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On transport in porous formations characterized 
by heterogeneity of evolving scales 

Alberto Bellin, • Marilena Pannone, 2,3 Aldo Fiori, 4 and Andrea Rinaldo 2 

Abstract. Solute transport in natural formations at the regional scale is influenced by 
several scales of heterogeneity which correspond to the presence of several geological 
units called facies. As customarily assumed in stochastic theories, inside the facies the 
transport can be characterized by a single scale of heterogeneity. At the regional scale 
several geological units are present such that a hierarchy of relevant scales needs to be 
defined. A possible model for this spatial variability assumes the log conductivity as a 
random space function of stationary increments characterized by a power law 
semivariogram. With this hypothesis the ergodic dispersion coefficient grows unbounded as 
time increases, leading to the phenomenon called anomalous dispersion. An alternative 
approach considers the plume in nonergodic conditions and assumes the effective 
dispersion coefficient, which is defined through differentiation in time of the expected 
value of the spatial second-order plume moment, as representative of macrodispersion. 
Large differences have been observed in the resulting plume spreading while approaching 
the problem using the above alternative definitions. In this paper we provide first-order 
analytical solutions for the longitudinal effective dispersion coefficient, D L, as well as for 
the expected value of the longitudinal spatial plume moment, (S•), that complement 
semianalytical expressions recently proposed in literature. Furthermore, we provide a 
semianalytical expression for the standard deviation of the longitudinal second-order 
moment which is important in assessing the interval of confidence of the estimation 
provided by (S •). Suitable numerical simulations are performed to validate analytical and 
semianalytical expressions as well as to assess the impact of the cutoff in the log 
conductivity power spectrum imposed by choosing a finite domain dimension. We 
conclude that according to recently published results, the dispersion is anomalous when 
the Hurst coefficients, H, is larger than 0.5 while it is Fickian for H < 0.5. This is in 
contrast with the ergodic analysis which concludes that the dispersion is anomalous 
irrespective of the Hurst coefficient. Hence the effective dispersion coefficient is more 
effective than the ergodic dispersion coefficient to represent the plume spreading. 
However, the standard deviation of the longitudinal spatial second-order moment is of the 
same order of magnitude as the expected value leading to the conclusion that the 
estimations provided by D L and {S • •) are affected by large uncertainties. Numerical 
results are in good agreement with the analytical solutions, and under some hypotheses 
they are not influenced by the cutoff. This is not the case for the ergodic second-order 
longitudinal moment, which strongly depends on the imposed cutoff. 

1. Introduction 

Modeling the strong spatial variability exhibited by natural 
formations like gas or oil reservoirs and aquifers is a crucial 
task when transport processes are addressed. Most stochastic 
theories [see, e.g., Dagan, 1989] assume that the log conduc- 
tivity Y(x) = In K(x), where K is the local hydraulic conduc- 
tivity of the formation and x is the vector of spatial coordinates, 
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is a stationary random space function (RSF), normally distrib- 
uted and thus fully characterized by the constant mean (Y) and 
the isotropic exponential covariance function C•.(r) = 
exp[-r/I•.] (with r = Irl, where r is the two-point isotropic lag, 
•r2r is the variance, and I•. is the integral scale). Embedded in 
such assumption is the existence of a fundamental character- 
istic scale of heterogeneity, that is, the integral scale I•.. Nev- 
ertheles s , natural formations are generated by processes that 
create distributions of geologically homogeneous units (facies) 
and, according to Neuman [1990], heterogeneities resulting 
from the intertwined arrangement of facies are characterized 
by a complex hierarchy of scales. 

Whether such hierarchy is an infinite one is difficult to assess 
experimentally, but it is reasonable to argue, along with Neu- 
man [1990], that as the lag increases, larger scales come into 
play, causing the semivariogram of Y to increase in some step- 
wise manner. To describe such media, Neuman [1990] adopted 
the simple scaling assumption, yielding the following semivar- 
iogram: 
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1 

%, (r) = 5 ([Y(x + r) - Y(x) ]2) = a (r/I) t3 0</3<2 

(1) 

where I is a suitable reference scale, a is a constant, and the 
scaling exponent H -- /3/2 is called the Hurst coefficient [e.g., 
Feder, 1988]. Notice that for 0 < H <- 1 variance and integral 
scale of the field Y grow infinitely, thus describing a medium 
with no preferential scale. This singular behavior has been 
popularized by Mandelbrot [1983] through the "syndrome of 
infinite variance." Notice also that the semivariogram given by 
(1) shows a continuous growth with distance, somewhat differ- 
ent from what we expect in nature. The presence of more than 
one reference scale of variability has an influence on transport. 
Recently, Rubin [1995] showed that for formations with two 
characteristic scales, as for example the sand-shale or sandy 
clay formations, macrodispersion grows with a rate that de- 
pends on the ratio between the scales. 

The discussion on the generality of the scale-free model (1) 
has been (and still is) lively. Anderson [1991] pointed out that 
the model (i) has a geologic limit (i.e., an embedded scale) 
determined by the areal extent of the geologic environment, 
while Neuman [1991, 1994] claims that it models well experi- 
mental data. The hypothesis that the spatial variability of the 
hydraulic conductivity is represented by a continuous hierarchy 
of scales has been recently addressed by several authors [Pick- 
ens and Grisak, 1981; Gelhar, 1986; Sposito et al., 1986; Lake, 
1989; Neuman, 1990, 1994; Kemblowski and Wen, 1993; Dagan, 
1994; Desbarats and Bachu, 1994; Rajaram and Gelhat, 1995]. 
One issue concerns stationarity. It is commonly accepted that 
although at the regional scale complex geologic systems are 
hardly stationary, in relatively homogeneous sites, such as Bor- 
den [Sudicky, 1986] or Cape Cod [Hess et al., 1992], the sta- 
tionarity assumption may be appropriate. 

The presence of significant trends or of a preponderance of 
heterogeneity scales characterizes aquifers to a degree that 
depends on the complexity of the geologic formation. Nonsta- 
tionarity has been detected at the Columbus site, which is 
characterized by a field scale comparable with that of Borden 
and Cape Cod but with a much more complex geological struc- 
ture [Boggs et al., 1992]. At the regional scale the formation 
horizontal dimension is of the order of tens to hundreds of 

aquifer thicknesses, such that the appropriate flow and trans- 
port models are essentially two-dimensional. In such a case, 
aquifer heterogeneities, described by the hydraulic log trans- 
missivity Y(x•, x2) = In T(x•, x2), are clearly influenced by 
the depositional process. For example, the deposits forming an 
outwash experience sorting [Anderson, 1991]. 

Although at the regional scale the existence of several scales 
of heterogeneity seems reasonable, clear direct experimental 
evidence cannot be gathered to support model (1). Using re- 
gression analysis, Neuman [1990] provided an indirect justifi- 
cation of (1), inferred from the scaling behavior observed for 
the longitudinal dispersivity of tracer plumes. It should be 
noted that the observational foundations as well as the impli- 
cations of the scaling assumption have been extensively de- 
bated [Gelhar et al., 1992; Neuman, 1993; Gelhar et al., 1993; 
Dagan, 1994]. 

Although there is growing evidence that the log conductivity 
field of porous and fractured geologic media show self-affine 
properties [Neuman, 1995], the proper representation of the 
natural heterogeneity of the aquifers is still an open question 
mainly because observations covering a suitably large number 

of spatial scales are still lacking. In this context (1) represents 
the simplest choice among models showing a scaling behavior. 
A possible limitation of the model adopted is then the simple 
scaling assumption. Although interwinded sets of scaling ex- 
ponents possibly offer a reasonable model for the complexity 
observed in nature, no experimental evidence is available to 
date to support such an assumption. In this paper, we adopt, 
following Dagan [1994], the simple scaling assumption which is 
suggested to be effective in reproducing the features of some 
natural formations. 

As customary in transport studies [Dagan, 1989], the spread- 
ing is characterized by the definition of a suitable dispersion 
coefficient. Limiting the attention to the longitudinal direction, 
that is, the direction of the mean flow which is indicated with 
the subscript L (or 1), two different dispersion coefficients can 
be defined: the ergodic dispersion coefficient d L and the ef- 
fective dispersion coefficient D L. The differences between 
them had been described by Fisher et al. [1979] in the context 
of turbulent mixing and by Kitanidis [1988], Dagan [1991], and 
Rajaram and Gelhat [1993] in the context of transport in nat- 
ural single-scale porous formations. For evolving scale fOrma- 
tions, Glimm et al. [1993] discussed the interplay of geologic 
and plume scales, concluding that heterogeneities present at 
scales larger than that of plume size lead to an increased 
dispersion coefficient with respect to the case in which they are 
considered deterministic. This conclusion is consistent with 

Dagan's [1991] findings that the ergodic dispersion coefficient 
d• is constituted by two additive components: (1) the effective 
dispersion coefficient D•, related to the heterogeneities at the 
plume scale, and (2) the dispersive effect due to the uncertainty 
in the plume centroid localization, which is related to hetero- 
geneities at scales larger than the plume size. The implications 
of the ergodic assumption on transport in evolving scale for- 
mations has been discussed by Dagan [1994]. 

A comprehensive theoretical analysis of the scaling proper- 
ties of the ergodic longitudinal dispersion coefficient has been 
conducted in a series of papers [Glimm and Sharp, 1991; Fur- 
tado et al., 1990, 1991; Zhang, 1992]. In these works a log 
conductivity covariance function has been assumed in the 
power law form: C•.(r) = ar •. The main conclusions of the 
above works are the following [Glimm et al., 1993]: (1) for/3 < 
-1, C•. is rapidly decreasing to zero and the transport is 
Fickian; (2) for -1 -< /3 -< 0, C•. is slowly decreasing and is 
characterized by an unbounded integral scale such that d• 
scales as d• -.- a UL •. Perturbation theory and numerical 
solutions show that for large travel distances, the exponent 3' 
varies in time approaching a constant value [Glimm et al., 
1992]. Finally, for/3 > 1 the asymptotic behavior of dz. depends 
on the cutoff, that is, the finite size of the field. According to 
the above ergodic results (refer to Glimm et al. [1993] for a 
review), the transport is Fickian for rapidly decreasing corre- 
lations and anomalous for slowly decreasing (or increasing) 
correlations. 

This paper hinges on the recent work of Dagan [1994], who 
obtained exact first-order solutions for the effective dispersion 
coefficients for formations described by model (1). The main 
result of the paper is that the so-called ergodic assumption, 
implicit in most theoretical results of stochastic models, cannot 
be assumed as generally valid. As a result, rather than showing 
an anomalous continuous growth, the effective dispersion 
reaches a Fickian asymptotic limit for/3 < 1. This is in marked 
contrast with previous theoretical results. The anomalous case 
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is recovered for/3 > 1, but stationarity issues become impor- 
tant. 

In this paper we present a few novel first-order exact solu- 
tions for the effective dispersion coefficient and for the mean 
and variance of the longitudinal second-order moments of a 
dispersing plume. Our solutions for the effective dispersion 
complements that of Dagan [1994] by relaxing some simplifying 
assumptions. The analytical solutions are then compared with 
suitable numerical solutions of the transport equations in a 
nonlinear Monte Carlo framework. 

The paper outline is as follows: the next section presents the 
theoretical background and our novel exact solutions. Section 
3 discusses the numerical simulations performed in order to 
explore the inference of the linearity assumptions, both in the 
flow and the transport equations, embedded into the exact 
solutions. A discussion and a set of conclusions then close the 

paper. 

2. Theoretical Background and Novel Analytical 
Results 

The starting point of this paper is the work by Dagan [1994] 
on the significance of evolving scale heterogeneities in solute 
transport. The hydraulic log transmissivity Y = In T is as- 
sumed stationary in the increments with semivariogram de- 
fined by (1), and pore-scale dispersion is neglected. The last 
hypothesis is justified at least for isotropic formations and 
values of local dispersivity encountered in practice [Fiori, 
1996]. The key results of Dagan [1994] are briefly recalled. The 
spreading of plumes is described by focusing on longitudinal 
dispersion coefficients. 

The ergodic coefficient dz• implies that in each realization of 
the random process the centroid of the dispersing plume can 
be reasonably well approximated by the mean trajectory, say, 
(R • (t)• (which, in turn, is the ensemble mean trajectory of the 
single particle). This postulates that R•(t) • O, where R•(t) 
is the second-order moment of the cloud made up by the points 
labeling the plume centroid in independent realizations. The 
classic definition of the dispersive process is then given [e.g., 
Fisher et al., 1979; Dagan, 1984, 1989] by the relationship 

1 dX11(t) 
dL(t) =2 dt (2) 

where X• • (t) is the second-order moment of the residual par- 
ticle displacements about the mean trajectory. 

Nonergodic plumes experience wide fluctuations of the ac- 
tual trajectories R • (t) resulting in a non-null value of R • • (t). 
For ergodic plumes dt• = Dt•, that is, R•(t) • (R•(t)) and 
R • • (t) • 0, while for nonergodic plumes the following equa- 
tion holds [Dagan, 1991]: 

ld 

DL(t) = d•(t) - • •-[ Rll(t) (3) 

Hence R• is related to the uncertainty in the localization of 
the actual plume centroid. Equation (3) is derived [Dagan, 
1994] from the dual relationship involving the second-order 
longitudinal plume moment [Dagan, 1991]: 

(811(t)) = 811(0 ) q- Xl•(t) - gll(t ) (4) 

where (S•(t)) is the expected value of the actual longitudinal 
second-order plume moment (S • • (0) is its initial value). 

The conceptual and practical differences between d/. and 

D/. can be highlighted by the following relationships (5) and 
(6). In fact one has 

dL(t) = 5 •-/ (C(x, t))[Xl- (gl(t))] 2 dx 

f0 t "'" tt 11((Rl(T)) )dT (5) 

where u • • is the longitudinal velocity covariance function, C is 
the solute concentration at time t and position x, R • (t) is the 
trajectory of the plume centroid, and fi is the domain volume. 
Notice that (5) is a spinoff of Taylor's [1921] equivalence of 
ensemble mean concentrations and displacement probability 
distributions. In (5), d/_ results as a first-order approximation 
obtained by the Lagrangian approach replacing the actual par- 
ticle trajectory with its expected value [Dagan, 1984]. In non- 
ergodic conditions one has instead 

D•(t) = • •-/ C(x, t)[x 1 -- Rl(t)] 2 dx (6) 

The main result embodied in (6), (3), and (4) is that for non- 
ergodic plumes, the best estimate for the actual plume disper- 
sion is D/_, while d/_ is affected by uncertainty in the plume 
centroid localization [Kitanidis, 1988; Dagan, 1991]. 

We have computed exact solutions for D/., (S• •) and 
Var[S • • ] for the case described by the model equation (1) for 
the spatial variability of physical heterogeneity. Our solutions 
are presented in the appendix. Our results complement those 
given by Dagan [1994] in the following aspects: (1) We supplied 
an analytical solution to the quadratures employed in Dagan's 
[1994] derivation of D/_; (2) new exact solutions for (S•) and 
the variance Var[S•] are obtained; and (3) we have per- 
formed accurate numerical simulations to assess the range of 
applicability of the analytical solutions. The comparison be- 
tween analytical and numerical solutions is performed with 
reference to (S•) and Var[S•] because the computation of 
longitudinal dispersion, D/_, by numerical differentiation of the 
actual longitudinal second-order moment S • • is error prone. 

Figures 5a-5c show the dimensionless expected value of S • •, 
(S • • (!)); its standard deviation, SD[S • • ]; and the coefficient 
of variation, CV[S•] = {Var[S•]}•/2/(S•) computed re- 
spectively through (A4), (A13), and (A14) and numerically for 
/3 = 0.75 and a = 0.1 in (1). The same quantities for/3 = 1.75 
and a = 0.0025 are shown in Figures 6a-6c. 

We observe that for /3 -> 1, (S•) grows faster than the 
mean dimensionless travel distance, leading to a rapid increas- 
ing of the longitudinal second-order moment with the travel 
distance. The coefficient of variation converges rapidly to the 
asymptotic value which depends solely on the value of/3 and is 
close to 1 in all cases. The practical result is that the interval of 
confidence, that is, the range of variability of the difference 
between the actual second-order moment S • • and the estimate 
provided by (S•), is of the same order of magnitude of (S•) 
at all times. 

Equations (A7) and (A8) confirm the asymptotic behaviors 
obtained by Dagan [1994] expanding •/u in a Taylor series 
truncated at the second order along the transverse direction, 
x2, and about the point (x •, 0). The maximum growth rate of 
Dt• is then proportional to the mean dimensionless travel dis- 
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tance leading to the result that DL grows with a power between 
0 and 1 for 0 </3 -< 2. This agrees with the results obtained by 
Dagan [1994]. Thus, while the ergodic dispersion coefficient dL 
turns out to be unbounded irrespective of the value of/3, the 
effective dispersion coetficient presents two cases: (1) For 0 -< 
/3 < 1 the transport is Fickian; the asymptotic value of the 
dispersion coefficient depends on/3, that is, it grows as l I + •, 
where l is the transverse initial dimension of the plume. (2) For 
1 -< /3 -< 2 the dispersive transport is anomalous, that is, the 
dispersion coefficient grows unbounded; the dispersion coeffi- 
cient grows as In x for/3 = 1 and as x for/3 = 2, leading to the 
results that for 0 -</3 -< 2 the maximum growing rate for large 
travel distances is linear. 

Our results thus confirm and slightly extend the findings of 
Dagan [1994]. The new semianalytical solution for SD[S11] is 
discussed in section 4. The inference of the assumptions em- 
bedded into the analytic solution, chiefly the validity of the 
linearizations built into the flow and transport equations, re- 
mains to be seen. This will be addressed in the ensuing sections 
of this paper. 

3. Numerical Analysis 
In order to analyze in a nonlinear flamework the results of 

section 2, we set up a numerical experiment in which the 
linearity hypotheses employed in the exact analysis of flow and 
transport were relaxed. An important issue in solving the prob- 
lem numerically is the definition of a reference scale to render 
distances suitably dimensionless. Dagan [1994] used the trans- 
verse initial plume dimension l as a reference scale for his 
analytical first-order solutions. This choice is effective for the 
analytical approach but not useful for the numerical solution 
because in such a case changes in the transverse initial plume 
dimension would also change the dimensionless field dimen- 
sion and then also the infrared cutoff of the log conductivity 
power spectrum. Hence, to facilitate the numerical approach 
and to ensure the same field dimensions in each simulation, we 
relate the reference scale I to the smaller scale that needs to be 

numerically resolved [Glimm et al., 1993] to make flow and 
transport insensitive to further grid refinement. The early sug- 
gestion of Ababou et al. [1989] relates the density of the com- 
putational lattice to the variance of the log conductivity. In this 
case we rely on the specific indications contained in the recent 
work by Bellin et al. [1992], suggesting that transport is not 
influenced by refinements of the grid size involving more than 
four points per reference scale. Therefore we choose the fol- 
lowing numerical grid size: Ax = 1/4. 

According to model (1), rr2v scales as 

(7) 

where L is the characteristic scale of the flow domain. Hence 

the log-conductivity integral scale Iy shows the following scal- 
ing property: 

Ivcz aL (8) 

where a is a constant that depends on/3. To assess the impact 
of boundary conditions on transport, we performed the numer- 
ical simulations considering different domain dimensions for a 
fixed longitudinal dimension L 1 = 401 by assuming the fol- 
lowing values for the transverse one: L 2 -- 201 and 40•. 

The numerical simulations are organized as in the paper by 
Bellin et al. [1992] and made up by the following steps: 

1. A normally distributed log transmissivity field Y(Xl, X'2) 
of stationary increments and isotropic semivariogram •/y(r) - 
a(r/I) • is generated over the domain; the transmissivity field is 
obtained by the transformation T(xi, x2) = exp[Y(xi, x2) ]. 

2. The fully nonlinear flow equation is solved by the Galer- 
kin finite element approach employing three nodes triangular 
elements with linear weight functions. The optimal mesh ar- 
rangement, that is, a scheme that satisfies the positive trans- 
missivity condition, has been employed [Forsyth, 1991; Cordes 
and Putti, 1996]. The characteristic dimension of the elements 
is 0.25•. Local and global mass balance have been verified 
according to the method presented by Bellin et al. [1992, 1994]. 
The boundary conditions are impervious boundaries along the 
longer sides and imposed head at the other sides. The average 
and the standard deviation of the mean velocity computed for 
the case /3 = 0.75 and with reference to 1500 Monte Carlo 
realizations are equal to, respectively, i and 10 -7, leading to 
the conclusion that the mean velocity can indeed be assumed 
as constant and unit in each realization. 

3. The transport is solved in the Lagrangian framework 
using a particle tracking approach and neglecting pore-scale 
dispersion as in the analysis of section 2. The particles are 
injected along a strip of length l normal to the mean flow 
direction with a density of 10 particles per reference scale I. 
The ith particle is tracked according to the following expres- 
sion: xi(t) -- xi(t- At) + ¾(xi(t- At))At, where xi(t)is 
the particle trajectory at time t, v(x) is the Eulerian velocity at 
position x, and At is the time step. Furthermore, particles are 
assumed noninteracting. 

4. Steps 1-3 are repeated in a suitable [Bellin et al., 1992] 
Monte Carlo manner to compute expected values and vari- 
ances of the plume spatial moments. 

The generation of independent random Y fields of stationary 
increments is a critical step in approaching the problem nu- 
merically. The generation is performed using the method re- 
cently developed by Bellin and Rubin [1996]. The method gen- 
erates the field using a geostatistical approach that does not 
require the preventive definition of an "infrared cutoff," that is, 
the filtering of the wavelengths larger than the field dimension, 
from the Y spectrum. The larger scale of variability is, however, 
limited by the field dimension, and the cutoff is automatically 
introduced by the fact that the generation is performed in a 
finite domain. The mean value of Y is maintained constant in 

each realization. Since Y is not stationary, the above constric- 
tion is statistically equivalent to the g.eostatistical conditioning 
of the mean velocity field to a given constant value. 

Figures l a and lb show an example of a log conductivity 
field with a = 0.1, /3 = 0.75 and the resulting velocity field, 
respectively. The reconstructed expected value of the log con- 
ductivity semivariogram and its standard deviation SD[ •/•] are 
shown in Figures 2a and 2b, respectively. The expected value 
and the standard deviation are computed in a Monte Carlo 
manner averaging over a number M of independent realiza- 
tions according to the following convergence criteria [Bellin 
and Rubin, 1996]: 

1 NL }1/2 •-• • [(•/•(iAr)) - (•/•-'(iAr))] 2 
t=l 

-< e (9) 

where Ar is the discretization used for the two points lag, 
NL = L/•x is the number of points in which the maximum lag 
L has been divided, (•/•(iAr)) is the expected value of the 
semivariogram computed with reference to M Monte Carlo 



BELLIN ET AL.: TRANSPORT IN FRACTAL FORMATIONS 3489 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Y 

0 5 10 15 20 25 ' 30 35 
b 

Xl/I 

Figure 1. 

0.5 1.0 1.5 2.0 2.5 

v 

(a) An example of log transmissivity field for a = 0.1,/3 = 0.75 and (b) the resulting velocity field. 

realizations, and • is the average residual error. Assuming • = 
10 -6 , convergence has always been obtained with fewer than 
about 1500 realizations, which are required for the conver- 
gence of the second-order moments. The log conductivity vari- 
ance depends on/3 through (7). Hence, to assess the impact of 
/3 on transport, independently from the value of •r•., we use 
a - 0.0025 for the case /3 = 1.75, which, for the domain 
dimensions used in this paper, shows values of •r•- of the same 
order of magnitude as that observed for the case/3 - 0.75 and 

a = 0.1. The matching between the expected value of the a 
posteriori computed semivariogram and (1) is good for both 
cases /3 = 0.75 and /3 - 1.75. The interval of confidence 
increases as/3 increases as a consequence of the lack of ergod- 
icity; see Figure 2b. More refined testing of the simple scaling 
assumption postulated by (1) has been addressed by studying 
the scaling properties of the generalized semivariogram 
= (IY(x + r) - Y(x)lq}r=lrl , which should scale as CJ(r) 
I 'ql3/2 [Lavalike et al., 1993]. Random fields numerically gener- 
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Figure 2. Log transmissivity semivariogram;/3 = 0.75, a = 
0.1 and/3 = 1.75, a = 0.0025' (a) expected value (y•.); (b) 
standard deviation SD[ 7•-]. 

ated by the method of Bellin and Rubin [1996] yield acceptable 
scaling properties for our purposes. 

The impact of boundary conditions on transport should be 
carefully evaluated prior to comparing numerical and analyti- 
cal solutions, the latter being obtained in infinite domains. A 
comprehensive theoretical analysis of the influence of Cauchy 
and Neumann boundary conditions on velocity statistics in a 
semi-infinite domain for a stationary single-scale log conduc- 
tivity field characterized by an exponential covariance function 
has been carried out by Rubin and Dagan [1988, 1989]. The 
conclusion of the above study is that the influence of the 
boundary conditions becomes insignificant at a distance larger 
than three integral scales from the boundary. In a numerical 
work Bellin et al. [1992] suggested that for large field dimen- 
sions and L2/L • = 2, the distance from the boundaries be- 
yond which the flow field is not affected by the boundary 
conditions increases with the log conductivity variance. How- 
ever, the limit of about three log conductivity integral scales is 
acceptable in the explored range of the log conductivity vari- 
ance, that is, o-•. < 1.6. Recently, Osnes [1995] suggested that 
in the transverse direction (i.e., the direction normal to the 

impervious boundaries and the mean flow), the head variance 
o-• is constant with good approximation for L 2/L • < 2/3. For 
L2/L • > 2/3 the variance o-2• increases from the center of the 
domain to the impervious boundaries. For a fixed value of the 
ratio L2/L •. the finite domain solution approaches the solution 
obtained for an unbounded domain as L • increases. Further- 
more, as an effect of the smoothing introduced by the Poisson 
operator, o-2• decreases as L2/L • increases. 

For log conductivity fields characterized by model (1) the 
integral scale increases linearly with the domain dimension 
(see (8)), and then boundary conditions are expected to influ- 
ence the velocity field irrespective of domain dimensions. 

Figures 3a and 3b show the longitudinal velocity variance 
along the sections x2 = L2/2, in longitudinal direction, and 
x• = L•/2, in transverse direction, for/3 = 0.75 and/3 - 1.75, 

2 is divided by L • which is proportional respectively. Here, o- u 2, 
to the log conductivity field variance. Furthermore, distances 
are dimensionless with respect to L• and L 2 for the longitu- 
dinal and transverse directions, respectively. While in the lon- 
gitudinal direction (ru2/aU2L2 • is nearly constant, in the trans- 
verse direction it assumes a parabolic shape slightly dependent 
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Figure 3. Longitudinal velocity variance along the sections 
x 2 = L2/2 andx• = L•/2 for (a)/3 - 0.75, a = 0.1 and (b) 
/3 = 1.75, a = 0.0025. 
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on the field dimension. The longitudinal velocity variance is 
maximum at the impervious boundaries and decreases in trans- 
verse direction with the distance from the boundaries reaching 
the minimum value at the domain center. This is in agreement 
with the findings of Osnes [1995] obtained for single-scale 
heterogeneous media and characteristic domain dimensions of 
few integral scales. Since the integral scale increases linearly 
with the domain dimension (see (8)), the velocity field depends 
on the boundary conditions irrespective of domain dimensions. 
Hence an inner core region in which the velocity field is inde- 
pendent on the boundary conditions cannot be strictly defined 
and the solutions are expected to depend on the cutoff. Figures 
4a and 4b show 7,(r) for/3 = 0.75 and/3 = 1.75. They depend 
on the velocity variance from the "infrared" cutoff imposed by 
the domain size. However, as also shown in Figures 4a and 4b, 
the domain dimension has a relatively small influence on the 
difference 7u•(r, 0) - 7u•(0, r) such that according to (A1), 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

m m- ß 

ß B ß 
ß 

[• C ,, .r • 
m D .' E 

...... F ß m m 
ß ß 

ß 
_ m m 

ß '•0 ooOOø• ß 
' ß 

ß •4:0 
.. j. 

0.0 2.5 5.0 7.5 10.0 

80 

70 

60 

50 

40 

30 

20 

10 

0 2 4 6 8 10 

b r/I 

Figure 4. Longitudinal velocity semivariogram for (a) •3 = 
0.75, a = 0.1 and (b) •3 = 1.75, a = 0.0025. In all cases: 
A, y,(r, 0) and domain dimensions 40I x 201; B, y,(0, r) 
and domain dimensions 40I x 201; C, y,(r, 0) and domain 
dimensions 40I x 401; D, y,(0, r) and domain dimensions 
401 x 40•; E, 7,(r, 0) given by equation (A2); F, y,(0, r) 
given by equation (A2). 

the effective dispersion coefficient is expected to depend 
weakly on the actual cutoff. 

4. Discussion 

As is customary in stochastic approaches [e.g., Dagan, 1989], 
we use the robust description yielded in terms of plume mo- 
ments which are computed as follows: (1) the trajectory of the 
plume centroid: 

N 
1 

RF(t) = • •] X•'V(t) i = 1, 2 (10) 
k=l 

where X• 'v is the ith component of the trajectory of the kth 
particle for the realization v and N is the number of particles; 
(2) the second-order central plume moment: 

1 N 
S•(t) =N- 1 •] ([X•"v(t) - R•(t)][X•"v(t) - R;(t)]) 

k=l 

(11) 

The moments (10) and (11) are computed in each realization 
v. They represent the overall plume behavior in one of the 
(equally probable) log transmissivity fields. Expected values 
and variances of R• and S o are obtained taking expectation 
over M independent Monte Carlo realizations: 

1 • 
(R•(t)) =• • RF(t) (12) 

v=l 

M 

Rii(t) = Var(Ri(t))= M- 1 • [RF(t)- <Ri(t))] 2 (13) 
v=l 

1 M 
(So(t)) = • •] S•(t) (14) 

v=l 

1 M 
Var(Sø(t)) =M- 1 • [S•(t)- (S0(t))] 2 (15) 

v=l 

The expected values (12) and (14) represent the most probable 
estimate of the actual plume behavior. The variances (13) and 
(15) can be used in order to identify the range of variability of 
the actual plume statistics around the expected value. A null 
variance implies that the plume is in ergodic conditions and in 
each realization the spatial moments (10) and (11) resemble 
the expected value, irrespective of the actual distribution of 
hydraulic transmissivity. In formations such as those repre- 
sented by (1) the ergodic condition cannot be reached and the 
practical consequence is that the uncertainties in estimating 
the actual plume moments increase with the transverse plume 
dimension. Hence (R•(t)) and (S•y(t)) become progressively 
less reliable in estimating the actual plume behavior as time 
(since plume injection) increases. The computation of the in- 
terval of confidence for the estimations provided by the ex- 
pected values of the plume moments is then of paramount 
importance. Expected values and variances are computed with 
reference to M = 1500 Monte Carlo realizations, which has 
been suggested to suffice in ensuring convergence [Bellin et al., 
1992]. 

The numerical expected value of the trajectory of the plume 
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Figure 5. (a) Expected value of the longitudinal second or- 
der moment S 1•. (b) The standard deviation of S • •. (c) The 
coefficient of variation of S• for l = 21 and 41 and field 
dimensions 401 x 201 and 401 x 40•. In all cases/3 = 0.75, 
a =0.1. 

centroid is in good agreement with the analytical solution: 
(R(t)) = Ut. 

Figures 5a and 5b show the expected value of the second- 
order longitudinal spatial plume moment {S•) and its stan- 
dard deviation SD[S•], respectively. Simulations are per- 
formed with l - 21 and 41 and /3 = 0.75 employing a 
maximum dimensionless simulation time of 15. 

Numerical and analytical solutions of (S • •) and SD[S • •] are 
in good agreement both for l = 21 and l = 41. Figure 5c shows 
numerical and analytical solutions for CV[S•] - SD[S•]/ 
(S•). The matching between analytical and numerical solu- 
tions is acceptable, and CV[S•] is slowing varying in time, 
assuming values inside the range 0.9 + 1.3 over the explored 
range of time. The practical result is that in actual plumes the 
longitudinal spreading may differ more than 100% from values 
given by (A4). The actual S• fluctuates in time around (S•) 
leading to the possibility to infer (S•) from measurements of 
S• at several time steps IDagan, 1991]. The moving average of 
the actual second-order longitudinal plume moment is in fact 
characterized by a smaller coefficient of variations (G. Dagan, 
personal communication, 1996). It still holds, however, that 
(A4) provides the best estimate of the actual spreading. In 
agreement with the first-order analytical solution, (S• •) in- 
creases as a power of the transverse initial plume dimension l. 
Such behavior stems from the increased chances for plumes 
with larger initial dimensions to sample zones with higher 
contrast in hydraulic transmissivity. Here, (S•) scales as 
(S•) or (Ut/I)• with 7 < 1, and then the occurrence of 
situations of anomalous dispersion seems improbable. In such 
media the plume is not ergodie irrespective of the initial trans- 
verse plume dimension which, on the other hand, strongly 
influences the second-order plume moment. 

In order to test the case in which anomalous dispersion is 
expected to develop, we repeated the numerical simulations 
using the semivariogram model (1) with /3 = 1.75 and a = 
0.0025. As in the case/3 - 0.75, the simulations were repeated 
for two different domains with the same longitudinal dimen- 
sion (L • = 40•) and transverse dimensions equal to L 2 = 201 
and 40•, respectively. 

The values of (S • •), SD[S • • ], and CV[S • • ] are shown in 
Figures 6a, 6b, and 6c, respectively. (S•1) and SD[S•] ob- 
tained by the numerical analysis slightly overestimate the an- 
alytical solutions provided by (A4) and (A13). Besides the 
small differences in the analytical and numerical results for 
(S•), the slopes of the two curves are in a good agreement. 
Therefore we conclude that the asymptotic values of analytical 
and numerical longitudinal dispersion coefficients agree well. 
Furthermore (S•) scales as (S•) oc (Ut/I)V, where 7 is a 
scaling exponent larger than 1. In the analyzed range of vari- 
ability of the log conductivity field (i.e., field variances limited 
to about 2), we concur with the theoretical results IDagan, 
1994] that the dispersion is anomalous for/3 > 1 [Dagan, 1994] 
and Fickian for/3 < 1. 

Figures 7a and 7b show X• •/L2 • as function of the dimen- 
sionless plume travel distance for/3 = 0.75 and 1.75, respec- 
tively. X• • is about 1 order of magnitude larger than (S•), and 
in all cases the expression (4) holds. Since X• • scales as L•', 
with 7 > 1, we conclude in agreement with Glimmet al. [1993] 
that the ergodie second-order plume moments show a strong 
dependence on the cutoff. This is not the case for the noner- 
godic second-order moment (S • •) which is weakly affected by 
the imposed "infrared" cutoff. 
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Figure 6. (a) Expected value of the longitudinal second or- 
der moment S1•. (b) The standard deviation of Sll. (c) The 
coefficient of variation of S ll for l = 21 and 41 and field 
dimensions 401 x 201 and 401 x 40•. In all cases/3 = 1.75, 
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Figure 7. Ergodic second-order plume moment Xll for dif- 
ferent field dimensions; (a)/3 = 0.75, a = 0.1 and (b)/3 = 
1.75, a = 0.0025. 

5. Conclusions 

The following main conclusions are worth mentioning: First, 
novel analytical solutions for the effective longitudinal coef- 
cient of macrodispersion D L and the expected value of the 
second-order longitudinal plume moment •S 11 • are proposed. 
These are derived in a stationary increment log transmissivity 
field characterized by a power law semivariogram: (7r(r) = a 
r •) and support, and slightly extend, the solutions proposed by 
Dugart [1994]. Our analytical solutions confirm Dagan's con- 
clusions concerning the occurrence of anomalous dispersion 
which develops for/3 > 1 while for/3 < 1 the transport proves 
Fickian. We have also proposed analytical solutions for 
SD[S11], which is a measure of the interval of confidence of 
the estimate of the actual spreading provided by (S 11). 

Second, we have also relaxed the linearity assumptions and 
solved numerically the fully nonlinear flow and transport prob- 
lem. For/3 < 1 we found a good agreement between analytical 
and numerical solutions. For large /3 (i.e., /3 = 1.75) the nu- 
merical solutions slightly overestimate the analytical values. 
The anomalous dispersion behavior predicted by the analytical 
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solution is, however, confirmed by our numerical results at least in 
the explored range of variability of the log conductivity field 
variance (o-•. < 2). Furthermore, the effective dispersion co- 
efficient is not affected by the distance cutoff which results from 
the use of a finite field dimension in the numerical analysis. 

As a results of the good match for both (S•) and SD[S•], 
a good agreement is observed between analytical and numer- 
ical solutions for CV[S•]. In the explored range of travel 
times the values of CV[S•] remain close to 1. This finally 
suggests that in actual plumes the effective dispersion could be 
overestimated (or underestimated) by an amount close to the 
expected value..We conclude that because of the large value of 
CV[S • •] and in absence of conditioning with log conductivity 
measurements, caution needs to be posed in the interpretation 
of large-scale tracer tests in evolving scale formations. 

Appendix: Analytical Solutions 
In fields characterized by a semivariogram given by (1), the 

log conductivity variance o-• and then also the mean velocity, 
U; the velocity covariance function, C•; and d• are not de- 
fined. According to the approach employed by Dagan [1994] 
the definition of an "infrared cutoff," that is, the filtering out of 
wavelengths larger than the characteristic field dimension, is a 
sufficient condition to render o-•, U, and C• finite. Under the 
above hypothesis, and for solute injection along a strip of 
length l normal to the mean flow direction, the effective disper- 
sion coefficient assumes the following expression IDagan, 1994]' 

i0i0 aL(t) = •-• (l- r2)['yu(ri, r2) - •/u(ri, 0)] dri dr2 
(A1) 

where •/• is the velocity semivariogram. Interestingly, (A1) 
does not depend on U, the assumption being that U is finite 
and constant. Changes of U result in different paths for the 
plume center of mass with the actual spreading that remains 
unchanged. The values of '/u at first order are given by [Dagan, 
1994]: 

U2a 

•/u(r•, r2) = (2 + /3)(4 + /3) [(1 +/3)(3 +/3)r/3 
- 2/3(1 + 13)r•2r/3-2 + tt(tt - 2)r•r/3-4] (A2) 

where r = (r• 2 + r22) •/2. The solution of (A1) has been 
obtained by Dagan [1994] with •/u given by (A2) and employing 
numerical quadrature. 

Replacing •/u in (A1) with (A2) and performing an analytical 
quadrature, we obtain the following expression: 

DL(t) 3 
= -- xl+/3 

Ual '+/3 (1 +/3)(2 +/3)(4 +/3) 

2 
_ X3+/3 

(2 +/3)2(3 +/3)(4 +/3) 

+ {[6(3 +/3)x 2F•(1/2, -/3/2, 3/2, -x2)} 

+ 2x32F•(3/2,-/3/2, 5/2,-x2)]/[3(2+/3)2(4+fi)]} (A3) 

where x - t U/l - L/l is the dimensionless mean travel 

distance and 2F•(a, b; c, z) is the hypergeometric function 
[e.g., Gradshteyn and Ryzhik, 1980]. 

The integration in time yields the following expression for the 
effective longitudinal second-order centered plume moment: 

(S•,(t)) (-2x2+/3(36 + 21/3 + 3/32 + 2x 2 + 2/3x 2) 
al 2+/3 - (1 + /3)(2 +/3)2(3 +/3)(4 +/3) 2 

1 

-3(2 +/3)2(4 +/3) 2 [-60- 12/3 
+ 4(1 + x2)/3/2(15 + 3/3 + 18x 2 + 3/3x 2 + 3x 4) 

- 4(36 + 21/3 + 3/32)x 2 2F•(1/2, -/3/2, 3/2, -x 2) 

- 4(4 + /3)x 4 2F•(3/2, -/3/2, 5/2, -x2)] (A4) 

According to (A3), the effective dispersion grows with a power 
law which depends on/3. 

For large x the effective dispersion coefficient grows as 

D6(t) = Ual 2 
t3 

12(2 +/3)(4 +/3)(/3- 1)96/3-1 
+ O(Ual 1+•) (A5) 

Equation (A5) coincides with the limit for large travel time 
obtained by Dagan [1994] using a different approach. 

As suggested by Dagan [1994], (A5) implies that the behav- 
ior is Fickian for 0 </3 < 1 and anomalous for 1 -</3 -< 2. For 
the limit case/3 = 1, (A3) becomes 

Dc(t) x2x 4 [17 x 3 ] Ual 2 = 10 90 nt- (1 q-x2) 1/2 1--• x q-•--• 

1 

+ • arcsinh(x) (A6) 

For large x, (A6) behaves as Dz• = O[Ual 2 arcsinh(x)/12]. 
The dispersion is thus anomalous but with a logarithmic grow- 
ing rate. Correspondingly, (Sn) assumes the following expression: 

(Sii(t)) X 3 X 5 
al 3 -- 15 225 [ x4] +(l+x 2) •/2 8 29 x2 -•+4-• +2-• 

x 8 

+ • arcsinh(x) + 75 (A7) 

For large mean travel distances, (S • 1 ) behaves like (S • •) = 
O[al3x arcsinh(x)/6]. 

For/3 = 2 Dz• and {S 11 } are given by 

D•(t) 5 (S•(t)) 5 
al 3 = 4-• x l• = -- x 2 (A8) a 48 

Under the aforementioned linearity hypotheses the variance 
of the longitudinal plume moment (for solute injection along a 
strip of length l normal to the mean flow direction) assumes 
the following expression IDagan, 1990]: 

f01f01 Var[S11(t)] = 2R2n(x) + 2 X•(x, a' - a") da' da" 

Xll(X , a' - a") 

ß Xii(x, a"- a'") da' da" da'" (A9) 
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where Xll (x, a') is the particle trajectory variance for the 
particle injected at time t = 0 at position (0, a'). Here space 
coordinates are made dimensionless with l. It is possible to 

2 that is, the cutoff show that Var[Si1 ] does not depend on rru; 
imposed at the log conductivity field does not modify the 
plume moments which are then influenced solely by the scales 
sampled by the plume. Therefore Var[S 11 (x) ] assumes the 
following expression: 

Var[Sl•(t)] = 2R2•,ll(x) 

+ 2 2 , ,, X•,•l(x,a - a ) .da' da" 

- 4 X•,l•(X, a' -- a") 

ß X%ll(X, a"- a t") da' da" da'" (A10) 

where the subscript •/means that the referenced quantity is 
computed replacing the velocity correlation function with its 
semivariogram into the corresponding equations. 

The covariances Xv, 11 (x, b) and R v, 11 (x) are given by 

X%11(X , b) f0 t 2 (t - r)•/u(Ur, b) dr 

al2+• - al2+• 

2 

15(2 + •)2(4 + •)(x 2 q- b 2) 

ß { -15(x2 + b2)•/2(3x 4 + 18x2b 2 + 6•x2b 2 
q- 15b 4 q- 8•b 4 q- •264) q- lb 225x2b 2 
+ 120•x2b 2 + 15•2x2b 2 + 225b 4 + 120•b 4 

q- 15•2b 4 q- 15(6 + 11D + 6• 2 q- •3)x2 

ß (x 2 + b2)2F•(1/2, -•3/2, 3/2, -(x/b) 2) 

1 

- 10/3(2 + 3/3 + •2)X4(X2 q- b2)•-5 2F•(3/2, 1 

- D/2, 5/2, -(x/b) 2) q- 3/3(/32- 4)xa(x 2 

+ b2)•-• 2F1(5/2, 2 -/3/2, 7/2, -(x/b) 2) 

(All) 

R?,•(x) i fv• a12+t3 = l•+t3 Xll(X , a' - a") da' da" = 4{-[(x 4+•) 

/[(2 +/3)2(3 +/3)(4 + •)2]] q- [[15 q- 3• 

-(1 + x2)t3/2(15 q- 3D + 18X 2 q- 3•{X 2 q- 3X4)] 

/[3(2 + •)2(4 + •)2]] + [[x2(36 + 21/3 + 3/32)2F1(1/2, 

-/3/2, 3/2, - x 2) + x4(4 q-/3)2F•(3/2, -/3/2, 5/2, 

_x2)]/[3(2 + •)2(4 + •)2]]} (A12) 

in which b is the dimensionless separation distance, perpen- 
dicular to the mean flow, of two points of the initial plume. 

With reference to (A10), and considering the symmetry of 
X11 with respect to the separation distance, the standard de- 
viation SD[S 11] assumes the following expression: 

SD[X11(t)] = [2R2•,11(x) + 211- 412] 1/2 (A13) 

Correspondingly, the coefficient of variation is given by 

SD[S11] 
CV[Sll] -- (Sll) (A14) 

where 11 and 12 are given by 

IO IO 1 a ") ' 11 = X•,ll(X, a' - da da" 

fo = 2 (1 -- b)X•,11(x , b) db (A15) 

12 = X%ll(X , a'-a")X?,ll(X, a"-a'") da' da" da'" 

= 2101 fo1-b' (1-b'-b")X?,ll(X, b')X?,•(x, b") db" db' 

+ 4 (1 -- b')X•,,11(x, b')X•,,11(x, b") db" db' 

(A16) 

11 and 12 are computed by numerical quadrature of (A15) and 
(A16), respectively. SD[S11] and CV[S11] for/• = 0.75 and 
1.75 are shown in Figures 5b and 5c and 6b and 6c, respectively. 
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