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Abstract

We compute one of the distinguished extremal Betti number of the binomial
edge ideal of a block graph, and classify all block graphs admitting precisely one
extremal Betti number.
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Introduction

Let K be a field and I a graded ideal in the polynomial ring S = K[x1, . . . , xn]. The
most important invariants of I, which are provided by its graded finite free resolution,
are the regularity and the projective dimension of I. In general these invariants are
hard to compute. One strategy to bound them is to consider for some monomial order
the initial ideal in<(I) of I. It is known that for the graded Betti numbers one has
βi,j(I) 6 βi,j(in<(I)). This fact implies in particular that reg(I) 6 reg(in<(I)), and
proj dim(I) 6 proj dim(in<(I)). In general however these inequalities may be strict. On
the other hand, it is known that if I is the defining binomial ideal of a toric ring, then
proj dim(I) = proj dim in<(I), provided in<(I) is a squarefree monomial ideal. This is a
consequence of a theorem of Sturmfels [17]. The first author of this paper conjectures
that whenever the initial ideal of a graded ideal I ⊂ S is a squarefree monomial ideal,
then the extremal Betti numbers of I and in<(I) coincide in their positions and values.
This conjecture implies that reg(I) = reg(in<(I)) and proj dim(I) = proj dim(in<(I)) for
any ideal I whose initial ideal is squarefree.

An interesting class of binomial ideals having the property that all of its initial ideals
are squarefree monomial ideals are the so-called binomial edge ideals, see [9], [5], [1]. Thus
it is natural to test the above conjectures for binomial edge ideals. A positive answer to

the electronic journal of combinatorics 25(1) (2018), #P1.63 1



this conjecture was given in [7] for Cohen-Macaulay binomial edge ideals of PI graphs
(proper interval graphs). In that case all the graded Betti numbers of the binomial edge
ideal and its initial ideal coincide. It is an open question wether this happens to be true
for any binomial edge ideal of a PI graph. Recently this has been confirmed to be true, if
the PI graph consists of at most two cliques [2]. In general the graded Betti numbers are
known only for very special classes of graphs including cycles [18].

Let JG denote the binomial edge ideal of a graph G. The first result showing that
reg(JG) = reg(in<(JG)) without computing all graded Betti numbers was obtained for PI
graphs by Ene and Zarojanu [8]. Later Chaudhry, Dokuyucu and Irfan [3] showed that
proj dim(JG) = proj dim(in<(JG)) for any block graph G, and reg(JG) = reg(in<(JG)) for
a special class of block graphs. Roughly speaking, block graphs are trees whose edges are
replaced by cliques. The blocks of a graph are the biconnected components of the graph,
which for a block graph are all cliques. In particular trees are block graphs. It is still
an open problem to determine the regularity of the binomial edge ideal for block graphs
(and even for trees) in terms of the combinatorics of the graph. However, strong lower
and upper bounds for the regularity of edge ideals are known by Matsuda and Murai [12]
and Kiani and Saeedi Madani [11]. Furthermore, Kiani and Saeedi Madani characterized
all graphs whose binomial edge ideal have regularity 2 and regularity 3, see [15] and [16].

In this note we determine the position and value of one of the distinguished extremal
Betti number of the binomial edge ideal of a block graph. Let M be a finitely graded
S-module. Recall that a graded Betti number βi,i+j(M) 6= 0 of M is called an extremal,
if βk,k+l(M) = 0 for all pairs (k, l) 6= (i, j) with k > i and l > j. Let q = reg(M)
and p = proj dim(M), then there exist unique numbers i and j such that βi,i+q(M) and
βp,p+j(M) are extremal Betti numbers. We call them the distinguished extremal Betti
numbers of M . The distinguished extremal Betti numbers are different from each other
if and only if M has more than two extremal Betti numbers.

In order to describe our result in detail, we introduce the following concepts. Let G
be finite simple graph. Let V (G) be the vertex set and E(G) the edge set of G. The
clique degree of a vertex v ∈ V (G), denoted cdeg(v), is the number of cliques to which
it belongs. For a tree the clique degree of a vertex is just the ordinary degree. A vertex
v ∈ V (G) is a called a free vertex, if cdeg(v) = 1 and an inner vertex if cdeg(v) > 1.
Suppose v ∈ V (G) is a vertex of clique degree 2. Then G can be decomposed as a union
of subgraphs G1 ∪G2 with V (G1) ∩ V (G2) = {v} and where v is a free vertex of G1 and
G2. If this is the case, we say that G is decomposable. In Proposition 3 we show that
if G decomposable with G = G1 ∪ G2, then the graded Poincaré series of G is just the
product of the graded Poincaré series of S/JG1 and S/JG2 . This result, with a simplified
proof, generalizes a theorem of the second author which he obtained in a joint paper with
Rauf [14]. As a consequence one obtains that the position and value of the distinguished
extremal Betti numbers of S/JG are obtained by adding the positions and multiplying the
values of the corresponding distinguished extremal Betti numbers of S/JG1 and S/JG2 .
The other extremal Betti numbers of S/JG are not obtained in this simple way from those
of S/JG1 and S/JG2 . But the result shows that if we want to determine the distinguished
extremal Betti numbers of S/JG for a graph G (which also give us the regularity and
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projective dimension of S/JG), it suffices to assume that G is indecomposable.
Let f(G) be the number of free vertices and i(G) the number of inner vertices of G. In

Theorem 6 we show: letG be an indecomposable block graph with n vertices. Furthermore
let < be the lexicographic order induced by x1 > x2 > . . . > xn > y1 > y2 > · · · > yn.
Then βn−1,n−1+i(G)+1(S/JG) and βn−1,n−1+i(G)+1(S/ in<(JG)) are extremal Betti numbers,
and βn−1,n−1+i(G)+1(S/ in<(JG)) = βn−1,n−1+i(G)+1(S/JG) = f(G) − 1. The theorem im-
plies that reg(JG) > i(G). It also implies that reg(JG) = i(G) if and only if S/JG has
exactly one extremal Betti number, namely the Betti number βn−1,n−1+i(G)+1(S/JG). In
Theorem 8 we classify all block graphs with the property that they admit precisely one
extremal Betti number, by listing the forbidden induced subgraphs (which are 4 in total),
and we also give an explicit description of the block graphs with precisely one extremal
Betti number. Carla Mascia informed us that Jananthan et al. in an yet unpublished
paper and revised version of [10] obtained a related result for trees.

For indecomposable block graphs G the most challenging open problem is to obtain
a combinatorial formula for the regularity of JG, or even better, a description of both
distinguished extremal Betti numbers of S/JG.

1 Decomposable graphs and binomial edge ideals

Let G be a graph with vertex set V (G) = [n] and edge set E(G). Throughout this paper,
unless otherwise stated, we will assume that G is connected.

A subset C of V (G) is called a clique of G if for all i and j belonging to C with i 6= j
one has {i, j} ∈ E(G).
Definition 1. Let G be a graph and v a vertex of G. The clique degree of v, denoted
cdeg v, is the number of maximal cliques to which v belongs.

A vertex v of G is called a free vertex of G, if cdeg(v) = 1, and is called an inner
vertex, if cdeg(v) > 1. We denote by f(G) the number of free vertices of G and by i(G)
the number of inner vertices of G.
Definition 2. A graph G is decomposable, if there exist two subgraphs G1 and G2 of G,
and a decomposition

G = G1 ∪G2 (1)
with {v} = V (G1) ∩ V (G2), where v is a free vertex of G1 and G2.

If G is not decomposable, we call it indecomposable.
Note that any graph has a unique decomposition (up to ordering)

G = G1 ∪ · · · ∪Gr, (2)

where G1, . . . , Gr are indecomposable subgraphs of G, and for 1 6 i < j 6 r either
V (Gi) ∩ V (Gj) = ∅ or V (Gi) ∩ V (Gj) = {v} and v is a free vertex of Gi and Gj.

For a graded S-module M we denote by BM(s, t) = ∑
i,j βij(M)sitj the Betti poly-

nomial of M . The following proposition generalizes a result due to Rinaldo and Rauf
[14].
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Proposition 3. Let G be a decomposable graph, and let G = G1 ∪G2 be a decomposition
of G. Then

BS/JG
(s, t) = BS/JG1

(s, t)BS/JG2
(s, t).

Proof. We may assume that V (G) = [n] and V (G1) = [1,m] and V (G2) = [m,n]. We
claim that for the lexicographic order < induced by x1 > x2 > · · · > xn > y1 > y2 >
· · · > yn, we have

in<(JG1) ⊂ K[{xi, yi}i=1,...,m−1][ym] and in<(JG2) ⊂ K[{xi, yi}i=m+1,...,n][xm].

We recall the notion of admissible path, introduced in [9] in order to compute Gröbner
bases of binomial edge ideals. A path π : i = i0, i1, . . . , ir = j in a graph G is called
admissible, if

1. ik 6= i` for k 6= `;

2. for each k = 1, . . . , r − 1 one has either ik < i or ik > j;

3. for any proper subset {j1, . . . , js} of {i1, . . . , ir−1}, the sequence i, j1, . . . , js, j is not
a path.

Given an admissible path π : i = i0, i1, . . . , ir = j from i to j with i < j we associate the
monomial uπ = (∏ik>j xik)(∏i`<i yi`). In [9] it is shown that

in<(JG) = (xiyjuπ : π is an admissible path).

The claim follows by observing that the only admissible paths passing through the vertex
m are the ones inducing the set of monomials

{xiymuπ : V (π) ∈ V (G1)} ∪ {xmyjuπ : V (π) ∈ V (G2)}.

We have the following cases to study

(a) V (π) ⊂ V (G1) or V (π) ⊂ V (G2);

(b) V (π) ∩ V (G1) 6= ∅ and V (π) ∩ V (G2) 6= ∅.

(a) We may assume that V (π) ⊂ V (G1). Assume m is not an endpoint of π. Then
π : i = i0, . . . , ir = j with m = ik, 0 < k < r. Since ik−1 and ik+1 belong to the maximal
clique in G1 containing m, it follows that {ik−1, ik+1} ∈ E(G1) and condition (3) is not
satisfied. Therefore π : i = i0, . . . , ir = m and xiymuπ is the corresponding monomial.

(b) In this case we observe that m is not an endpoint of the path π : i = i0, . . . , ir = j.
Since i < m < j this path is not admissible by (2).

Now the claim implies that Tori(S/ in<(JG1), S/ in<(JG2)) = 0 for i > 0. Therefore,
we also have Tori(S/JG1 , S/JG2) = 0 for i > 0. This yields the desired conclusion.
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Thanks to the claim, it is interesting to note that in<(JG1 +JG2) = in<(JG1)+in<(JG2).
The proposition implies that proj dimS/JG = proj dimS/JG1 + proj dimS/JG2 and

regS/JG = regS/JG1 + regS/JG2 . In fact, much more is true. Let M be a finitely
graded S-module. A Betti number βi,i+j(M) 6= 0 is called an extremal Betti number of
M , if βk,k+l(M) = 0 for all pairs (k, l) 6= (i, j) with k > i and l > j. Let q = reg(M)
and p = proj dim(M), then there exist unique numbers i and j such that βi,i+q(M)
and βp,p+j(M) are extremal Betti numbers. We call them the distinguished extremal
Betti numbers of M . M admits only one extremal Betti number if and only the two
distinguished extremal Betti numbers are equal.

Corollary 4. With the assumptions of Proposition 3, let {βit,it+jt(S/JG1)}t=1,...,r be the
set of extremal Betti numbers of S/JG1 and {βkt,kt+lt(S/JG2)}t=1,...,s be the set of extremal
Betti numbers of S/JG2. Then {βit+kt′ ,(it+kt′ )+(jt+lt′ )(S/JG)} t=1,...r

t′=1,...,s
is a subset of the ex-

tremal Betti numbers of S/JG.
For k = 1, 2, let βik,ik+qk

(Gk) and βpk,pk+jk(Gk) be the distinguished extremal Betti
numbers of G1 and G2. Then βi1+i2,i1+i2+q1+q2(G) and βp1+p2,p1+p2+j1+j2(G) are the distin-
guished extremal Betti numbers of G, and

βi1+i2,i1+i2+q1+q2(G) = βi1,i1+q1(G1)βi2,i2+q2(G2),
βp1+p2,p1+p2+j1+j2(G) = βp1,p1+j1(G1)βp2,p2+j2(G2).

2 Extremal Betti numbers of block graphs

Let G be a graph with vertex set V (G) and edge set E(G). A vertex of a graph is called
a cutpoint if the removal of the vertex increases the number of connected components.
A connected subgraph of G that has no cutpoint and is maximal with respect to this
property is called a block.

Definition 5. A graph G is called a block graph, if each block of G is a clique.

Observe that a block graph G is decomposable if and only if there exists v ∈ V (G)
with cdeg(v) = 2. In particular, a block graph is indecomposable, if cdeg(v) 6= 2 for all
v ∈ V (G).

A block C of the block graph G is called a leaf of G, if there is exactly one v ∈ V (C)
with cdeg(v) > 1.

Theorem 6. Let G be an indecomposable block graph with n vertices. Furthermore let
< be the lexicographic order induced by x1 > x2 > . . . > xn > y1 > y2 > · · · > yn.
Then βn−1,n−1+i(G)+1(S/JG) and βn−1,n−1+i(G)+1(S/ in<(JG)) are extremal Betti numbers
of S/JG and S/ in<(JG), respectively. Moreover,

βn−1,n−1+i(G)+1(S/ in<(JG)) = βn−1,n−1+i(G)+1(S/JG) = f(G)− 1.
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Proof. We prove the theorem by induction on i(G). If i(G) = 0, then G is a clique and
JG is the ideal of 2-minors of the 2× n matrix(

x1 x2 . . . xn
y1 y2 . . . yn

)
(3)

The desired conclusion follows by the Eagon-Northcott resolution [6]. Let us now assume
that the above equation holds for i(G) > 0.

Let C1, . . . , Ct be the blocks of G and assume that Ct is a leaf of G. Since i(G) > 0,
it follows that t > 1. Let i be the vertex of Ct of cdeg(i) > 1, and let G′ be the graph
which is obtained from G by replacing Ct by the clique whose vertex set is the union of
the vertices of the Ci which have a non-trivial intersection with Ct. Furthermore, let G′′
be the graph which is obtained from G by removing the vertex i, and H be the graph
obtained by removing the vertex i from G′.

Note that G′ and H are indecomposable block graphs for which i(G′) = i(H) =
i(G)− 1.

The following exact sequence

0 −→ S/JG −→ S/JG′ ⊕ S/((xi, yi) + JG′′) −→ S/((xi, yi) + JH) (4)

from [7] is used for our induction step. By the proof of [7, Theorem 1.1] we know
that proj dimS/JG = proj dimS/JG′ = n − 1, proj dimS/((xi, yi) + JH) = n, and
proj dimS/((xi, yi) +JG′′) = n− q, where q+ 1 is the number of connected components of
G′′. Since cdeg(i) > 3 it follows that q > 2. Therefore, Torn−1(S/((xi, yi) + JG′′), K) = 0,
and hence for each j, the exact sequence (4) yields the long exact sequence

0→ Tn,n+j−1(S/((xi, yi) + JH))→ Tn−1,n−1+j(S/JG)→ Tn−1,n−1+j(S/JG′)→ (5)

where for any finitely generated graded S-module, TS
k,l(M) stands for TorSk,l(M,K). Note

that
TS
n,n+j−1(S/((xi, yi) + JH)) ∼= TS′

n−2,n−2+(j−1)(S ′/JH), (6)
where S ′ = S/(xi, yi).

Our induction hypothesis implies that

Tn−2,n−2+(j−1)(S ′/JH) = 0 for j > i(H) + 2 = i(G) + 1,

and
Tn−1,n−1+j(S/JG′) = 0 for j > i(G′) + 1 = i(G).

Now (5) and (6) imply that Tn−1,n−1+j(S/JG) = 0 for j > i(G) + 1, and

TS′

n−2,n−2+i(H)+1(S ′/JH) ∼= TS
n−1,n−1+(i(G)+1)(S/JG). (7)

By induction hypothesis, βS′

n−2,n−2+i(H)+1(S ′/JH) = f(H) − 1. Since f(G) = f(H), (7)
implies that βn−1,n−1+i(G)+1(S/JG) = f(G) − 1, and together with (6) it follows that
βn−1,n−1+i(G)+1(S/JG) is an extremal Betti number.
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Now we prove the assertions regarding in<(JG). If i(G) = 0, then JG is the ideal of
2-minors of the matrix (3). It is known that in<(JG), (and hence also JG) has a 2-linear
resolution. This implies that βi,j(JG) = βi,j(in<(JG)). Indeed, S/JG and S/ in<(JG) have
the same Hilbert function, since the monomials in S not belonging to in<(JG) form a
K-basis of S/JG. For ideals with linear resolution, the Betti-numbers are determined by
their Hilbert function. This proves the assertions for i(G) = 0.

Next assume that i(G) > 0. As noted in [3], one also has the exact sequence

0 −→ S/ in<(JG) −→ S/ in<(JG′)⊕ S/ in<((xi, yi) + JG′′) −→ S/ in<((xi, yi) + JH).

Since in<((xi, yi) + JH) = (xi, yi) + in<(JH) it follows that

TS
n,n+j−1(S/ in<((xi, yi) + JH)) ∼= TS′

n−2,n−2+(j−1)(S ′/ in<(JH)). (8)

Therefore, by using the induction hypothesis, one deduces as before that

TS′

n−2,n−2+i(H)+1(S ′/ in<(JH)) ∼= TS
n−1,n−1+i(G)+1(S/ in<(JG)). (9)

This concludes the proof.

The next corollary is an immediate consequence of Proposition 3 and Theorem 6.

Corollary 7. Let G be a block graph for which G = G1 ∪ · · · ∪ Gs is the decomposition
of G into indecomposable graphs. Then each Gi is a block graph, βn−1,n−1+i(G)+s(S/JG) is
an extremal Betti number of S/JG and

βn−1,n−1+i(G)+s(S/JG) =
s∏
i=1

(f(Gi)− 1).

In the following theorem we classify all block graphs which admit precisely one ex-
tremal Betti number.

Theorem 8. Let G be an indecomposable block graph. Then

(a) reg(S/JG) > i(G) + 1.

(b) The following conditions are equivalent:

(i) S/JG admits precisely one extremal Betti number.
(ii) G does not contain one of the induced subgraphs T0, T1, T2, T3 of Fig.1.

(iii) Let P = {v ∈ V (G) : deg(v) 6= 1}. Then each cut point of G|P belongs to
exactly two maximal cliques.

Proof. (a) is an immediate consequence of Theorem 6.
(b)(i) ⇒ (ii): Suppose that G contains one of the induced subgraphs T0, T1, T2, T3.

We will show that reg(S/JG) > i(G) + 1. By Corollary 7 this is equivalent to saying
that S/JG admits at least two extremal Betti numbers. To proceed in our proof we shall
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need the following result [12, Corollay 2.2] of Matsuda and Murai which says that for
W ⊂ V (G), one has βij(JG|W |) 6 βij(JG)) for all i and j.

It can be checked by CoCoA that reg(S/JTj
) > i(Tj) + 1 for each Tj. Now assume

that G properly contains one of the Tj as induced subgraph. Since G is connected, there
exists a clique C of G and subgraph G′ of G such that (1) G′ contains one of the Tj as
induced subgraph, (2) V (G′)∩V (C) = {v}. By using induction on the number of cliques
of G, we may assume that reg(S/JG′) > i(G′) + 1. If cdeg(v) = 2, then i(G) = i(G′) + 1
and reg(S/JG) = reg(S/JG′) + 1, by Proposition 3. If cdeg(v) > 2, then i(G) = i(G′),
and by Matsuda and Murai we have regS/JG′ 6 regS/JG. Thus in both case we obtain
reg(S/JG) > i(G) + 1, as desired.

(ii) ⇒ (iii): Suppose condition (iii) is not satisfied. Let C1, . . . , Cr with r > 3 be
maximal cliques of G|P that meet in the same cutpoint i. After a suitable relabeling of
the cliques Ci we may assume that one of the following cases occurs:

(α) C1, C2, C3 have cardinality > 3;

(β) C1, C2 have cardinality > 3, the others have cardinality 2;

(γ) C1 has cardinality > 3, the others have cardinality 2;

(δ) C1, . . . , Cr have cardinality 2.

In case (α) observe that G contains C1, C2 and C3, too. But this contradicts the fact that
G does not contain T0 as an induced subgraph. Similarly in case (β), G contains C1, C2.
Let C3 = {i, j}. Since C3 is an edge in G|P , it cannot be a leaf of G. Therefore, since G is
indecomposable, there exist at least two maximal cliques in G for which j is a cut point.
It follows that T1 is an induced subgraph, a contradiction. (γ) and (δ) are discussed in a
similar way.

(iii) ⇒ (i): We use induction on i(G). If i(G) = 0, then G is a clique and the
assertion is obvious. Now let us assume that i(G) > 0. By (a) it is sufficient to prove
that regS/JG 6 i(G) + 1. If i(G) = 0, then G is a clique and the assertion is obvious.
We choose a leaf of G. Let j be the unique cut point of this leaf, and let G′, G′′ and H
be the subgraphs of G, as defined with respect to j in the proof of Theorem 6. Note the
G′ and H are block graphs satisfying the conditions in (iii) with i(G′) = i(H) = i(G)− 1.
By our induction hypothesis, we have reg(S/JG′) = reg(S/JH) = i(G). The graph G′′

has cdeg(j) many connected components with one components G0 satisfying (iii) and
i(G0) = i(G)−1, and with the other components being cliques, where all, but possible one
of the cliques, say C0, are isolated vertices. Applying our induction hypothesis we obtain
that reg(S/JG′′) = i(G0)+reg(JC0) 6 i(G)−1+reg(S/JC0) 6 i(G), since reg(S/JC0) 6 1.

Thus the exact sequence (4) yields

regS/JG 6 max{regS/JG′ , regS/JG′′ , regS/JH + 1} = i(G) + 1,

as desired.
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Figure 1: Induced subgraphs to avoid.
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