispersion relations for UC2 in Fig. 4b 721 

and Fig. 7b. While in Fig. 4b there are 722 

four band gaps, the relation in Fig. 7b is 723 

characterized by the presence of a single 724 

wide band gap. This happens because the 725 
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unit cell area, <�B!6\]
 = 14; mm2, in the 726 

second case is about 3 times smaller than 727 

that for the “fixed channel case”, 728 

<�B!6^
 = 41;mm2. As a result, the 729 

monopole, dipole and multipole 730 

resonances, as well as the related band 731 

gaps, are shifted to 3 times higher 732 

frequencies. However, in terms of non-733 

dimensional frequencies, the band gap 734 

frequencies remain unchanged. The 735 

similarity of dispersion relations in Figs. 736 

4 and 7 can be expected, since the 737 

metamaterial structure is preserved. In 738 

contrast to this, one should observe 739 

differences in transmission and 740 

absorption coefficients between these 741 

two cases due to the different amount of 742 

thermo-viscous losses in the channels of 743 

a various width. 744 

Figure 8 shows the transmission and 745 

absorption coefficients for labyrinthine 746 

monoslabs of the “fixed unit cell” case 747 

and those for straight slits of the effective 748 

length Ueff = 34.5 mm (UC1) and Ueff =749 

107 mm (UC2). The key features found 750 

in the analysis of the “fixed channel” case 751 

are also observed in the present case, 752 

namely the wave propagation in the 753 

labyrinthine channels is not equivalent to 754 

that in straight slits due to the occurrence 755 

of 100% reflection within band gaps. The 756 

total reflection is again independent of 757 

losses in air. However, as the channel of 758 

UC2 in the “fixed unit cell” case is more 759 

than 4 times narrower relative to that in 760 

the “fixed channel” case, the influence of 761 

thermo-viscous losses becomes more 762 

pronounced. This can be primarily seen 763 

in larger absorption values at the Fabry-764 

Perot resonant frequencies. 765 

Therefore, wave attenuation within 766 

labyrinthine channels can be obviously 767 

increased by decreasing the channel 768 

width. The porosity of the metamaterial 769 

then also decreases. For UC2, the 770 

structural porosity is 64.7% for the “fixed 771 

unit cell” case versus 88% for the “fixed 772 

channel” case. Therefore, one can 773 

consider the wave absorption within the 774 

labyrinthine metamaterials as similar to 775 
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that of tortuous foams by decreasing the 776 

structural external dimensions and 777 

porosity level. 778 

5. Conclusions 779 

In this work, we have theoretically 780 

analyzed the possibilities of labyrinthine 781 

acoustic metamaterials with sub-782 

wavelength channels shaped along a 783 

space-filling curve to control airborne 784 

homogeneous sound. We have 785 

demonstrated that, if a folded channel 786 

allows wave propagation in an opposite 787 

direction compared to incident pressure, 788 

wave dynamics in the channel is not 789 

equivalent to that of a straight slit of an 790 

effective length. In particular, we have 791 

shown that Fabry-Perot resonances of the 792 

straight slit correspond to monopole, 793 

dipole and multipole resonances in folded 794 

channels and govern the generation of 795 

band gaps. Within the band gaps, total 796 

wave reflection occurs that is not 797 

influenced by the presence of dissipation 798 

in air. Moreover, by increasing the 799 

channel tortuosity and further elongating 800 

a wave path, one can achieve almost 801 

perfect reflection outside the band gaps. 802 

Although at higher iteration levels the 803 

designed metamaterials resemble a 804 

tortuous porous material, they mostly 805 

control waves due to interference effects, 806 

in contrast to thermo-viscous dissipation 807 

mechanism in porous foams. This results 808 

in a low wave attenuation within a 809 

metastructure for a sufficiently wide 810 

channel. The absorption level can be 811 

increased by decreasing the channel 812 

width and the structural weight. 813 

This is the first time that a space-filling 814 

curve has been considered for designing 815 

and elongating wave paths in labyrinthine 816 

metamaterials. Therefore, further more 817 

in-depth analysis is required to study the 818 

influence of various geometric factors, 819 

e.g. number or angles of turns, as well as 820 

the metamaterial performance for 821 

inhomogeneous waves in complex-822 

shaped folded channels. These studies 823 

will be performed in future works. The 824 

proposed structures show promise as 825 
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broadband low-frequency sound 826 

reflectors that can be inexpensively 827 

assembled from thin sheets. 828 
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List of figures 

 

Figure 1. (a) Unit cell of the 1st iteration level (UC1) with dimensions. (b-d) Labyrinths with air 

channels shaped according to the Wunderlich space-filling curve of the first three iteration levels 

incorporated into UC1, UC2, and UC3. Solid walls are indicated in blue. The shortest path taken 

by a wave within UC1 is shown by blue arrows in (b). 

 

Figure 2. Schematic of the frequency domain model. Green area corresponds to an air domain, 

green dashed lines indicate locations, at which reflection and transmission coefficients are 

evaluated. The plane wave radiation condition is applied along the bold red line. 

 

Figure 3. Thickness of viscous δbcd and thermal δef boundary layers according to relations (3) and 

(4). 

 

Figure 4. “Fixed channel” case: Dispersion relations for the labyrinthine unit cells of the 3 

iteration levels with a fixed channel width, w=4 mm. Band gaps are shown by shaded rectangles. 

The slope of the green and red dash-dot lines indicates phase velocities of the fundamental mode 
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within a unit cell and in homogenous air (when a unit cell is removed). Bold points designate 

frequencies with the pressure distributions given in Table 1 and 2. 

 

Figure 5. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dashed line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC1; (b) a straight slit of width w = 4 mm and length Leff = 45.6 mm; (b) a straight slit of width 

w = 4 mm and length auc = 18 mm. Shaded regions indicate frequency a band gap shown in Fig. 

4a. Circular markers in (a) indicate transmission coefficient values in lossless air for the 

corresponding 3D model of height 4auc.  

 

Figure 6. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC2 and (b) a straight slit of width w = 4 mm and length Leff = 328.5 mm; (c) a labyrinthine 

unit cell UC3 and (d) a straight slit of width w = 4 mm and length Leff = 2.871 m. Shaded 

regions indicate frequency band gaps shown in Fig. 4. 

 

Figure 7. “Fixed unit cell” case: Band structure diagrams for the unit cells UC1 and UC2 of fixed 

size a=14 mm with the channel width of 3 mm and 0.9 mm, respectively. Band gap frequencies 

are shaded. The slopes of the green and red dash-dot lines indicate the phase velocities of the 

fundamental pressure wave inside a unit cell and in homogeneous air (when a unit cell is removed). 
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Figure 8. “Fixed unit cell” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine unit cell UC1 

and (b) a straight slit of width w = 3 mm and length Leff = 34.6 mm; (c) a labyrinthine unit cell 

UC2 and (d) a straight slit of width w = 0.9 mm and length Leff = 107 mm. Shaded regions indicate 

frequency band gaps shown in Fig. 7. 

 

List of tables 

Table 1. “Fixed channel” case (“Fixed unit cell” case): Pressure distributions around the 1st band 

gap for the labyrinthine metamaterial unit cells of the 3 iteration levels. Red and blue colors 

represent maximum and minimum pressure, while green color indicates (almost) zero pressure. 

The frequencies in brackets are referred to the “fixed unit cell” case. 

 

Table 2. “Fixed channel” case: Pressure distributions around the 2nd and 3rd band gaps for the 

labyrinthine metamaterial unit cells of the 2nd and 3rd iteration levels. Red and blue colors 

represent maximum and minimum pressure, and green color indicates (almost) zero pressure. 
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Figure 2. Schematic of the frequency domain model. Green area corresponds to an air domain, 

green dashed lines indicate locations, at which reflection and transmission coefficients are 

evaluated. The plane wave radiation condition is applied along the bold red line. 

 

Figure 3. Thickness of viscous ���� and thermal ��� boundary layers according to relations (3) 

and (4). 
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Figure 4. “Fixed channel” case: Dispersion relations for the labyrinthine unit cells of the 3 

iteration levels with a fixed channel width, w=4 mm. Band gaps are shown by shaded rectangles. 

The slope of the green and red dash-dot lines indicates phase velocities of the fundamental mode 

within a unit cell and in homogenous air (when a unit cell is removed). Bold points designate 

frequencies with the pressure distributions given in Table 1 and 2.  
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Table 1. “Fixed channel” case (“Fixed unit cell” case): Pressure distributions around the 1st 

band gap for the labyrinthine metamaterial unit cells of the 3 iteration levels. Red and blue colors 

represent maximum and minimum pressure, while green color indicates (almost) zero pressure. 

The frequencies in brackets are referred to the “fixed unit cell” case. 
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Table 2. “Fixed channel” case: Pressure distributions around the 2nd and 3rd band gaps for the 

labyrinthine metamaterial unit cells of the 2nd and 3rd iteration levels. Red and blue colors 

represent maximum and minimum pressure, and green color indicates (almost) zero pressure. 
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Figure 5. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dashed line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC1; (b) a straight slit of width � � 4 mm and length Leff = 45.6 mm; (b) a straight slit of width 

� � 4 mm and length auc = 18 mm. Shaded regions indicate a frequency band gap. Circular 

markers in (a) indicate transmission coefficient values in lossless air for the corresponding 3D 

model of height 4auc.  
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Figure 6. “Fixed channel” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine metamaterial 

UC2 and (b) a straight slit of width � � 4 mm and length Leff = 328.5 mm; (c) a labyrinthine 

unit cell UC3 and (d) a straight slit of width � � 4 mm and length Leff = 2.871 m. Shaded 

regions indicate frequency band gaps.  
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Figure 7. “Fixed unit cell” case: Band structure diagrams for the unit cells UC1 and UC2 of fixed 

size a=14 mm with the channel width of 3 mm and 0.9 mm, respectively. Band gap frequencies are 

shaded. The slopes of the green and red dash-dot lines indicate the phase velocities of the 

fundamental pressure wave inside a unit cell and in homogeneous air (when a unit cell is removed). 
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Figure 8. “Fixed unit cell” case: Transmission (T) and absorption (A) coefficients for acoustic 

waves in lossless (dotted line) and lossy (solid line) air through (a) a labyrinthine unit cell UC1 

and (b) a straight slit of width � � 3 mm and length Leff = 34.6 mm; (c) a labyrinthine unit cell 

UC2 and (d) a straight slit of width � � 0.9 mm and length Leff = 107 mm. Shaded regions indicate 

frequency band gaps. 
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