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Reply 

Alberto Bellin, • Andrea Rinaldo, 2 Willem Jan P. Bosma, 3 
Sjoerd E. A. T. M. van der Zee, 4 and Yoram Rubin s 

We appreciate the comment by Zhang [this issue] and the 
opportunity to elaborate more on our solution for linearly 
equilibrium sorption solutes in physically and geochemically 
heterogeneous formations. In his comment, Zhang suggests 
eliminating some terms from (20) of our paper for the sake of 
consistency and proposes an alternative solution. Zhang con- 
siders the cases of perfect positive and negative correlation 
between the log conductivity Y and In Kd, where Kd is the 
partition coefficient, and he develops first-order solutions for 
the retarded velocity covariance function and for the second 
plume moments. Zhang's solution is obtained directly from 
(20) of the paper by Bellin et at. [1993] by replacing (R), 
CyR, and exp [tr}/2] with their first-order approximations. 
This simplification has a different impact on the second-order 
plume moments depending on the log conductivity variance 
and the geometric mean of the retardation coefficient Ka ø. In 
the following we demonstrate that while for small values of Ka ø 
and tr} the two solutions are in good agreement, for large 
values of Ka ø and for formations moderately heterogeneous a 
not fully consistent yet, judicious retention of high-order terms 
enhances the agreement between our solution and nonlinear 
solutions obtained numerically. 

Before describing the main differences between the two 
solutions we recall briefly the assumptions employed in the 
derivation of the second moment's tensor, which for a linearly 
equilibrium adsorbing solute, assumes the following expres- 
sion: 

X? = 2 (t'- z')v•)?((Xa(z'))) dz' (•) 

where t' = t U/((R)Iy) is the dimensionless time, (X •) is the 
'• is the dimensionless retarded particle mean trajectory, and v o 

velocity covariance function. In addition, U is the mean veloc- 
ity, and Iv is the log conductivity integral scale. 

'• is to compute the fluctuation The challenge in deriving v o 
of the retarded velocity. Because of the stationarity of R and v 
and by expanding the term 1/R = 1/((R) + R') around (R) 
and truncating at first order in R', we obtain the following 
expression [Bellin et at., 1993]: 
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V i (-• U (-• 15•- v$ (2) 
where •i is the Kronecker delta. The fluctuations around the 
mean of the retardation coefficient are related to the fluctua- 

tions of the log conductivity through the following expression: 

R' = Kdø[e -+r' -- e4/2] (3) 

The double sign in (3) has been adopted to represent in the 
same e•ression the cases of perfect positive and negative 
correlation. Inspection of (2) reveals that v'• depends on the 
order of magnitude of the fluctuations of the veloci• and the 
retardation coefficient. Mter this preparato• step we consider 
the expression of the retarded veloci• covariance function 
[Bellin et al., 1993, equation (20)]: 

U 2 •C•(r) Cr•(r)_ K• ] v•(r) = ailajl (• (• 2 (R) + (• e(•P2)T•l(r) 
+ •(r) (4) 

where the double sign of the third term represents the positive 
and negative cases, respectively. Since for i • 1 or j • 1, 

tR t 

v o = vo, we limit our attention to v '• The presence of R' in 11' 

(2) introduces three extra terms in '• which are not present in •11 

the case of a nonreactive solute. The first term is proportional 
to C• and represents the spreading of a plume traveling in a 
homogeneous media with a spatially variable so•tion reaction. 
In our solution this contribution, which depends only on the 
spatial variabiliff of R, is evaluated without appro•mations. 
The order of magnitude of this contribution is 

• (K•)2e4(e4 - 1) 
(•)• = (1 + gTe•P•) • (5) 

In his solution, Zhang [this issue] appro•mates •/(R) 2 as 
follows: 

(•)•= (gT)•} (6) 
The ratio • be•een these •o expressions is 

e4(e4- 1)(1 + Ky) 2 
• = •1 + rTe(•P•)] • (7) 

Figure 1, which shows • versus •} for different K• values, 
reveals that for constant K • d, • increases with •}, while for 
constant •} it decreases as K• increases. The differences are 
particularly evident for small K• and large •}. The ratio 
be•een the sum of the second and the third term of (4) and 
the sum of the corresponding terms in the solution by Zhang 
assumes the following form: 

K•e •2 e•q2(1 + K•) 
Y = (•)z• = (1 + gTe•P •) (8) 
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Figure 1. Function/3 versus (r2• for different K• values. 

and it is shown in Figure 2. Figure 2 reveals that for a given K•, 
3' increases with (r2•, while for a given (r2• it decreases quickly 
as K] increases. The behavior of 3' is qualitatively similar to 
that of/3. For (r2• -• 0 both/3 and •/tend to 1. The reactive 
solutes detected in most cases of aquifer contamination are 
characterized by partitioning coefficients ranging from values 
smaller than 1 to 100 or more. In view of future applications it 
is interesting to evaluate the limits of/3 and 3' for small and 
large K•. For K• -• 0, /3 and 3' assume the following expres- 
sions: 

(e4 - 1)e '•' 
/3 = (r2v 3' = e •}/2 (9) 
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Figure 2. Function 3' versus •r2• for different K]. 

1.00 

On the other hand, for K• -• o• we obtain 

(e •}- 1) 
(•o) 

The above limits show that the differences between the two 

analytical solutions depend on K]. In particular, we observe 
that for large K] values the difference between the two solu- 
tions is mainly due to the first term of (4). 

The second and the third terms on the right-hand side of (4) 
originate from the cross correlation between v[ and R" 

<vi(x)R'(x + r)> = <[t•5(1)(x) -{- t•(2)(x) -{- t•(3)(x) -{-'' '] 

ß [R'(1)(x + r) + R'(2)(x + r) + R'(3)(x + r) +'' ']) 

=(v?)(x) • R'(n)(x+r) I n=l 

+ V}(2)(x) E R'(n)( x + r) +''' 
n=l 

-- <V[(1)(x)Rt(1)(X -I- r)) + • <v}(1)gt(n)(x q- r)) 
n=2 

+ higher-order terms (11) 

where the exponent n indicates the order of magnitude, that is, 
R '(n) is the component of order (r•.. Besides the approxima- 
tion introduced by Zhang [this issue] in the evaluation of the 
first term in (4) the difference between the two solutions is 
related to the number of terms retained in (11). While Zhang 
retains only the first term on the right-hand side, we retained 
all the terms originating from the interaction between v[ (•) 
andR '(•) withn = 1,... o• , ß 

An intrinsic hypothesis in our solutions is that products of 
order larger than n = 1 in the expansion of v[ are negligible. 
Numerical simulations by Bellin et al. [1992] and the analytical 
second-order solution by Hsu et al. [1996] demonstrated that 
terms of order higher than (r2• are significant for the evaluation 
of v• only at very small lags. Hence it may be reasonable to 
assume, pending further developments, that the longitudinal 
component of the cross-covariance function between v[ and 
R' can be accurately represented by retaining only the term of 
order (r¾ in the expansion of v[. In the paper by Bosma et al. 
[1993] we compared our solutions with numerical simulations 
obtaining in all cases a good agreement between the two so- 
lutions. In light of the new results by Zhang [this issue] and to 
test further this hypothesis, we set up a series of numerical 
experiments using the methodology described by Bosma et al. 
[1993]. 

Figures 3a and 3b show the longitudinal second-order mo- 
ments for perfect positive and negative correlation and for a 
two-dimensional isotropic formation with (r2• = 0.2 and K] = 
0.2. For this set of parameters, which are the same as those 
used by Zhang [this issue] in his comment, the two solutions 
are in good agreement. However, our solution shows a better 
agreement with the numerical solution for the positive corre- 
lation case. This is more evident in Figures 4a and 4b which 
show X• for (r2• = 1 and K• = 0.2. The combination of a 
moderately large log conductivity variance and a small value of 
K • which reduces considerably the amplitude of R' makes d, , 
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this example suitable to test our hypothesis. For the positive 
correlation case our solution is in good agreement with the 
fully nonlinear numerical solution, while Zhang's solution 
overestimates it appreciably, as can be expected from the lin- 
ear solution. 

Inspection of Figure 4a reveals that the second term and the 
following terms on the right-hand side of (11) are negative 
since Xll reduces progressively as new terms are added in the 
expansion. Notice also that the first term on the right-hand side 
of (11) is negative since it reduces Xll with respect to the 
nonreactive case. The analysis of the sign of the terms origi- 
nating from the expansion of (11) confirms this finding. Since 
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Figure 3. Second-order longitudinal plume moment for 
K• = 0.2 and er• = 0.2' (a) perfect positive correlation and 
(b) perfect negative correlation. 
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Figure 4. Second-order longitudinal plume moment for 
K• = 0.2 and •r• = 1' (a) perfect positive correlation and (b) 
perfect negative correlation. 

all the terms in (11) are negative one can conclude that a not 
fully consistent expansion of (11) improves the solution. 

For the negative correlation case shown in Figures 4b and 3b 
the two analytical solutions are in good agreement. Figures 5a 
and 5b show the case in which geochemical heterogeneities 
overwhelm physical heterogeneities, and as a consequence, the 
fluctuations of R are much stronger than in the previous case. 
The parameters employed are K• = 5 and rr• = 0.2. For the 
positive correlation case shown in Figure 5a the two solutions 
are in better agreement compared to the case shown in Figure 
4a. The small value of rr} reduces the differences between the 
two solutions, and at the same time the linearization of (R) in 
Zhang's [this issue] solution compensates partially for the re- 
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Figure 5. Second-order longitudinal plume moment for 
K• = 5 and rr} = 0.2' (a)perfect positive correlation and (b) 
perfect negative correlation. 

In summary, we demonstrated through considerations con- 
cerning the order of magnitude of the terms representing the 
interaction between physical and geochemical heterogeneities, 
by developing the complete solution for transport, and by lin- 
earization of the solution that our quasi-linear solutions for 
Xll represent closely the transport of linearly equilibrium ad- 
sorbing solutes in a wide range of value of heterogeneity pa- 
rameters which goes beyond the range of values covered by 
linear theories. The two solutions are in good agreement when 
both rr• and K• are small, that is, in the case analyzed by 
Zhang [this issue]. 
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duced impact of the three terms in (4), resulting in an overall 
slight underestimation of Xll. Figure 5b shows the negative 
correlation case. In both the positive and negative cases our 
solution provides a very good match to the numerical results. 
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