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Abstract. The coupled effects of porous media heterogeneity and flow unsteadiness on 
transport are investigated. We address the problem using a stochastic-Lagrangian 
approach. The log condictivity is modeled as a space random function; however, the flow 
unsteadiness is considered as deterministic, and it affects the magnitude and direction of 
the mean head gradient. Using a first-order solution in terms of the log conductivity 
variance, we developed a three-dimensional solution that includes the velocity covariances, 
the macrodispersion coefficients, and the displacement tensor, all as a function of the 
media heterogeneity and the unsteady mean flow parameters. The model is applied to the 
case of a periodic variation in the flow direction. We show that the effects of unsteadiness 
on the longitudinal spread are insignificant, while it affects strongly the transverse spread, 
in the form of an added constant dispersivity. Results obtained in previous studies are 
discussed and are shown to be particular cases of the present results. 

1. Introduction and Brief Discussion of 

Previous Work 

Transport of solutes in aquifer flow is a subject of great 
interest in various applications. Field measurements have in- 
dicated that the dispersion process is enhanced by the large- 
scale heterogeneity, i.e., by the spatial variability of the hydrau- 
lic conductivity K, which is generally present in natural 
formations. It is customary to model K(x) as a random space 
function, to account for its irregular variation in space and for 
the uncertainty affecting its distribution. Various models, ana- 
lytical or numerical, have been developed in the past in order 
to relate the evolution of solute plumes to the heterogeneous 
structure. Most of the studies were carried out for conditions 

of steady and uniform average flow, the result of application of 
a constant head drop on the boundaries of the formation. In 
addition to simplicity, the justification was that under natural 
gradient conditions, flows are generally close to steady. Since 
the timescale of transients is generally of a seasonal nature, the 
assumption of steadiness is particularly appropriate for trans- 
port field tests of relatively short duration. 

Analysis of field results in one of the most elaborate exper- 
iments carried out so far, at the Borden site [Sudicky, 1986], 
showed good agreement between linearized models, based on 
a first-order approximation in the log conductivity variance, 
and measurements for the longitudinal field-scale dispersion. 
In contrast, the rate of increase of the plume transverse mo- 
ments was underpredicted by the linearized theory. A possible 
explanation for this effect was offered in the works of Neuman 
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and Zhang [1990] and of Zhang and Neuman [1990], who 
obtained a quasi-linear approximation of the transport equa- 
tion based on Corrsin's conjecture. While the first-order theory 
predicts an asymptotically vanishing macrodispersion coeffi- 
cient at great travel times, the Corrsin conjecture leads to a 
finite one. However, it was recently proved [Dagan, 1994] that 
a rigorous derivation of the nonlinear, quadratic in the log 
conductivity variance, term of the macrodispersivity tends to 
zero as well. This result strengthens confidence in the linear 
theory and precludes explaining the aforementioned discrep- 
ancy for Borden site, a formation of weak heterogeneity, by 
nonlinear effects. 

In the search for a different explanation of this discrepancy, 
it was suggested [e.g., Naff et al., 1988] that the presence of 
small transients of flow around the mean may cause the en- 
hanced transverse dispersion. Furthermore, a recent experi- 
ment in the same aquifer [Farell et al., 1994] has revealed that 
the time variation of flow, as manifested in head measurements 
in piezometers, was quite significant. This finding has stimu- 
lated a further examination of the impact of flow unsteadiness 
upon transport [Farell et al., 1994] in this particular experi- 
ment. Furthermore, the subject is of interest for prediction of 
plume evolution over extended periods of, say, tens or hun- 
dreds of years, for which transients are always present. 

Although transport under unsteady flow conditions has re- 
ceived less attention, a few studies were carried out in the past, 
and we shall discuss them briefly here. 

The problem was addressed by Kinzelbach and Ackerer 
[1986] and by Goode and Konikow [1990] in the conventional 
framework of solving the transport equation for a deterministic 
velocity field, while dispersion is represented by a tensor of 
constant coefficients. Goode and Konikow [1990] considered a 
flow which is uniform in space and varies periodically around a 
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steady one. Thus the first example in which the mean temporal 
velocity is constant and unidirectional, while a constant fluc- 
tuation normal to it is applied periodically, is particularly in- 
structive. In this example, the mean trajectory is a zigzag line of 
a small angle + 0 and -0 around the horizontal axis. The main 
finding is that an observer inspecting the plume at the times its 
centroid crosses the mean flow path detects an apparent in- 
crease of the transverse dispersion coefficient. This increase is 
easy to grasp: When the flow suddenly changes direction, part 
of the longitudinal spread of the plume in the previous periods 
manifests itself as a transverse spread for axes parallel to the 
instantaneous velocity or to the mean temporal velocity. We 
shall not dwell here on the more involved cases of transients 

related to aquifer storativity analyzed by Goode and Konikow 
[1990]. A point of principle is that the actual dispersion coef- 
ficients, defined as half the rate of change of the plume spatial 
moments, are those of steady flow for an observer moving with 
the instantaneous flow velocity. In other words, the apparent 
increase of the transverse moments does not show up in the 
instantaneous dispersion coefficients. 

In contrast with this approach, we consider here the case of 
a random velocity field whose impact upon transport cannot be 
encapsulated in a diffusive effect. As we shall show later, the 
latter is a particular case of a velocity field associated with a 
"Brownian motion," which may be a good approximation in 
cases in which the timescales of the mean flow are much larger 
than those associated with heterogeneity. 

Another line of attack was adopted by Naff et al. [1988] and 
Rehfeldt and Gelhat [1992]. They considered heterogeneous 
formations of random stationary structure and a mean head 
gradient which is uniform in space, but fluctuating in time 
around a constant mean. Rehfeldt and Gelhat [1992] assumed 
that these fluctuations are random and small and neglect their 
interaction with velocity fluctuations associated with heteroge- 
neity. In other words, the three additive components of trans- 
port are translation by uniform and steady flow, macrodisper- 
sion associated with heterogeneity under the same condition, 
and a temporal fluctuating flow in a homogeneous formation. 
Since only the last component is of concern here, we shall 
discuss it in some detail. Furthermore, we prefer to cast it in a 
Lagrangian rather than an Eulerian framework, since we find 
the first quite illuminating. Thus, with neglect of pore-scale 
dispersion, the fluctuation of the trajectory of a fluid or solute 
particle is given by 

•0 t X'(t) = u(t') dt' (1) 

where u is the random velocity fluctuation, which is indepen- 
dent of x and results solely from the temporal head gradient 
variation. The trajectories covariance is therefore 

otfo t Xij(t) = uo(t', t") dt' dt" (i, j = 1, 2, 3) (2) 

RehfeMt and Gelhar [1992] assumed that the covariances uij 
are stationary and of finite integral scales. Furthermore, their 
solution is equivalent to assuming that Xij represents the spa- 
tial moments of an ergodic plume. As a result, for a uniform 
mean flow in the x• direction, D22 = (1/2)dX22/dt tends to 
a constant, "Fickian" limit, for large t. This is in contrast with 
D 22 associated with steady flow and heterogeneity, which tends 

Figure 1. Schematic representation of the advective trans- 
port of a solute body in a realization of a velocity field uniform 
in space, but random in time. 

to zero for large t or is finite and very small if pore-scale 
dispersion is accounted for. Naff et al.'s [1988] analysis was 
similar, but u is regarded as deterministic, based on past mea- 
surements of the head gradient. 

Our analysis differs in a few respects from that of Rehfeldt 
and Gelhat [1992] or of Naff et al. [1988]. Thus we define the 
dispersion coefficient as D22 = (1/2)d{S22)/dt, where S22 = 
(1/.Zlo) f.q0(X2 - R2) 2 da is the plume spatial moment with 
respect to the centroid. Here X2 = a2 + ft oU2(t') dt' is the 
transverse coordinate of the trajectory of a particle originating 
at x = a, R 2 = (1/.Zlo) .fAoX2 da is the centroid transverse 
trajectory, and A o is the input zone of a conservative solute of 
initial constant concentration. For ergodic plumes in steady 
flow through heterogeneous media, d(S22)/dt is indeed equal 
to dX22/dt [see, e.g., Dagan, 1990]. However, this is not the 
case for a spatially uniform flow, as implied by (2). Indeed, in 
this case, in absence of pore-scale dispersion, the plume trans- 
lates as a whole in each realization, and it is easy to see that 
S22(t) = S22(0) = const and D22 = 0. This result is ex- 
plained in Figure 1, in which A o is a circle. The solute body 
wanders along a random path, but does not disperse, and Xij in 
(2) is a measure of uncertainty, i.e., of the envelope of solute 
body trajectories. It can be regarded as a measure of dispersion 
of the mean concentration if measurements of concentration 

and spatial moments are defined as time averages over periods 
much larger than the timescale of fluctuations of the velocity. 
This was not the case in the aforementioned field experiments, 
since measurements were carried out over relatively short ti- 
mescales and "instantaneous" pictures of the plume were ob- 
tained. We feel, therefore, that interpreting X•j in (2) as spatial 
moments is not justified. 

A second difference of principle is that we regard the tem- 
poral variation of the head gradient as deterministic. Indeed, in 
the Borden site field experiment, heads were monitored at 
short time intervals and their temporal changes during the 
transport experiment could be captured quite accurately 
[Farell et al., 1994]. In the case of prediction, uncertainty may 
affect the temporal fluctuations, though basically they are of a 
seasonal nature. However, we believe that this uncertainty 
should not be regarded as resulting in dispersion and the right 
context is that of time series and centroid motion (Figure 1). 
These topics are not discussed here. 

Finally, the random velocity temporal variations were incor- 
porated in the derivation of the mean concentration field by 
Kabala and Sposito [1991]. They used the Van Kampen cumu- 
lant expansion, and the velocity field was regarded as station- 
ary in space and time. However, only a general formulation was 
presented, and no attempt was made to relate the temporal 
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variations to those of the head and to the heterogeneous struc- 
ture. 

In the present study we employ the Lagrangian approach we 
have used in the past to investigate transport in steady flow. In 
our analysis the effects of unsteadiness and heterogeneity in- 
teract, in the spirit of the study of Goode and Konikow [1990]. 

2. Statement of the Flow Problem 

and First-Order Solution 

Flow takes place in a heterogeneous formation. The log 
conductivity Y(x) = In K is modeled as a stationary random 
space function of mean mr = (Y) and covariance C•,(r) = 
(Y' (x)Y' (y)), where Y' = Y - mr, r = x - y, X(Xl, x2, x3) 
is a Cartesian coordinate, and angle brackets stand for ensem- 
ble averaging. The head H(x, t) = (H) + h is assumed to 
have a given time dependent mean gradient 

V(H) = -J(t) (3) 

in line with previous works. Equation (3) implies that the 
instantaneous head gradient is constant over the zone covered 
by the plume, which may be an accurate assumption if the scale 
characterizing the spatial variation of X7 (H) is sufficiently large 
[Farell et al., 1994]. We can set the problem in a rigorous 
mathematical framework by assuming the flow to be confined 
so that H satisfies 

Ko ( 02X ) ui(x, t) = •- JiY' -J. axax. = u.(t)vi,.(x) 

tli, a = •ii.y' 
OXiOX. 

(9) 

where 8i. is the Kronecker unit tensor and here and in the 
sequel we adopt the index summation convention. 

Next, we multiply ui(x, t) by ui(y, t') and ensemble aver- 
age. In the ensuing expression we encounter the covariances 
Cxr(r) = (X' (x)Y' (Y)) = -P(r) and C x = (X' (x)x' (Y)) = O(r). The 
functions P and Q, satisfying •72p = -Cy and •72Q = P, 
were used extensively in the past [Dagan, 1989; Rubin, 1990]. 
Their expressions for an exponential, isotropic Cr are recalled 
in the appendix. After these preparatory steps, the final gen- 
eral expressions of the velocity covariances are 

uij(x, y, t, t') = (ui(x, t)uj(y, t')) 

= U.(t)Ut3(t')v½.t3(r ) r = x- y 

02p 

%,.t3(r) = (vi,.(x)v•,o(y))= Si.•ijt3C•r) + Sjt30riOr. 
02p o4Q 

+ 8i, OrjOro OriOr,Or•Oro 

(lO) 

V2H + VY. VH = 0 x G P. 
(4) 

H= -J(t).x x•OP. 

where D. is the flow domain and 0D. is its boundary. Equations 
(3) and (4) yield for the head fluctuation h(x, t) 

V2h + VY. Vh = J. VY x • P. 
(5) 

h =0 xE 0D. 

It is seen that the solution of (4) and (5) is identical with the 
solution for steady uniform flow provided that at each instant 
J assumes its time dependent value. 

In line with previous work on steady flow, we adopt a first- 
order approximation for h by replacing (5) by 

V2h(x, t) = J(t)' VY' (x) (6) 

and let the flow domain expand to infinity. 
The velocity field is determined with the aid of Darcy's law 

at first order as follows [see, e.g., Dagan, 1984]: 

V(x, t) = U(t) + u(x, t) 
(7) 

U = {V) = •- J(t) u(x t) K• [J(t)Y'(x) - Vh] 
where Kc is the conductivity geometric mean and n is the 
porosity, assumed to be constant. 

To obtain the expressions of the velocity covariances, a pre- 
requisite to solving the transport problem, we recall the pro- 
cedure used in the past for steady flow [e.g., Dagan, 1984]. We 
observe that by the linearity of (6) we may write 

h(x, t) = J(t). VX(X) •72 X = Y' (x) (8) 

and the auxiliary random function X depends only on the het- 
erogeneous structure. By substituting (8) in (7) we obtain 

In words, the tensor vo,.o(x, y)(i, j, a,/3 = 1, 2, 3) yields 
the velocity covariance tensor for an arbitrary mean velocity 
vector U. The unsteadiness of the motion is evident in the 

dependence of the latter on time. 
In the past we have considered steady flows parallel to the x 1 

axis, i.e., U(U, 0, 0) for which 

o2p 

Uij: vij,ll: 8il•jlCy(r) + •jl OriOrl 
02p o4Q 

+ $i• Or•Or• OriOr•Or2• (11) 

The explicit expressions of Uo (11) are given by Rubin [1990] 
for two-dimensional flow and isotropic exponential C•., by 
Zhang and Neuman [1992] for three dimensions, and by Rubin 
and Dagan [1992] for anisotropic C•.. As a matter of fact, 
because of many symmetries, the components of vq..o can be 
expressed solely with the aid of Uq (see the appendix). 

3. Statement of the Transport Problem and 
First-Order Solution 

A plume of a conservative solute is injected at t = 0 in a 
volume (area)Ao, i.e., C(x, 0) = Co for x = a G Ao and 
C - 0 otherwise. We neglect the effect of pore-scale disper- 
sion, so that the trajectory x = X(t; a) of a particle originating 
at x = a, t = 0 satisfies 

dX(t; a) 
dt --= V(X, t) X(0; a) = a (12) 

By substituting (7) in (12) and integrating, we get for the 
mean (X) and fluctuation X' the following expressions 
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•0 t (X(t; a))= a + U(t') dt' 

øot X'(t; a) = u[X(t'), t'] dt' 

(•3) 

The spatial moments of the plume, i.e., the centroid coor- 
dinate R - (1/Ao) f.40 X da and the second moments S o = 
(1/Ao) f.4o(Xi - R•)(Xj - Rj) da with respect to the cen- 
troid, are given in terms of trajectories [see, e.g., Dagan, 1989] 
by 

R(t) = (X(t; 0)) +•00 X'(t; a) da 
0 

So(t ) = So(O ) + Xo(t) - Ro(t ) 

(14) 

where X o = (X•(t; a)Xj(t; a)) is the trajectory covariance 
and R•j is the R covariance. We assume that the plume is 
ergodic, i.e., its transverse extent is sufficiently large compared 
to the Y correlation scale [Dagan, 1990] to warrant taking 
Rij • 0 in (14). Hence 

R • (R) = (X(t; 0)) 

So(t) • (Sij(t)) = Sij(O) + Xij(t) 

1 d(So) 1 dX•j 
Dq(t) = • dt •= 2 dt 

(•5) 

where D o is the effective dispersion tensor. 
To derive X o in a simple and consistent manner with the 

first-order approximation adopted for the velocity field, we 
follow the procedure adopted in the past [Dagan, 1989] and 
replace X in (13) by its mean, i.e., 

•0 t X'(t) = u[(X(t')), t'] dt' 

(16) 

Xij(t) = uij[(X(t')), (X(t")), t', t"] dt' dt" 

Finally, we substitute u o (10) in (16), to obtain X o and Do 
explicitly in terms of the velocity covariances as follows: 

Xo(t ) = U.(t')U•(t")vq,.•[(X(t')) - (X(t"))] dt' dt" 

1 dXq 
Do(t) = 2 dt 

(17) 

5 [U.(t)U•(t') + U.(t')U•(t)]vo,.•[(X(t))- (X(t'))]dt' 

Equations (17) encapsulate the main result of the last two 
sections. They express the plume second spatial moment and 
dispersion coefficients as functions of the unsteady mean ve- 
locity U(t) on one hand, and the heterogeneous structure 
through the functions P and Q on which vo,,t•(r ) in (11) 

U(t) 
•, xlI • 

Figure 2. Definition sketch for transport by a periodic mean 
flow (equation (18)). 

depend, on the other. Equations (17) will be employed in the 
following sections for analyzing periodic flows. 

We wish to show that previous results obtained in the liter- 
ature are particular cases of (17). Indeed, the steady flow 
solutions we developed in the past correspond to U constant 
and (X(t')) - (X(t")) = U(t' - t"). The solution of Goode 
and Konikow [1990] results from (17) for vo.,,•t • = do.,,•t•8(t' - t"), 
where d•j,,•t • is a tensor of constant components. Finally, the 
approximation of RehfeMt and Gelhat [1992] for the unsteady 
term is equivalent to taking vij,,•t • = 8•,•Sjt•p,•t•(t' - t"), 
where P,•t• is the velocity temporal autocorrelation. 

We proceed with illustrating our approach by applying (17) 
to a simple case of unsteady mean flow. 

4. Application to Simple Periodic Flows 
Similarly to previous studies, we consider a flow which fluc- 

tuates periodically around a steady, uniform one. The most 
general representation of U(t) is by a Fourier series [Farell et 
al., 1994] whose basic period is 1 year. To grasp the effect of 
unsteadiness in a simple manner we consider here a single 
harmonic and defer a more general representation to a future 
study. Thus the flow is of constant mean U1 in the x i direction 
and fluctuates in the x2 direction (Figure 2). We adopt here 
and subsequently variables that are made dimensionless with 
respect to Iv, the log conductivity integral scale, and Iy/U 1 as 
length and timescales, respectively. Hence 

U 1 = 1 U2 = • cos (t/X) U3 = 0 (18) 

(X•) = t (X2) =/3 sin (t/h) (X3) = 0 

The two parameters characterizing unsteadiness are/3, the 
dimensionless amplitude of the mean trajectory, and X = 
T/2 ,r, where T is the dimensionless period (Figure 2). For/3 = 
0 we recover the case of steady flow of uniform velocity U• 
analyzed extensively in previous studies. We shall denote the 
covariances pertinent to/3 = 0 by x•O")(t ) and correspondingly 
D•)")(t) = (1/2)dX,(ft)/dt. 

The trajectory covariance in (17) becomes now, by substitu- 
tion of (18), 

Xq(t) = {vo.•(r) + [U2(t') + U2(t")]%•2(r) 

+ U2(t')U2(t")vo,22(r)} dt' dt" 

1' 1 = t' -- t" 

r2 = fi [sin (t'/X) - sin (t"/X)] 

= 2fi sin [(t' - t")/2X] cos [(t' + t")/2X] 

(19) 

r3=0 
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When treating two-dimensional flows we have to suppress in 
(19) the dependence on %. 

To carry out the calculations in (19), it is beneficial to switch 
to the variables t' = (v + /x)/2 and t" = ( v - /x)/2, leading 
to the final expression 

Xij(t ) = • 0 • • {vij,11(r ) + 2(/3/X) COS (/X/2A) 
1 

ß cos (v/2X)vij,•2(r) + •(/3/X) 2 

ß [COS (/x/X) + COS (vl•)]vij,22(r)) dv a/x (20) 

with r• = /X, r 2 = 2/3 sin (/X/2X) cos (v/2X), and r3 = 0. 
The macrodispersion coefficients result from the differentia- 
tion of (20), leaving only the first integral and replacing v - 
2t - /X in the integrand. 

Summarizing, Xi• (20) and the associated D i• require carry- 
ing out a double or a simple quadrature, respectively, for given 
parameters values and given Cv. The results of such compu- 
tations are given in the next section. 

5. A Few Numerical Results 

In order to grasp the implications of the developments of the 
previous section, we have carried out detailed computations 
for a few values of the parameters of interest. We have selected 
the exponential and isotropic Cy = rr2v exp (-r/Iy), and at 
first order the velocity and trajectories covariances are linear in 
rr2v. The basic functions P and Q for this Cr were derived in 
the past and we give here in the appendix their analytical 
expressions for both two- and three-dimensional flows. 

First, we have considered two-dimensional flows, pertinent 
to vertically averaged velocity and concentration or to regional 
flows. With the velocity and mean trajectory given by (18), 
while suppressing x3, we have selected first the value X - 1, 
i.e., TU•/Ir - 2 •r. For I• of the order of meters and U• of the 
order of centimeters per day, T is of the order of years. As for 
the only remaining parameter, the dimensionless amplitude/3, 
we have selected the three values/3 = 0.1, 0.2, and 0.3. 

The computations are straightforward: (1) by differentiating 
P and Q (equation (A2)) we have derived the three coefficients 
Sij (l l) for i, j = 1, 2, and subsequently the coefficients vij,o•[ 3 
(10), which are simply related to Uij (see the appendix, equa- 
tions (A4)). Subsequently, we have computed Xij (20) by two 
numerical quadratures and D•j (17) by one. 

In Figure 3 we represent the dependence of X•i(t;/3 = 0.2) 
as well as that of X•f t) on travel time (or travel distance along 
the x• axis). The steady state values are those obtained in the 
past [Dagan, 1984]. The results are qualitatively the same for 
other values of/3. 

It is seen that the longitudinal X•(t) (Figure 3a) is very 
close to X[?(t), though some small fluctuations are present in 
the former. X•2(t ) (Figure 3b) is an oscillatory component of 
period T = 2•rX and of small amplitude. It also has a small 
drift related to the initial conditions. Last, X22(t ) (Figure 3c) 
is definitely larger than X•2ø(t), and we shall discuss its be- 
havior subsequently. 

With the aid of X• we determined the principal values, the 
longitudinal Xi, I and the transverse Xn, n of the tensor Xii, as 
well as the angle 0 between the longitudinal axis xi and x •, the 
direction of the mean flow (Figure 2). 

To illustrate the results, we present in Figure 4 the depen- 
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Figure 3. Two-dimensional flow: (a) the unsteady longitudi- 
nal trajectory covariance X• • (equation (20)) for X = 1,/3 = 0.2 
and X(• t) (/3 = 0); (b) same as Figure 3a for X•2; and (c) same 
as Figure 3a for X22. 

dence of 0 upon the dimensionless travel time (or distance 
alongx•), as well as that of the angle tan -• (U2/U•) = tan -• 
[/3/X cos (t/A)] between the tangent to the mean centroid 
trajectory and x• (Figure 2). The behavior is similar for other 
values of/3, and the discussion is deferred to the next section. 

The longitudinal component X•,•(t) is very close to X•(t) 
and is not shown. In Figure 5 we give the transverse Xn,n as a 
function of time for/3 = 0.1, 0.2, and 0.3 as well as X•)(t). It 
is emphasized that X22 (Figure 3c) for the same values of/3 is 
not distinguishable from Xn,n. 
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Figure 4. Two-dimensional flow: the angle 0 between the 
longitudinal mean direction of Xii and the x i axis (solid line) 
and the angle between the mean trajectory (equation (18)) and 
xl (dotted line). 

As is apparent from Figures 3-5, the main impact of the pres- 
ence of the unsteady harmonic component is upon X22(t; •3) • 
Xii,ii, which is larger than X• ). To grasp the nature of the 
incremental effect of unsteadiness, we have represented in 
Figure 6 the difference X22 - X(2S• ) as a function of time. It is 
seen that this difference has a linear trend with slight oscilla- 
tions around it. A linear regression has led to the following 
values for half the slope Aar = (1/2)[Xii,ii(t) - X•)(t)]/t 

Aar = 0.0018(t3 = 0.1, h = 1) 

Aar = 0.0065(16 = 0.2, X = 1) 
(21) 

Aar = 0.016(16 = 0.3, X = 1) 

Aar = 0.0014(t3 = 0.3, X = 5) 

We have supplemented the results for X = 1 in (21) by an 
additional one for a much larger period of X = 5, T = 10rr. 
It is seen that A a r increases with t3, roughly like 162, and 
diminishes with increasing X. 

In Figure 7 we represent the dependence on time of the 
various Dii as well as of D•?)(t) for the largest t3 = 0.3 (the 
behavior is similar for other t3). Similarly to Xll (Figure 3a), 
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Figure 5. Two-dimensional flow: the transverse trajectow 
variance Xii,ii (see Figure 2) for • > 0 and X• ) (• = 0). 
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Figure 6. Two-dimensional flow: the difference between X22 
(equation (20)) and X• ). 

the longitudinal macrodispersion coefficient D 11 (Figure 7a) is 
very close to D(i• t), except for small periodic fluctuations. The 
mixed component D12 (Figure 7b), resulting from the differ- 
entiation of X12 (Figure 3b), is purely oscillatory and of small 
amplitude. The most significant component is D 22 (Figure 7c), 
which is larger than D• ) and displays an oscillatory as well as 
a constant increment, to be discussed in the next section. 

Our next set of computations were for three-dimensional 
transport, again for an exponential isotropic Cy and for the 
same unsteady mean flow of (18) in the horizontal plane x 1, x2. 
This time the tensors X• and D• have nine components each. 
They were computed by the same procedure as for two- 
dimensional flows, except that P and Q are given by (A3). We 
have carried out computations for the same parameter values, 
i.e., X = I and/3 equal to 0.1, 0.2, and 0.3. Many of the results 
parallel those of two-dimensional flow and are recapitulated in 
words only. Thus the longitudinal principal value Xi,i(!) is very 
close to Xi i(t) for the range of parameters we chose and the 
same is true for Xiii,iii(t) • X•) (t) = X•3 t) (t). The latter 
has been derived previously [Dagan, 1984] and is also repre- 
sented here in Figure 8. The behavior of 0, the angle between 
the longitudinal principal axis of X• and the mean flow direc- 
tion x i (Figure 2) is very similar to that of Figure 4: At t - 0 
it is the same as that of the mean velocity, and it tends quickly 
to zero after a few cycles. The main impact of unsteadiness is 
felt again in the horizontal transverse direction x2. This is 
illustrated in Figure 8, which displays the dependence of Xii,i I 
and ofX• ) upon travel time (distance alongx1) for all values 
of 

The increment X•(t) - X•(t) can be approximated ac- 
curately by a linear trend of slope 2Aa•, similarly to the 
two-dimensional case (Figure 6). The half slopes have the 
following values: 

Aar = 0.0025(t3 = 0.1, X = 1) 

Aar = 0.01(t3 = 0.2, X = 1) 

Aar = 0.022(t3 = 0.3, X = 1) 

(22) 

which are close to, though somewhat larger than, those of (21) 
for two-dimensional flow and transport. 
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Figure 7. Two-dimensional flow: (a) the unsteady longitudi- 
nal macrodispersion coefficient D 11 = (1 / 2)dX1 •/dt (equa- 
tion (20)) for X = 1,/3 = 0.3 and D• t) (/3 = 0); (b) same as 
Figure 7a for D 12; and (c) same as Figure 7a for D22 supple- 
mented by the approximation (26) (thick-dashed line). 

Finally, in Figure 9 we have represented the dependence of 
D22 upon time for/3 = 0.3 as well as the steady D•:•)(/3 = 0). 
The other components, Dll and D12, are very similar in behavior 
to those pertaining to two-dimensional flow (Figures 7a and 7b). 

As a last point, one can define the transverse second spatial 
moment of the plume with respect to the axis x 1, rather than to 
the centroid of coordinate (R2) = /3 sin (t/X). This results in 
the extra term (R2(t)) 2 = •2 sin2(t/X ) supplementingX22 of 
Figure 5. This term is essentially the one considered by Naff et 
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Figure 8. Three-dimensional flow: the transverse trajectory 
variance Xii,i I for X = 1,/3 > 0 and X(2S:? (/3 = 0). 

al. [1988], and it yields a small oscillatory contribution to $22 
and D22. We shall adhere here to the definition of S22 with 
respect to the instantaneous centroid, though the differences 
betwebn the two definitions are seen to be quite small. 

We proceed now with discussing the numerical results. 

6. Discussion of Numerical Results 

We have examined in sections 4 and 5 the interaction be- 

tween a simple unsteady flow, of constant mean horizontal 
velocity and periodic transverse one, and the heterogeneous 
structure. Our main simplifying assumptions were neglecting 
pore-scale dispersion and adopting a first-order approximation 
in •r} for flow and transport. It is emphasized that the results 
for velocity and trajectory covariances and for macrodispersion 
coefficients are consistent leading-order terms in expansions in 
powers of •r•. 

While we have kept the period constant (except in (21)), we 
have examined a range of values of the amplitudes/3 (made 
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Figure 9. Three-dimensional flow: the unsteady transverse 
macrodispersion coefficient D22 - (1/2)dX22/dt (equation 
(20)) for X = 1,/3 - 0.3, D•:? (/3 = 0) and the approximation 
(26) (thick-dashed line). 
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dimensionless with respect to Iy) up to 0.3, which represents 
quite a large deviation of the mean trajectory (18) from the 
mean (temporal) one. 

A first result, consistent with both field findings and previous 
works, is that the longitudinal (as well as the vertical for three- 
dimensional flow) trajectory variances X• (and X33) and the 
associated macrodispersion coefficients D • (and D33 ) are lit- 
tle influenced by unsteadiness (Figures 3 and 4). The cross 
component X•2 (Figure 3) is oscillatory, and it impacts mainly 
the angle 0 between the longitudinal main axis of the Xii tensor 
and x•. At t = 0 this angle is identical with that between the 
instantaneous mean velocity and the x• axis (Figure 4). This is 
expected, since the effect of heterogeneity is not felt then and 
the plume translates with the mean velocity. The angle 0 tends, 
however, quickly to zero, and the plume becomes practically 
parallel with the x• axis (Figure 4). This is mainly due to the 
quick increase of X• with t as compared with X•2. 

The main effect of the unsteady flow component is in in- 
creasing the transverse trajectory variance Xii,ii(t) • X22(t) 
and the associated effective dispersion coefficient D 22 (t) (Fig- 
ures 5-9) with respect to the steady ones X(2S•)(t) and D(2?(t). 
The effect is more dramatic in three-dimensional flows (Figure 
8), for which X(2?(t) tends to a constant value, whereas the 
unsteady component has a linear trend. The rest of our dis- 
cussion is devoted to this effect. 

First, we shall recall in an explicit manner the relationships 
leading to X22 (see (20) and (A4)) 

X22(t; •, it) = {U22(r1, r2, r3) 

+ [U2(t') + U2(t")]U•2(r2, r•, r3) 

+ U2(t')U2(t")U•(r2, r•, r3)} dt' dt" (23) 

where r• = t' - t", r 2 = 2/3 sin [(t' - t")/2X] cos [(t' + t")/2X], 

The difference between (19) and (23) is that we have re- 
placed v•i,• by the components of Ui•, the velocity covariances 
for steady flow of unit mean velocity parallel to x • (A4). These 
components are given in (11) and were derived in the past 
[Rubin, 1990; Rubin and Dagan, 1992; Zhang and Neuman, 
1992]. The evaluation of the contribution of each of the three 
terms of (23) showed that the midterm is responsible mainly 
for the small oscillatory part OfXli,i I • X22 (Figures 5 and 8) 
and D22 (Figures 7c and 9). The linear trend of the increment 
X22(t) - X(2S•)(t) (Figure 6, equations (21) and (22)) is asso- 
ciated with the remaining two terms, leading to the following 
approximate expressions for X22 and D22.' 

folio t X22(t) • [U22(r•, r2, r3) 

+ U2(t')U2(t")U•(r2, r•, r3)] dt' dt (24a) 

with r• = t' - t", r 2 = 2/3 sin [(t' - t")/2X) cos [(t' + t")/2X], 
and r 3 = 0; and 

I0 t D22(t) • [U22(rl, r2, r3) + U2(t)U2(t')Uii(r2, ri, r3)} dt' 

(24b) 

with r• = t - t', r2 = 2/3 sin [(t - t')/2it) cos [(t + t')/2it], 
and r 3 = 0. 

In the steady state case, i.e., for/3 = 0, the only term left in 
the integrands of (24) is $22(t' - t", 0, 0) along the x• axis, 
leading to the expressions derived in the past [e.g., Dagan, 
1984]. Since $22(r•, 0, 0) is a hole covariance, D(2S:/) tends to 
zero for t >> 1 in both two- and three-dimensional transport, 
while X(2s:/) - In t (two dimensions) and X(2sd ) -• const (three 
dimensions). Hence the linear trend present in X22 or the 
constant, Fickian, contribution Aa r (equations (21) and (22)) 
to D22 originates from two terms in (24): The first one is U22 , 
the transverse velocity covariance integrated along the actual 
trajectory rather than the x• axis, and the second one is from 
the longitudinal velocity covariance U• •, however for the cross 
flow of mean velocity U2 and with r 2 and r• exchanged in the 
argument of U•. These terms are similar, but more complex, 
than those accounted for by Goode and Konikow [1990] (see 
section 1). It is recalled that X22 and D22 are proportional to 
tr2• and depend here in a complex manner on/3 and it. 

The half slopes A a r of the linear trend of the increment 
•22(t) -- X(2sd ) incorporate in a single parameter the main 
unsteady effect investigated here. First, it leads to the simple 
approximation 

X22(t; /3, it)• X•)(t) + 2Aar(/3, it)t (25) 

which neglects the oscillatory part of X22 , seen to be negligible 
in Figure 6. 

By the same token, D22 can be approximated by 

D22(t; /3, it)• D•)(t) + Aar(/3, it) (26) 

and we have plotted (26) in both Figures 7c and 9. It is seen 
that indeed D22 in (26) averages the time oscillations of D22 , 
which are more pronounced than those of X22. 

The most important point, however, is that Aar in (25) and 
(26) represents a Fickian effect which becomes the dominant 
one for sufficiently large t, especially in three-dimensional 
flow. As a matter of fact, it is made dimensionless with respect 
to U•Iy, and therefore, A at may be viewed as the ratio be- 
tween the asymptotic macrodispersivity and the log conductiv- 
ity integral scale. Its numerical values (equations (21) and (22)) 
suggest an approximate quadratic dependence upon/3 and a 
decay with it (21). 

The approximate results (equations (23) and (24)) will serve 
in the future for analysis of field tests in which Cv is generally 
of an anisotropic structure which does not lend itself to simple, 
analytical, expressions for the functions P and Q (equations 
(A2) and (A3)). 

7. Summary and Conclusions 
By using the Lagrangian approach and a first-order approx- 

imation of flow and transport equations, we have been able to 
derive the solute particles trajectory covariances X• for an 
average mean flow uniform in space but varying in time. Under 
ergodic conditions that apply for sufficiently large plumes com- 
pared to heterogeneity scales, the trajectory covariances are 
equal to the plume spatial moments, while the centtold moves 
along the mean trajectory. In a similar vein, the D•/ = 
(1/2) dX•/dt represent the effective dispersion coefficients of 
the plume. 

Similarly to the steady flows investigated in the past, the X•/ 
result from the integration of the velocity covariances u•/along 
the mean trajectory •X•, which departs from a straight line and 
depends nonlinearly on time. However, u• are the same as for 
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steady state flow provided that the mean velocity is the instan- 
taneous velocity of the actual flow. 

We have illustrated the procedure by applying the general 
method to the particular case of an isotropic exponential log 
conductivity covariance and a periodic time-varying flow. Thus 
the mean velocity component U• is constant while the trans- 
verse U2 varies harmonically in time. 

Our main result was that for the selected values of param- 
eters, the longitudinal dispersion of the plume is little affected 
by the unsteady flow. The plume rotates by the angle of the 
mean flow at t - 0, and it becomes practically aligned with x • 
after a period. 

The major impact of the unsteady component is on trans- 
verse dispersion. The effective dispersion coefficient Dn,n • 
D 22 can be viewed as made up from three terms: (1) the steady 
state component, which results from the integration of the 
transverse velocity covariance U22 along the x • axis and which 
tends to zero for large travel time; (2) a small periodic com- 
ponent stemming mainly from U•2, and (3) a constant, Fick- 
ian, additional term. The last term results from the integration 
of the transverse velocity covariance U22 along the sinusoidal 
trajectory and from that of U• in the x2 direction. The third 
category of terms encapsulates the main contribution of flow 
unsteadiness upon transport. These terms depend in a complex 
manner upon heterogeneity, being proportional to rr2v, and on 
the amplitude and period of the time-varying U2. This result is 
different from that of previous studies, in which heterogeneity 
and time dependence of the mean flow effects were separated. 

Appendix: A Few Analytical Auxiliary Results 
The fundamental functions P(r) and Q (r) [see, e.g., Dagan, 

1989; Rubin, 1990] satisfy the equations 

V2p = -Cv(r) V2Q = P (A1) 

For an isotropic C•,, (A1) become ordinary differential 
equations, with V 2 -= (1/r)d/dr(rd/dr) (two dimensions) and 
•7 2 • (t/r2)d/dr(r2d/dr) (three dimensions). For ease of 
reference we give here the final results for Cv = (r2v exp (-r), 
where r is made dimensionless with respect to I•,: 
Two dimensions 

P/(I•r•,) - 1 - e -r- E + Ei(-r) - In (r) 
(A2) 

Q/(I•r•,) = 
(r- 5)e -r 

r+6 

- • In (r) 
Three dimensions 

+•- t- + 5+ Ei(-r) 

2 2e -r 
P/(l•r•,) = -i + e -r- -- 

r r 

Q/(I•tr•,) = -3 - e -r + 
4 4e -r r 2 

r r 6 

(A3) 

where E is the Euler constant and Ei is the exponential inte- 
gral. It is recalled that the velocity covariances (equations (t0) 
and (11)) are expressed with the aid of the derivatives of P and Q. 

Next, we present the relationships between the tensor 
vij,•13(rl, r2) (the covariance between the ith component of 
the velocity fluctuation at x caused by a unit mean flow in the 
a direction and the jth fluctuation at y = x - r for a unit mean 

flow in the /3 direction) as given by (10) and Uo(r •, r2) = 
vo,• (equation (11)) for two-dimensional flow. Thus 

Vll,ll--' U11 t/22,22 = U•i 

V12,11 = V21,11 = Ull,21 • Ull,12 = U12 

v12,22 = v21,22 -- v22,12 = v22,21 = $•2 
(A4) 

U22,11 • Ull,22--' U12,21-- V21,21 = U22 

where U•(r•, r2) = Uo.(r2, rO. The relationships are the same for 
three-dimensional flow with additional dependence on r 3. 
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