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A method for retrospective estimation of natural head movement during 

structural MRI 

Abstract  

Background 

Head motion during brain structural MRI scans biases brain morphometry measurements but 

quantitative retrospective methods estimating head motion from structural MRI have not been 

evaluated. 

Purpose/Hypothesis 

We hypothesized that two metrics retrospectively computed from MR images 1) average edge 

strength (AES, reduced with image blurring) and 2) entropy (ENT, increased with blurring 

and ringing artifacts) could be sensitive to in-scanner head motion during acquisition of T1-

weighted MR images. Specific goals were to: i) Evaluate if these metrics differentiated two 

populations with expected natural head motion differences: Healthy Control (HC) and 

cognitively normal Parkinson Disease (PD) patients; ii) Investigate whether within the PD 

group, AES and ENT were associated with clinical tremor score (TS); iii) Test whether AES 

and ENT predict local or distributed brain morphometry parameters, including cortical 

thickness (CT), gray-white matter contrast (GWC) and gray matter density (GMx). 

Study Type 

Retrospective 

Population/Subjects/Phantom/Specimen/Animal Model 

83 HC and 120 PD patients 

Field Strength/Sequence 
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3D MPRAGE images at 3T 

Assessment 

We 1) compared AES and ENT distribution between HC and PD, 2) evaluated the correlation 

between TS and AES (or ENT) in PD and 3) investigated cortical regions showing an 

association between AES (or ENT) and local and network-level covariance measures of CT, 

GWC and GMx.  

Statistical Tests 

1) Mann-Whitney (for AES) and T-student (for Ent) test. 2) Spearman’s rank correlation. 3) 

General Linear Model and Partial Least Square analysis 

Results 

AES, but not ENT, differentiated HC and PD (z=-1.72, p=0.04). In PD AES correlated 

negatively with TS (rho=-0.21, p=0.02) and showed a significant relationship (|Z|>3, p<0.001) 

with structural covariance of CT and GWC in 54 out of 68 cortical regions. 

Data Conclusion 

In clinical populations prone to head motion AES can provide a reliable retrospective index of 

motion during structural scans, identifying brain areas whose morphometric measures co-vary 

with motion.  

 

Key words: Head motion; brain structural MRI; brain morphometry; Parkinson’s disease; 

average edge strength; entropy  
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INTRODUCTION 

Head motion during the acquisition of structural brain images can produce artifacts such as 

image blurring or ringing (1). These artifacts may be particularly problematic when using 

structural T1-weighted MRI for morphometric analyses (2-4), and particularly when trying to 

understand morphometric changes in clinical populations. Recent studies, where participants 

were instructed to perform head movement during structural MRI acquisition, show that head 

motion significantly biases brain morphometry estimates and test-retest reliability (5-7). 

There is, therefore, an interest in identifying head motion and characterizing its potential 

effects such that morphometry biases can be minimized. 

When considering prospective studies, several novel procedures can reduce head 

motion artifacts during the acquisition of structural MRI data. These include increasing 

participant cooperation through training, using advanced acquisition sequences that enable 

shorter MRI acquisition times (8), applying k-space trajectories optimized to mitigate motion 

artifacts (9), using online prospective motion correction tools such as MR navigator (10), or 

external motion tracking devices (11). These correction methods reduce motion-related biases 

and variance in voxel based morphometry (VBM) and cortical thickness (CT) studies (12).  

However, in standard retrospective structural MRI studies performed without online 

head motion correction, image quality control (QC) tends to be qualitative and aimed at 

classifying whether the data is of sufficient quality (e.g. good, moderate, bad) to be further 

processed based on visual assessment of head motion related image artifacts (13,14). A more 

quantitative approach was suggested by recent studies is to relate head motion estimations 

derived from functional MRI scans with CT biases from structural MRI data acquired in the 

same session (13,15,16). This method may only be applied if both structural and functional 

data are available and assumes similar levels of motion across functional and structural scans.   
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A previous study introduced two metrics for estimating whole-brain motion from the 

full 3D structural T1 volume: 1) Average Edge Strength (AES) and 2) image Entropy (ENT) 

(17). AES quantifies the average intensity of the contrast at the intensity edges of an image, so 

it is sensitive to the amount of blurring. ENT quantifies the distribution of the image energy 

over all voxels in an image. ENT increases when artifacts produce blurring, ghosting and 

ringing. Both metrics have been shown to successfully quantify improvement in image quality 

after prospective motion correction (17). However, in those studies participants were 

instructed to perform specific head movements during the MRI acquisitions.  It remains 

unclear whether AES and ENT are sufficiently sensitive for capturing natural head motion 

effects from structural MRI.  

To the best of our knowledge, no studies have investigated whether these retrospective 

head motion metrics can be applied to evaluate if certain populations are associated with 

greater head motion and if they co-vary with brain morphometric measures. This issue is 

fundamental for structural analyses: on the technical level, identifying participants, sessions, 

or groups for which there was strong motion during structural acquisition is essential for 

improving the quality of structural data.  On the theoretical level, being able to regress out 

effects of head motion from univariate and multivariate analyses of structural data will 

undoubtedly result in more valid conclusions about the meaningful (vs. nuisance) differences 

in participants’ brain anatomy. This issue is becoming of central importance, for example, in 

the field of structural-networks where conclusions about group differences are made based on 

differences in brain anatomy covariance structures (18,19). If such morphometric differences 

are shown to be linked to magnitude of head motion (or alternatively, to be independent of it) 

then this directly impacts the validity of the conclusions.  

In this study, we evaluated AES and ENT as retrospective head motion metrics in a 

multicenter study including two clinical populations with expected different natural head 
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motion characteristics (20): cognitively normal Parkinson’s Disease (PD) patients and 

Healthy Controls (HC). Importantly, the PD group had clinical tremor scores (TS). The main 

goals of the study were the following: i) test if AES or ENT can be used to differentiate HC 

and PD groups; ii) test if the clinical TS in PD correlate with the AES or ENT metrics; and iii) 

investigate the sensitivity of commonly used morphometric measures to these motion artifacts 

(we examined Freesurfer derived CT and gray-white matter contrast as well as SPM derived 

gray matter density maps and their structural covariance networks).  

 

 

MATERIALS AND METHODS 

Participants 

This study’s datasets were obtained from the Parkinson’s Progressions Marker Initiative 

website (http://www.ppmi-info.org/).  Written informed consent was obtained from all 

subjects. The study was approved by Institutional Review Boards/Independent Ethics 

Committees.  

In order to make our analysis sensitive to head motion effects while minimizing 

potentially unrelated confounds for brain morphometry, we analyzed MRI and clinical data 

acquired on 120 PD subjects complying with the following three criteria: 1) diagnosis of 

resting tremor and 2) cognitive state classified as normal at the baseline visit; 3) T1-weighted 

MR images acquired during baseline visit at identical magnetic field and MRI system (3T 

Siemens Trio) using the same image acquisition sequence (3D-MPRAGE). We included in 

this study also data from 83 HC, who were selected to match the PD group on age and gender 

(see independent sample T-test and a Chi-square test in Table 1) and fulfilled the MR scan 

requirements described above for PD. Supplemental Table 1 reports the list of subject IDs 

included in the study.  
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MRI acquisition protocol 

All participants included in this study underwent a structural MRI scan on a 3T Siemens Trio 

scanner (Siemens Medical Solutions, Erlangen, Germany). 3D-MPRAGE T1-weighted 

images were acquired at 13 different sites using three protocols with identical acquisition 

plane (sagittal), TI=900 ms, FA=9° and minor differences in other acquisition parameters 

(Table 2).  

 

Clinical tremor scores 

Following Jankovic et al.  (21) we calculated a clinical tremor score (TS) for each PD patient 

by averaging 11 scores from the part II and III of the Movement Disorder Society-Unified 

Parkinson's Disease Rating Scale (MDS-UPDRS) reported in Table 3.  Each score assesses 

the tremor at rest or during movement of different parts of the body with a 0 (no tremor) to 4 

(severe tremor) rating system evaluated by an expert observer (with the exception of the 

MDS-UPDRS II patient’s “self-assessment of tremor” score). This aggregated clinical TS for 

each PD participant was used as an independent clinical marker of head motion magnitude for 

his/her structural MRI scan. 

 

Retrospective head motion estimates  

Motion during acquisition of brain structural MRI causes blurring and aliasing (i.e. ghosting), 

which, in turn, can spread the image energy from one pixel to multiple pixels. Therefore, MRI 

measures of image contrast across edges (AES) and entropy (ENT) have been proposed as 

retrospective estimates of motion (17). Here we used the same definitions after normalizing 

the image intensity between the 5th and 95th percentile in order to remove potential biases 

related to intensity differences from the multisite data. 
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Average Edge Strength calculation 

Average Edge Strength (AES) is a metric defined on 2D images. Because artifacts are more 

visible along the phase encoding directions (sagittal and coronal in our case) we calculated 

AES along the axial slices (22). We first performed skull stripping using the optiBET in FSL 

5.0 (23). Then for each brain slice we calculated a binary mask of edges using the Canny edge 

detector. This algorithm first applies a Gaussian smoothing (kernel size=√2) on the original 

2D image to obtain results robust against noise. Subsequently it computes the 2D gradient 

image on which one low and one high threshold are automatically determined. All the pixels 

above the high threshold are included in the edge mask and the pixels with gradient values 

between the low and the high threshold are added to the mask if connected to pixels above the 

high threshold. Then for each slice we calculated AES as follows (17): 

 

���	(�) = 	�∑ ���,�� � ������,�� ��� + �����,�� �����,� ∑ ���,�� ��,�  

 

where �: slice number , i,j: pixel index; E(Ii,j) is the  binary mask of Edges; �� and �� are 

gradient kernels of 1 pixel size in each direction ([−1 −1 −1; 0 0 0; 1 1 1] and [−1 0 1; −1 0 1; 

−1 0 1] for �� and �� respectively).  AES provides a quantification of the average blurring at 

the edges detected on a 2D image: when blurring increases, for example as a result of 

increased head motion, AES decreases.  

 

Entropy calculation 

Image entropy (ENT) was defined as follows (17): 
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�!" = − $ �%�&'& () * �%�&'&+
,

%-.  

where ρ is the image voxel index, n is the number of voxels in the image, Iρ is image intensity 

in pixel ρ. Itot is the total image energy:  

�&'& = /$ �%�,
%-.  

 

ENT is independent of the image size, and we therefore derived a single value for the entire 

3D image. ENT is minimum (i.e. equal to 0) when all the image energy is concentrated in one 

voxel. When the image energy is uniformly distributed, i.e. all voxels have the same gray 

scale value, its entropy is maximal and equal to:  

�012 = 12	4)%		ln	()%) 

Increased head motion will increase image entropy as described above. Thus, lower entropy 

implies fewer motion artifacts. Because ENT is sensitive to head motion artifacts extending 

outside the brain, such as ghosting and ringing, we calculated it on the whole image before 

skull stripping. 

 

Retrospective head motion metrics: group and clinical TS effects 

We tested the hypothesis that T1-weighted images are more affected by head motion related 

image artifacts in PD than HC by comparing AES and ENT between the two groups.  AES 

values were not normally distributed (across all the slices and all the participants; Lilliefors 

test, K=0.351, p<001 for HC and K=0.304, p<=0.001 for PD). We therefore compared the 

distribution of AES values between HC and PD using the non-parametric Mann-Whitney test. 
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For ENT (a single value per participant) after verifying that it was normally distributed for 

HC and PD we compared the two groups means using an independent samples T-test.  

We then assessed whether AES and ENT can be used as proxy of head motion 

quantification by measuring their Spearman's correlation with clinical TS (in PD patients 

only). Since AES is calculated separately for each image slice, it was necessary to select one 

AES value to represent the whole brain volume of each subject and its corresponding clinical 

TS. The mean AES across slices was discarded because AES did not show a normal 

distribution. Instead, since AES was found to differ significantly between HC and PD when 

considering all slices (Results), we determined the AES percentile for each subject by 

computing the empirical cumulative distribution function (eCDF) of AES, separately for HC 

and PD. From these, the percentile AES value that better discriminated the eCDFs of the two 

groups was chosen (Supplemental Figure 1). We found that the AES eCDF diverged for the 

two groups (HC and PD) above the 90th percentile. This value was therefore chosen as a 

representative AES for each participant. A comparison it between HC and PD using a Mann-

Whitney test confirmed, that using the 90
th

 percentile, AES gave a statistically significant 

lower AES for PD than HC (z=-2.06, p=0.02, dof=201, Supplemental Figure 2). We therefore 

used the 90
th

 percentile AES value of each subject to compute the correlation between AES 

and clinical TS in PD.  All statistical tests were performed in Matlab 8.1.0. 

 

Brain morphometry with Freesurfer and VBM 

For brain morphometry estimates from the structural MRI of each subject we used two 

software tools:  Freesurer (5.1.0) for CT and Gray to White Matter (GWC) measurements and 

SPM12 for Gray Matter density (GMx) maps (24-26).  

 For each participant we obtained the CT and GWC vertex-wise values on the 

FreeSurfer average template and their average in each ROIs of the Desikan cortical 

Page 9 of 34

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FO
R PEER REVIEW

 O
NLY

10 

 

 

 

parcellation atlas (27). GWC was calculated at each vertex along the cortical surface as 

[(white − gray)/(white + gray)] at 0.5 mm above versus below the gray/white interface with 

trilinear interpolation of the images (24). GWC values were between 0 and 1, with values 

closer to 0 indicating less contrast and thus more blurring of the gray/white boundary. For 

subsequent group analyses we registered both CT and GWC maps to an average template 

after smoothing (with 15 mm FWHM and 10 mm FWHM respectively for CT and GWC) 

across the surface.  

GMx values were obtained voxel-wise on the Dartel template and their average for 

each cortical ROIs of the AAL atlas (28). For GMx maps computation we corrected the raw 

images for bias-field inhomogeneity and segmented into gray matter, white matter and 

cerebrospinal fluid  using standard default settings (2). Then we aligned the GMx maps to 

common space using a high-dimensional DARTEL normalization modulating for nonlinear 

effects and smoothed using a 9-mm FWHM Gaussian smoothing kernel.  

 

 

Brain morphometry: head motion effects 

The aim of this analysis was to investigate the effect of head motion as retrospectively 

measured by AES on CT, GWC and GMx.   The 90
th

 percentile AES value was chosen as 

representative for each subject, as done in the correlation analysis with clinical TS. We will 

simply refer to this value as AES for the rest of morphometry analysis description. 

We did not evaluate the effects of ENT on brain morphometry metrics because ENT 

did not correlate with clinical TS in PD patients and the ENT distributions for HC and PD 

were not significantly different (Results). 

 

Univariate Whole-Brain Analysis  

Page 10 of 34

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FO
R PEER REVIEW

 O
NLY

11 

 

 

 

We identified cortical regions where AES correlated with CT (or GWC) and where the 

correlation was different for HC and PD. We used the following linear regression model, 

identical for CT and GWC (here shown for CT), on each vertex of the reconstructed cortical 

surface: 

 

7" = 80 + 81�:;<= + 82�>? + 83���+84(�:;<= ∗ ���) + C 

 

The model attempts to explain the group variance of CT (or GWC) by assigning 

weights to a linear combination of multiple explanatory terms: subject group (HC or PD), age, 

head motion (AES) and an interaction between head motion and group. The error ε denotes 

the unexplained variance. The regressors of interest were β3 (AES correlation slope) and β4 

(group-by-AES interaction, or the slope difference between the groups). We obtained vertex-

wise regressors with their p-value, applied a single vertex p<0.01 threshold and performed 

cluster-wise correction for multiple comparison on the surface at the p<0.05 level (29).  

For GMx maps the same linear regression model as above was applied in SPM12 

adding as a covariate the total GM volume to control for individual differences (30). Voxels 

with GM density < 0.2 were excluded from the regression analysis. We thresholded the 

regressors of interest (β3 and β4) at p<0.05 level with Family Wise Error correction for 

multiple comparisons. 

 

Multivariate analysis 

Univariate analyses may not detect subtle effects at a distributed topographic-level 

(31). For this reason, we investigated the hypothesis that a network-level covariance pattern 

of CT, GWC and GMx predicts AES using a Partial Least Squares (PLS) approach. 

Specifically, we used the CT (and GWC) average values in the 68 cortical regions of the 
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Desikan Atlas to generate an N (number of participants either in HC or PD group) x 68 

(number of cortical ROIs) matrix representing the explanatory data. We implemented PLS 

using the package available in R software (32).  

We first determined, using a leave-one-out validation procedure, that the first 

component of the explanatory data predicted most of the covariance between CT (GWC) and 

AES. To this aim, we constructed 500 permutations of the explanatory data keeping the 

original CT matrix while randomly assigning AES to the participants in each permutation and 

verified that the prediction error of AES by CT was significantly below what would be 

expected by chance (p<0.001). Subsequently, to identify which brain regions reliably 

predicted the CT (GWC) vs. AES relationship, we used a bootstrapping procedure that was 

run 100 times (33). In each instance, we bootstrapped, with replacement, rows from the 

original [N × 68] CT (GWC)-value matrix, to populate a proxy [N × 68] matrix. For each 

proxy matrix, PLS was run, and the loadings for the estimated first component was retrieved. 

This loading matrix was rotated to match the direction of the loadings in the original data via 

a Procrustes Rotation, and the Y-loadings (AES loadings) for the first component saved. 

Finally, we calculated the standard deviation of the 100 bootstrap loadings, per region, and 

then obtained a Z-score per region [region loading/sd(loading)]. Only regions that passed a Z-

score of ± 3.0 were considered significantly (p<0.001) “salient.”   

We performed identical analysis to investigate the prediction of AES by GMx. We 

obtained the explanatory data matrix for GMx calculating average GMx values in 82 cortical 

regions of the AAL atlas. We run the PLS analysis described above for CT, GWC and GMx 

separately for HC and PD. 
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RESULTS 

 

We used visual inspection of representative data to qualitatively evaluate the relation between 

AES and ENT scores in images with different degree of visually recognized motion artifacts. 

Figure 1 shows the sensitivity of AES and its inverse relation to image blurring (Figure 1a, 

left HC with lower blurring, right PD with higher blurring) and the sensitivity of ENT to 

motion artifacts like ringing (Figure 1b, left HC with no artifacts and right PD with ringing 

artifact).  

 

Retrospective MRI-derived head motion metrics: sensitivity to clinical differences 

The group analysis demonstrated a subtle yet statistically significant reduction of AES 

(Mann Whitney z=-1.72, p=0.04, dof=28541), measures (slice by slice) in PD relative to HC. 

This result indicates increased head motion in the PD group as compared to the HC group: the 

reduced edge intensity contrast (i.e. AES) is consistent with higher level of image blurring at 

the edges, a common motion related artifact.   

To evaluate correlations between AES and TS scores of individuals in the PD group, it 

was necessary to define a single AES per participant. AES distributions were found to be non-

normal and skewed in both groups (PD: Lilliefors Test K=0.351, p<0.001; HC: Lilliefors Test 

K=0.304, p<0.001). Therefore, a percentile-determined definition was preferred as a single-

subject AES summary. We chose the 90th percentile because the main differences in AES 

eCDF emerged above this threshold (Supplemental Figure 1) and we verified that this value 

was statistically significantly different between HC and PD (Supplemental Figure 2). The 

Spearman correlation between the AES 90th percentile and clinical TS in PD was statistically 

significant (rho=-0.21, p=0.02, dof=118, Figure 2), consistent with the hypothesis that AES is 

sensitive to motion, and that PD patients with a higher clinical TS were more prone to head 
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motion in the scanner. We note that the main purpose of this analysis was to identify an AES 

percentile that tracks a tremor score in order to then evaluate the relationship between these 

AES values and morphometric data.  

As opposed to AES, ENT was not statistically different between HC and PD (t=0.72, 

p=0.47, dof=201). In addition, there was no significant correlation between ENT and TS of 

PD patients (rho=-0.12, p=0.19, dof=118). For this reason only the AES 90
th

 percentile (to 

which we will simply refer as AES) was considered in the morphometry analyses. 

 

Retrospective MRI-derived head motion metrics: effects on brain morphometry 

The results of the whole-brain univariate analysis are shown in Figure 3. For the 

relationship between AES and CT, we found a negative association in the right superior 

parietal gyrus, supramarginal gyrus, lateral occipital gyri and the left paracentral gyrus and a 

positive association the right fusiform gyrus. We did not find any region where the 

relationship between AES and CT was significantly different for HC and PD (Group-by-AES 

interaction). There were no regions where the relationship between AES and GWC or 

between AES and GMx was statistically significant. We did not find any region where the 

interaction between AES and group was statistically significant for either GWC or GMx.  

The multivariate PLS analysis identified, fort the PD group, a set of 54 regions, out of 

68, of the Desikan atlas (Figure 4), where the loadings for the first CT component predicted 

AES with strong salience (|z| >3, p<0.001). This set of ROIs included all the regions, except 

the right fusiform gyrus, where significant association between AES and CT was found by the 

univariate analysis and also extended to a vast portion of the cortical surface.  

A comparable analysis revealed a set of regions where GWC covariance predicted 

AES in the PD population. These included the ones found for CT in addition to 9 others 

(Figure 5).  
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As opposed to the above-presented findings for PD, for HC the covariance of CT or 

GWC did not predict AES. Finally we did not find any network-level covariance pattern for 

GM that predicted AES either in PD or HC.  

 

DISCUSSION 

 

The main findings of this study are: i) AES (and not ENT) gave subtle but significant 

differences between the PD and HC groups, consistently with higher head motion in the PD 

group; ii) AES (and not ENT) correlated negatively with clinical tremor scores, consistently 

associating higher head motion with higher tremor scores; and iii) in PD, AES revealed 

patterns of CT and GWC covariance across a large portions of the cortical surface.  

The lower AES values (more image blurring) found in PD patients are consistent with 

previous results showing that AES is sensitive to head motion during structural MRI (17,34). 

Indeed, the PD patients in the current study who were not taking medication suffered from 

tremor or dystonia, a condition that prevents them from lying absolutely still in the scanner
 

(20). While it is generally accepted that PD patients do not have head tremor, they experience 

head movement as a result of trunk or limb tremor transmitted to the head (35). This explains 

the higher blurring (i.e. lower AES) measured on T1-weighted MRI in the PD patients relative 

to the HC group. Previous studies using prospective motion correction tools on structural MR 

images demonstrated the sensitivity of AES to intra-subject head motion variability because 

AES decreased after motion correction (17,34). Here we extend those findings showing that 

AES is also sensitive for detecting natural head motion group differences between PD and age 

and gender matched HCs. This result suggests that AES could be used to test the level of 

head-motion differences across populations in cross-sectional brain morphometry studies.  
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We found a significant negative correlation between AES and the clinical TS in PD, 

with an effect size rho=-0.21. This finding is consistent with a previous study that showed 

how individual differences in impulsivity score predict head motion retrospectively measured 

on resting state fMRI data (36). In our study we show, for the first time, an association 

between a clinical motion metric and an image based retrospective estimation of head motion 

for structural MR images. This finding thus suggests that AES is a reliable QC measure to 

detect inter-individual differences in head motion.   However, the small effect size in 

correlation with TS reported in this study suggests that these findings need to be replicated 

using different datasets before AES can be widely adopted as a QC metric for head motion 

estimation on structural images. 

Image entropy did not demonstrate as much head motion sensitivity as AES. The 

higher sensitivity of AES relative to entropy may be related to the fact that AES is calculated 

on 2D slices and we chose the slice orientation most sensitive to motion from our 3D images 

(axial slices, which had two phase encoding directions) (22). Entropy was calculated from the 

whole 3D volume potentially making the measure less sensible to subtle motion.   

Investigating the biases of AES as proxy of head motion on morphometry measures 

we found that AES was a predictor of CT in five regions of the brain.  This result marginally 

confirms previous studies that have demonstrated a strong association between CT and GMx 

measures and the amount of head motion in larger portions of the cerebral cortex (6,12). The 

weaker linear relationship between morphometry measures and head motion found in our 

dataset may be due to study design:  the above mentioned studies were conducted with the 

participants guided to perform substantial head motion during image acquisition whereas the 

images analyzed in this study were acquired on subjects instructed to stay still as much as 

they could.  
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We found that despite the head motion differences between the PD and HC groups, no 

brain areas showed significant interactions between head motion and morphometry data using 

the univariate analyses. This suggests that the morphometry tools used are overall robust in 

comparing morphometry measures between populations with small but statistically significant 

different head motion characteristics (z=-1.72, p=0.04 in our case). However future studies 

performed on different datasets could investigate the sensitivity of AES to different types of 

motion (e.g. nodding and free) and quantify the relationship between measured head motion 

and AES. This may help determine the minimum AES necessary to induce morphometry 

group differences caused by image artefacts.  

  The results of the multivariate analysis indicate that in a clinical population with 

expected motion degraded MR image quality, a brain distributed covariance pattern for both 

CT and GWC can emerge that is related to head motion. This is in line with previous 

literature findings that have demonstrated that although multivariate connectivity methods can 

detect connections which cannot be observed in standard univariate analysis, they are more 

sensitive to voxel specific noise (37). Specifically, a study by Geerligs et al. showed 

association with increased head motion for a multivariate (Distance correlation) and not for a 

univariate (Pearson’s correlation) measure of functional connectivity (38). In our study we 

extend those findings demonstrating also the strong sensitivity of multivariate structural 

connectivity analyses to head motion.  

Our results thus underline the need for using QC tools to verify the reliability of 

structural covariance measurements and indicate that AES could be used retrospectively for 

this purpose. This is potentially relevant for the neuroimaging community because an 

increasing number of studies are looking at large-scale structural networks effects rather than 

local morphometric measures to investigate potential anatomical imaging biomarkers for PD 

(18) and other brain pathologies (19).  
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This work has a number of limitations: first of all we compared two retrospective head 

motion metrics, AES and ENT because they have been defined to be sensitive to two very 

commonly found head motion related image artifacts (i.e. blurring and ringing). However 

further image based metrics exist in the literature, such as the gray level co-occurrence matrix, 

that could be tested in future studies alone or in combination with AES to the same aim of 

discerning motion from disease due structural differences between different clinical 

populations (34). Second, we could have included in our analysis an additional morphometry 

measure, the Brain Boundary Shift Integral (BBSI), that computes volume changes due to the 

shifting of boundaries between brain tissue and cerebral spinal fluid over time (39). By its 

definition BBSI should be more sensitive than CT, GWC or GM to head motion because it 

directly maps voxel intensity changes over time, i.e., repeated measures. However, the first 

longitudinal structural images available in the PPMI database were performed 12 months after 

the baseline scan, at a time when disease evolution or Parkinson’s drug effects may have 

caused cortical changes (40). For this reason we did not use the longitudinal PD data available 

in the database, which will make difficult to disentangle head motion effects related to disease 

progression and/or with treatment effects. Third, we correlated AES with the clinical TS that 

provides an overall assessment of tremor in different parts of the body. It would have been 

beneficial to compare AES with a more specific behavioral measure of head motion, such as 

the lip/jaw TS that is one of the MDS-UPDRS part III ratings used in the calculation of the 

TS. However, head tremor is in general absent in PD patients (35) and so it was in our study 

where only 7 patients in the database we analyzed had a lip/jaw TS different than 0. Future 

studies in patients with Parkinson’s disease or different clinical populations correlating AES 

with a more specific or possibly direct measure of head motion should be performed to 

confirm its specificity for quantifying head motion. Nevertheless, the TS showed better 
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correlation with AES than the MDS-UPDRS Part III score (results not shown) because the 

ratings used to calculate the TS mainly pertain to postural and rest tremor. The MDS-UPDRS 

III score instead consists of a more global evaluation of the motor signs of PD including 

features like patient’s flowing speech, rising from the chair or finger tapping. Therefore, the 

TS is more likely to be indicative of the tremor scenario during the MR scan.  

 

In conclusion the results of this work suggest that: i) AES may provide a reliable 

metric to retrospectively and quantitatively estimate head motion occurred during the 

acquisition of T1-weighted structural images, thus offering an objective metric for 

normalizing head motion across populations; ii) AES can be used as a head-motion related 

QC metric for structural MRI data studies investigating large-scale structural covariance 

effects. This evaluation will be particularly important when head motion may not be easy to 

match across clinical groups.  
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Table 1:  Summary demographic information of the HC and PD patients included in this 

study. The statistical scores in the bottom row indicate that the groups were matched for age 

and gender. 

  

Groups Age (years) Gender 

HC: n=83 59.6 ± 10.9 M 53/F 30 

PD: n=120 60.4 ± 9.8 M 75/F 45 

Group difference statistics T=-0.44, p=0.66 Χ
2
=0.10, p=0.75 

M: male. F: female. HC: Healthy controls. PD: Parkinson’s disease subjects. 
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Table 2:  Main structural brain MRI acquisition parameters for the 3 PPMI protocols used to 

acquire the 3D T1-weighted images analyzed in this study.  

Protocol 

name 

TR 

(ms) 

TE 

(ms) 

FOV  

(mm) 

Voxel size 

(mm
3
) 

Sites per 

protocol 
Samples per 

protocol 

MPRAGE 
GRAPPA 2300 2.98 240x256x176 1.0x1.0x1.0 12 

173 
(HC=66,PD=107) 

MPRAGE 
T1 SAG 2300 2.52 256x256x176 0.98x0.98x1.0 1* 10 (HC=5,PD=5) 

SAG T1 3D 

MPRAGE 1900 2.27 256x256x176 0.98x0.98x1.0 1 20 (HC=12,PD=8) 

PPMI: Parkinson’s Progressions Marker Initiative. HC: Healthy controls. PD: Parkinson’s disease 

subjects.  

*In site #32, according to the PPMI database, 15 datasets were acquired with the MPRAGE GRAPPA 

protocol and 10 with the MPRAGE T1 SAG protocol 
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Table 3:  Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-

UPDRS) evaluations (parts II and III) used to calculate the clinical tremor score for PD 

patients. 

Index MDS-UPDRS Part Acronym Name 

1 II NP2TRMR Self-assessment of tremor 

2 III NP3PTRMR Postural tremor of right hand 

3 III NP3PTRML Postural tremor of left hand 

4 III NP3KTRMR Kinetic tremor of right hand 

5 III NP3KTRML Kinetic tremor of left hand 

6 III NP3RTARU Rest tremor amplitude of right upper limbs 

7 III NP3RTALU Rest tremor amplitude of left upper limbs 

8 III NP3RTARL Rest tremor amplitude of right lower limbs 

9 III NP3RTALL Rest tremor amplitude of left lower limbs 

10 III NP3RTALJ Rest tremor amplitude of lip/jaw 

11 III NP3RTCON Constancy of rest tremor 

PD: Parkinson’s disease subjects.  
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Figure Legends 

 

Figure 1: Head motion artifact examples in healthy controls (HC) and Parkinson’s disease 

(PD) subjects with the corresponding quantitative characterization given by the average edge 

strength (AES, upper panel) and image entropy (ENT, lower panel) metrics derived from the 

corresponding structural T1-weighted images.  Figure 1a (upper panel) shows an example 

where the head motion differences are quantitatively dominated by lower AES (32% lower 

due to higher image blurring) in the PD (right) relative to the HC (left), while both images 

have comparable ENT values across the two examples (5% difference). Figure 1b (lower 

panel) shows the converse, an example where head motion quantitative differences are 

dominated by higher ENT (11% higher due to more ringing artifacts) in the PD (right) relative 

to the HC (left), while AES was comparable across the two examples (3% difference).  

 

Figure 2: Binned scatter plot of the average edge strength (AES, 90
th

 percentile), as 

quantitative head motion metric derived from structural T1-images, and clinical tremor scores 

(TS) in Parkinson’s disease patients. To avoid overlap for participants with similar clinical 

TSs, participants are binned into equal sized 10 TS groups. Average AES and TS for each 

group are plotted. Error bars indicate standard error of the mean (s.e.m). Clinical TSs showed 

a significant negative correlation between AES and clinical TS, indicating increased image 

blurring (consistent with higher motion artifacts) with tremor severity.  

 

Figure 3: Univariate analysis showing gray matter clusters where cortical thickness (CT) has 

a significant linear relationship with average edge strength (AES, p<0.05 corrected for 

multiple comparisons). Group results are shown on the inflated cortex and are not different 

between healthy controls and Parkinson’s disease patients. Red/yellow indicates thickness 
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gain and blue indicates thickness loss with increased AES. R: right hemisphere. L: left 

hemisphere. Upper panel: lateral views. Lower panel: medial views. 

 

Figure 4: Multivariate partial least square (PLS) covariance analysis of cortical thickness 

(CT) and average edge strength (AES) in Parkinson’s disease (PD) The regions shown are 

where CT predicts AES (CT loadings showed low variance across AES bootstrap solutions 

(|z|>3, p<0.001). R: right hemisphere. L: left hemisphere. Upper panel: lateral views. Lower 

panel: medial views. 

 

Figure 5: Multivariate partial least square (PLS) covariance analysis of gray-white contrast 

(GWC) and average edge strength (AES) in Parkinson’s disease (PD). The regions shown are 

those where GWC predicts AES (GWC loadings showed low variance across AES bootstrap 

solutions (|z|>3, p<0.001). R: right hemisphere. L: left hemisphere. Upper panel: lateral 

views. Lower panel: medial views. 
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Figure 1: Head motion artifact examples in healthy controls (HC) and Parkinson’s disease (PD) subjects with 
the corresponding quantitative characterization given by the average edge strength (AES, upper panel) and 

image entropy (ENT, lower panel) metrics derived from the corresponding structural T1-weighted 

images.  Figure 1a (upper panel) shows an example where the head motion differences are quantitatively 
dominated by lower AES (32% lower due to higher image blurring) in the PD (right) relative to the HC (left), 
while both images have comparable ENT values across the two examples (5% difference). Figure 1b (lower 
panel) shows the converse, an example where head motion quantitative differences are dominated by higher 
ENT (11% higher due to more ringing artifacts) in the PD (right) relative to the HC (left), while AES was 

comparable across the two examples (3% difference).  
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Figure 2: Binned scatter plot of the average edge strength (AES, 90th percentile), as quantitative head 
motion metric derived from structural T1-images, and clinical tremor scores (TS) in Parkinson’s disease 
patients. To avoid overlap for participants with similar clinical TSs, participants are binned into equal sized 
10 TS groups. Average AES and TS for each group are plotted. Error bars indicate standard error of the 

mean (s.e.m). Clinical TSs showed a significant negative correlation between AES and clinical TS, indicating 
increased image blurring (consistent with higher motion artifacts) with tremor severity.  
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Figure 3: Univariate analysis showing gray matter clusters where cortical thickness (CT) has a significant 
linear relationship with average edge strength (AES, p<0.05 corrected for multiple comparisons). Group 
results are shown on the inflated cortex and are not different between healthy controls and Parkinson’s 

disease patients. Red/yellow indicates thickness gain and blue indicates thickness loss with increased AES. 
R: right hemisphere. L: left hemisphere. Upper panel: lateral views. Lower panel: medial views.  

 
87x50mm (300 x 300 DPI)  

 

 

Page 29 of 34

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FO
R PEER REVIEW

 O
NLY

  

 

 

Figure 4: Multivariate partial least square (PLS) covariance analysis of cortical thickness (CT) and average 
edge strength (AES) in Parkinson’s disease (PD) The regions shown are where CT predicts AES (CT loadings 

showed low variance across AES bootstrap solutions (|z|>3, p<0.001). R: right hemisphere. L: left 

hemisphere. Upper panel: lateral views. Lower panel: medial views.  
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Figure 5: Multivariate partial least square (PLS) covariance analysis of gray-white contrast (GWC) and 
average edge strength (AES) in Parkinson’s disease (PD). The regions shown are those where GWC predicts 

AES (GWC loadings showed low variance across AES bootstrap solutions (|z|>3, p<0.001). R: right 

hemisphere. L: left hemisphere. Upper panel: lateral views. Lower panel: medial views.  
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Supplemental Table 1: ID code and clinical group for the subjects included in the study obtained 

from the Parkinson's Progression Marker Initiative (PPMI) dataset: PD: Parkinson's disease. HC: 

healthy controls. 

ID Group 

3101 PD 

3104 HC 

3105 PD 

3106 HC 

3108 PD 

3111 PD 

3112 HC 

3113 PD 

3114 HC 

3115 HC 

3118 PD 

3119 PD 

3122 PD 

3123 PD 

3124 PD 

3125 PD 

3127 PD 

3128 PD 

3129 PD 

3130 PD 

3131 PD 

3132 PD 

3150 PD 

3151 HC 

3154 PD 

3156 HC 

3160 HC 

3161 HC 

3165 HC 

3168 PD 

3169 HC 

3170 PD 

3171 HC 

3172 HC 

3173 PD 

3175 PD 

3176 PD 

3181 PD 

3182 PD 

3188 HC 

3189 PD 

3190 PD 
 

ID Group 

3191 HC 

3300 HC 

3301 HC 

3304 PD 

3305 PD 

3307 PD 

3309 PD 

3310 HC 

3311 PD 

3316 HC 

3320 HC 

3322 PD 

3324 PD 

3325 PD 

3326 PD 

3328 PD 

3332 PD 

3350 HC 

3353 HC 

3354 PD 

3355 HC 

3357 HC 

3358 HC 

3360 PD 

3361 HC 

3362 HC 

3364 PD 

3365 PD 

3367 PD 

3368 HC 

3369 HC 

3370 HC 

3372 PD 

3373 PD 

3375 PD 

3377 PD 

3380 PD 

3383 PD 

3386 PD 

3389 HC 

3390 HC 

3392 PD 
 

ID Group 

3550 PD 

3551 HC 

3554 HC 

3555 HC 

3556 PD 

3565 HC 

3567 PD 

3569 HC 

3570 HC 

3572 HC 

3573 PD 

3574 PD 

3575 PD 

3577 PD 

3580 PD 

3581 PD 

3582 PD 

3584 PD 

3585 PD 

3588 PD 

3591 PD 

3593 PD 

3600 HC 

3603 PD 

3604 PD 

3607 PD 

3608 PD 

3610 HC 

3611 HC 

3612 PD 

3613 HC 

3614 HC 

3615 HC 

3617 PD 

3620 HC 

3622 PD 

3624 HC 

3627 HC 

3634 PD 

3635 HC 

3636 HC 

3637 HC 
 

ID Group 

3756 HC 

3759 HC 

3765 HC 

3767 HC 

3768 HC 

3769 HC 

3770 PD 

3775 PD 

3778 PD 

3779 HC 

3780 PD 

3781 PD 

3784 PD 

3788 PD 

3789 PD 

3790 PD 

3803 HC 

3804 HC 

3805 HC 

3806 HC 

3807 HC 

3808 PD 

3809 HC 

3811 HC 

3812 HC 

3813 HC 

3815 PD 

3816 HC 

3817 HC 

3820 PD 

3822 PD 

3823 PD 

3824 PD 

3825 PD 

3826 PD 

3828 PD 

3829 PD 

3830 PD 

3831 PD 

3836 PD 

3850 HC 

3851 HC 
 

ID Group 

3852 HC 

3853 HC 

3854 HC 

3855 HC 

3857 HC 

3860 PD 

3869 PD 

4001 PD 

4004 HC 

4005 PD 

4010 HC 

4012 PD 

4018 HC 

4020 PD 

4021 PD 

4022 PD 

4023 PD 

4024 PD 

4025 PD 

4026 PD 

4029 PD 

4030 PD 

4031 PD 

4032 HC 

4035 PD 

4064 PD 

4066 PD 

4067 HC 

4081 PD 

4082 PD 

4083 PD 

4084 PD 

4085 HC 

4136 PD 

4139 HC 
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Supplemental Figure 1: Empirical cumulative distributive function (eCDF) of the average edge 

strength (AES) computed from T1-weighted structural images from healthy controls (HC, green) 

and Parkinson’s disease patients (PD, red). The differences across the two groups emerge when 

AES is at the 90
th
 percentile (value below which 90% of the AES values may be found). 
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Supplemental Figure 2: Head motion group differences between Parkinson’s disease (PD) patients 

and healthy controls (HC, age and gender matched) as measured by the average edge strength 

(AES, 90th percentile) computed from T1-weighted structural scans. The results are consistent with 

a relative increased image blurring (lower AES) in PD patients relative HC.  
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