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Abstract. In the context of social networks, maximizing influence means
contacting the largest possible number of nodes starting from a set of seed
nodes, and assuming a model for influence propagation. The real-world
applications of influence maximization are of uttermost importance, and
range from social studies to marketing campaigns. Building on a previous
work on multi-objective evolutionary influence maximization, we propose
improvements that not only speed up the optimization process consid-
erably, but also deliver higher-quality results. State-of-the-art heuristics
are run for different sizes of the seed sets, and the results are then used
to initialize the population of a multi-objective evolutionary algorithm.
The proposed approach is tested on three publicly available real-world
networks, where we show that the evolutionary algorithm is able to im-
prove upon the solutions found by the heuristics, while also converging
faster than an evolutionary algorithm started from scratch.
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1 Introduction

Social networks (SNs) are graphs that model a generic society and the internal
flows of ideas. Nodes represent the actors, usually individuals, and edges their
capability to transmit information. While the high-level structure is quite simple,
a sharp definition of the rules that control the passage of information, together
with the amount of data willfully provided by users, enable the creation of very



precise models. The situation has been plainly acknowledged by scholars for
years, and recently reached popular recognition [1,2,3].

In the simplest SN model, a directed edge a→ b denotes that b is exposed to
a and may be influenced by it. The rule used for determining whether the infor-
mation is actually transmitted is called the propagation model. Scholars of social
sciences studied a number of probabilistic propagation models: the edge a → b
signifies that there is a given probability p for node a to influence node b. Com-
mon models include using fixed probabilities, probabilities inversely proportional
to the number of edges directed to b, or other topological features [4].

Given the set of seeds nodes, that is, network nodes who broadcast a specific
information, and a propagation model, the eventual set of influenced nodes I
may be computed. Indeed, one of the most studied problem in SNs is “influence
maximization” and consists in determining the optimal set of seed nodes for
maximizing the final influence. Such a problem was initially formulated in [5],
and it was later proven NP-hard for most propagation models [4].

As with many other NP-hard problem, evolutionary algorithms (EAs) where
used to explore the vast search space of all possible subsets of nodes [6]. More
recently, a multi-objective EA (MOEA), was used to maximize the influence I
while concurrently minimizing the size of the seed set [7], providing users the
necessary data to trade off between budget (the number of nodes that need to be
influenced) and effect (the final influence over the whole network). This paper
progresses on the same research line, showing how significant improvements can
be attained by carefully initializing the initial population. The results obtained
on three different social network graphs are compared against five state-of-the-
art heuristics, and clearly demonstrate the efficacy of the proposed methodology.

The rest of the paper is organized as follows: Section 2 introduce the back-
ground and survey the related works; Section 3 details the proposed approach,
while Section 4 reports an extensive experimental evaluation; finally, Section 5
concludes the paper.

2 Background and Related Work

In this section we first describe the models available in the literature for sim-
ulating the influence propagation, and the general formulation of the influence
maximization problem; then, we briefly survey the existing methods for solving
this problem, based on either ad hoc heuristics or computational intelligence
algorithms.

2.1 Models for influence propagation and problem formulation

As most influence propagation models are stochastic, an approximate estimation
of the global influence can be obtained empirically, by simulating the propagation
process a given number of times: this approach, however, can be computationally
expensive, especially when included in an optimization framework.



Furthermore, as the propagation of a message from a node to another may
be modeled as a discrete event, propagation models are also time-discrete. As
the receptiveness of users to incoming messages from the network differs, several
models have been proposed: the most popular belong to the “Cascade” fam-
ily [4], which views influence as being transmitted through the network in a
tree-like fashion, where the seed nodes are the roots. In this work, we will use in
particular the Independent Cascade (IC) model, whose pseudocode is given in
Algorithm 1. IC was first studied in the marketing domain, modeling the effects
that word-of-mouth communication has upon macro-level marketing [8]. Each
newly “activated” node n will succeed in activating each inactive neighbor m
with a fixed probability p, which is a global property of the system, equal for all
edges n→ m in G.

Algorithm 1 The Cascade family of propagation models. G is the network graph,
S the set of “seed” nodes, and p(n → m) the probability that information will reach
across a graph edge n→ m.

1: procedure Cascade(G,S, p)

2: A← S . A: the set of active nodes after the propagation ended
3: B ← S . B: the set of nodes activated in the last time slot
4: while B not empty do
5: C ← ∅
6: for each n ∈ B do
7: for each direct neighbor m of n, where m 6∈ A, do
8: with probability p(n→ m), add m to C
9: end for

10: end for
11: B ← C
12: A← A ∪B
13: end while
14: return the size of A

15: end procedure

In the classical problem of influence maximization, the goal is to optimize
the seed set S given a budget k = |S| so that its eventual influence over the
whole network is maximal. The influence of a seed set I is measured as the size
of the set I of active nodes, obtained by the propagation model. Independently
from the influence propagation model used, the problem has been proven to be
NP-hard [4], and approximating the optimal solution by a factor better than
1− 1

e (roughly 63% approximation) is also NP-hard [4].

2.2 Existing solutions for influence maximization

Several heuristics have been presented to find good solutions to the influence
maximization problem. High degree (HIGHDEG) is a greedy heuristic that sim-
ply adds nodes n to A in order of decreasing out-degree [4]. Single discount



(SDISC) is a refinement of HIGHDEG proposed by Chen et al. [9], using the
idea that if a node n is already active and also there exists an edge m→ n, then,
when considering whether to add node m to A, this edge should not be counted
towards the out-degree of m. Other popular techniques include DISTANCE, that
greedily adds to the set S select nodes in order of increasing average distance
to other nodes in the network, following the intuition that being able to reach
other nodes quickly translates into higher influence; Generalized degree discount
(GDD) [10], a refinement of SDISC, which considers not only the direct neigh-
bours of a node candidate to being a seed, but also nodes one level deeper in the
graph; and Cost-Effective Lazy Forward selection (CELF), a greedy hill-climbing
algorithm [11]. Several metaheuristics and optimization algorithms have also
been applied to the problem, ranging from simulated annealing [12] to genetic
algorithms [6]. In [7], a Multi-Objective Evolutionary Algorithm (MOEA) [13]
was proposed for influence maximization, where the two considered objectives
were (i) maximizing the influence of a seed set and (ii) minimizing the number
of nodes in the seed set. Intuitively, this produced a Pareto front of candidate
solutions, each one a different compromise. While the proposed methodology was
shown to outperform both HIGHDEG and SDISC for all values of the budget
k (number of seed nodes) on the considered case studies, the main drawback
was the computational time required to reach satisfying solutions: millions of
individual evaluations were necessary, each one consisting of multiple runs of an
influence spread model. This observation provided the motivation for the present
work, where we try to reduce the time consumption needed for the MOEA to
converge in order to make the method applicable also in contexts with limited
computing resources.

3 Proposed approach

To improve upon the work presented in [7] and overcome the aforementioned
limitations due to the method time consumption, we introduce here a seeding
mechanism. In particular, we show that by seeding the initial population of
the MOEA with the results of computationally cheap heuristics, the number of
individual evaluations required to reach satisfying solutions drops dramatically.

Another important difference with respect to the MOEA used in [7] con-
cerns the algorithmic implementation: while that work was based a C++ open
source customizable evolutionary tool [14], here we use inspyred4, a Python
open source framework for creating biologically-inspired computational intelli-
gence algorithms, including evolutionary computation, swarm intelligence, and
immunocomputing. inspyred provides easy-to-modify canonical versions of sev-
eral bio-inspired algorithms, among which the MOEA NSGA-II [15], that we use
in the experiments presented in this paper.

Individual representation and evolutionary operators were custom-designed
for this specific application: for the problem at hand, a candidate solution is a

4 http://pythonhosted.org/inspyred/
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set of nodes of variable size, consisting of a subset of the set of nodes in the
original network. Individuals are thus unordered sequences of unique integer
node identifiers, representing the seeds of influence in the network.

As for the evolutionary operators, we used three problem-specific mutations
(add, remove or replace one node in a set), and one crossover operator with
a check that removes inconsistencies from the resulting individuals, ensuring
that a specific node appears only once in each individual. The operators are
always applied with uniform probability, while the parent individuals are selected
through a tournament selection of size 2.

Finally, the fitness value of a candidate solution is a probabilistic metric of the
number of nodes that are likely to be reached, starting from a given set of seeds
of influence — according to the IC model of influence propagation (described in
Section 2). Given the stochastic nature of both propagation models, the fitness
estimation is empirical, and itself a stochastic process: repeated simulations of
the network propagation model yield an extent to which the network is reached,
and the final fitness value is the average of these fitness samples.

4 Experimental evaluation

4.1 Benchmarks

In order to assess the proposed improvements for influence maximization, we
selected three case studies among social network graphs available in the Net-
work Repository5 and SNAP6 databases. Two of the selected social networks,
ego-Facebook and ca-GrQc were also considered in [7], while soc-ePinions1
was not considered in the previous study. The selected benchmarks, with their
respective features, are reported in Table 1.

Table 1. Main features of the case studies considered for the experimental evaluation
of the proposed MOEA approach.

Name ego-Facebook ca-GrQc soc-ePinions1

Nodes 4,039 5,242 75,879
Edges 88,234 14,496 508,837
Type of graph undirected undirected directed
Nodes in largest WCC 4,039 4,158 75,877
Nodes in largest SCC 4,039 4,158 32,223
Average clustering coefficient 0.6055 0.5296 0.1378
Diameter 8 17 14

5 http://networkrepository.com/
6 https://snap.stanford.edu/index.html

http://networkrepository.com/
https://snap.stanford.edu/index.html


4.2 Experimental results

In all the experiments, we consider the IC propagation model. The MOEA con-
figuration used here is: µ = 2000, λ = 2000, tournament selection of size τ = 2,
influence propagation model IC with p = 0.05, stop condition 500 generations.

Figures 1, 2 and 3 show the results for the social networks ego-Facebook,
ca-GrQc and soc-ePinions1, respectively. Considering the first two networks,
we observed that with respect to [7] the improved algorithm is able to find
solutions that outperform the heuristic already during the first few generations,
with less than 10,000 evaluations (compared to the almost 1,000,000 that were
necessary to outperform both HIGHDEG and SDISC in the previous study). A
similar trend was observed also on the third network, soc-ePinions1, for which
we could not even run two of the heuristics, CELF and DISTANCE, due to their
excessive time complexity (approximately one data point in ten hours).

In summary, while the seeding procedure requires running the heuristic once,
the computational cost is roughly equivalent to just one generation of the MOEA.
Furthermore, the proposed methodology is able to outperform even more refined
heuristics which were not considered in [7], such as CELF. Finally, the new con-
figuration also solved previously experienced issues with populating the higher
part of the Pareto front (see [7] for more details).

5 Conclusions

In this paper, we introduced an improvement over a previously proposed multi-
objective evolutionary approach for influence maximization in social networks.

A MOEA is tasked with finding the set of k seed nodes that, given a model of
influence propagation, maximize the nodes reached in the network. As minimiz-
ing the value of k is also given as an optimization objective, the MOEA is able
to find a Pareto front of compromises between number of seed nodes in the set
and global influence in the graph. While the main weak point of the previously
proposed approach was the time required to reach good solutions, in this paper
we show how initializing the first generation properly leads to faster convergence
on better Pareto fronts. The approach has been tested on three real-world social
networks, and proved to be able to overcome also the state-of-the-art heuristics.

In future works, we aim to progress on this research line by combining the
seeding mechanism proposed here with a surrogate model approach, in order to
speed up even further the computations and make the method applicable also
on larger networks.
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Fig. 1. Experimental results for the benchmark graph ego-Facebook. The MOEA in
this experiment was seeded with the results of the GDD heuristic, and the evolution
was able to outperform even the effective CELF.
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Fig. 2. Experimental results for the benchmark graph ca-GrQc. In this case, GDD was
already the most performing heuristic of the group, but the MOEA seeded with the
initial results was able to eventually find improvements over the initial approximation.
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Fig. 3. Experimental results for the benchmark graph soc-ePinions1. The MOEA in
this experiment was seeded with the results of the GDD heuristic. DISTANCE and
CELF could not be run on this network due to their excessive time complexity.
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