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[1] The fundamental question we consider in this paper is how to allow flexibility in
numerical grid design without discounting the dispersive action of the unmodeled
variability. In doing that, we wish to preserve the interplay between all relevant length
scales: those relevant to the spatial variability as well as those created by design. In
this study we extend and test the concept of block-scale macrodispersion introduced by
Rubin et al. [1999] for modeling unresolved hydraulic property variations at scales smaller
than the numerical grid blocks. We present closed-form analytical results for the block-
scale macrodispersion and test them numerically. Closed-form analytical results are
presented for the large-time aymptotic limits, and it is shown that these limits are attained
very fast. The conditions of applicability are investigated, and we show that ergodicity
with regard to block-scale heterogeneity is attained surprisingly fast. INDEX TERMS: 1832

Hydrology: Groundwater transport; 1829 Hydrology: Groundwater hydrology
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1. Introduction

[2] Modeling of contaminant transport in the subsurface
requires consideration of many length scales, as illustrated
in Figure 1. First let us define the space random function
(SRF) Y, representing the spatial variability of the log
conductivity. The integral scale of Y, IY,i, with the subscript
i denoting the Cartesian direction, is the distance over which
Y is strongly correlated. The size of the plume, li (t), must
also be considered. Three additional length scales to con-
sider include the size of the numerical grid blocks, �i; the
size of the domain modeled, Li; and finally, li, the dimen-
sion of the homogenized regions (note that in many appli-
cations, li = �i is taken, but for greater flexibility we define
homogenized regions of scales li possibly larger than �i).
These length scales are obviously important in any numer-
ical modeling exercise, but in particular when considering
the variability that is not captured over homogenized
regions of the simulated domain vis-a-vis the variability
that acts on solute bodies by way of advection and disper-
sion. The effect of these length scales on transport can be
conveniently analyzed in Fourier space, whereby the spatial
variability can be described through a series of wave
number vectors, k.
[3] With the aid of Nyquist’s theorem [Bras and

Rodriguez-Iturbe, 1985] we can identify li and li(t) as
important cut-offs. First, j ki j � p/li defines the variability

that is captured over the grid, while jkij > p/li is the
variability which is wiped out due to homogenization, and
which must be modelled indirectly, for example
using dispersion coefficients. Then, there is the set of cut-
offs p/li(t), corresponding to the plume’s scales. Here, jkij >
p/li(t) defines the variability that disperses the solutes. The
order relationship between li(t) and li is important when
modeling the effects of the wiped out variability. This point
is demonstrated in Figure 2.
[4] In this paper, we review the concept of block-effective

macrodispersion presented by Rubin et al. [1999] with an
application to the case of a hydraulic conductivity field
described by a Gaussian spatial covariance model. We
investigate the case of a nonergodic plume and determine
the conditions required for applicability of the theory. Next,
we suggest a quick way to obtain the block-effective
macrodispersion tensor and finally, we test numerically the
proposed methodology.

2. Block-Effective Macrodispersion Tensor

[5] Let us consider a stationary log-hydraulic conductiv-
ity field with mean mY and variance sY

2. Following Rubin et
al. [1999], we split Y into three components:

Y ðxÞ ¼ mY þ Y ðxÞ þ eY ðxÞ; ð1Þ

where Y and eY are the zero-mean large- and small-scale
fluctuations, respectively. Y represents the variability that is
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captured by the grid, and eY represents subgrid-scale
variability that is lost due to homogenization. Subsequently
we refer to Y as large-scale variability and eY as the small-
scale variability. From Nyquist’s theorem, Y is characterized
by the following covariance in Fourier space:

bCY ðkÞ ¼
bCY ðkÞ for jkij � p

li
; i ¼ 1; :::;m

0 otherwise

�
; ð2Þ

In (2), li, i = 1,. . .,m, are the dimensions of homogenized
regions, and bCY is the Fourier transform of the covariance
function of Y, [Rubin, 2003, chap. 3]. k is the vector of wave
numbers in Fourier space, and m is the number of space
dimensions considered in the problem. bCY (k) is related to
the spatial covariance CY (r) through [Rubin, 2003,
equation 2.44]:

bCY ðkÞ ¼
1

ð2pÞm=2

Z 1

�1
:::

Z 1

�1
CY ðrÞ e{ k 	 rdmr ð3Þ

where dmr = dr1,. . ., drm, and i =
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

[6] Following (2), bCY can be decomposed into two
separate components, representing the large-scale and
small-scale variability, as follows:

bCY ðkÞ ¼ bCY ðkÞ þ bCeY ðkÞ ¼ ½1� FðkÞ� bCY ðkÞ þ FðkÞ bCY ðkÞ:

ð4Þ

In (4), F(k) is the high-pass filter:

FðkÞ ¼ 0 for jkij � p
li
; i ¼ 1; :::;m

1 otherwise
:

�
ð5Þ

[7] According to (4) the variances of eY and Y satisfy:

s2Y ¼ s2
Y
þ s2eY ; ð6Þ

where s2Y and s2eY are the variances of Y and eY , respectively.
Although both s2

Y
and s2eY are smaller than sY

2, no order
relationship exists between Y and eY , and both are of the
order of the standard deviation sY [Rubin et al., 1999]. The
covariance of Y is given by:

CY ðrÞ ¼
1

ð2pÞm=2

Z p=l1

�p=l1
:::

Z p=lm

�p=lm

bCY ðkÞ e�{ k 	 r dmk; ð7Þ

Figure 1. Illustration of relevant length scales in a two-
dimensional domain: li is plume size, li is dimensions of
homogenized regions (when larger than �i), Li is domain
size, �i is grid block size.

Figure 2. This figure represents schematically the inter-
play between li and li in two dimensions. In both diagrams
the hatched area (surrounded by solid line) represents the
subdomain of k not affecting mixing, while the subdomain
not shaded contains the wave numbers that cannot be
simulated over the grid: (a) this is the case of a large plume
li > li. Here the unmodeled spatial variability is defined by
li and does not depend on li. The wave numbers contained
in the hatched, shaded area will be filtered out by the plume
scales, and no special action is needed. (b) This is the case
of a small plume li < li. Here the wave numbers that affect
mixing are defined by li, not li. As li increase, we will
observe a transition from the state described in Figure 2b to
the state described in Figure 2a.
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and the variance of Y is obtained by setting r = 0 in (7):

s2
Y
¼ 1

ð2pÞm=2

Z p=l1

�p=l1
:::

Z p=lm

�p=lm

bCY ðkÞ dmk : ð8Þ

[8] With the variability CY (k) captured by the grid, we
are left with the challenge of modeling the effects of the
small-scale variability, CeY (k). We propose to do that using
the block-effective dispersion tensor. This concept calls for
augmenting the dispersive action of the large-scale variabil-
ity with tensors representing the effects of the small-scale
variability. In doing that the distribution of the concentration
is characterized by a support-scale of size l, as a result of
the lack of resolution in describing the detailed actual
concentration distribution at scales smaller than l (this issue
is also discussed by Wang and Kitanidis [1999]).
[9] For a complete perspective, let us consider the case

where none of the variability is captured over the grid, and
its effects are modeled entirely through a macrodispersion
tensor. The tensor in this case assumes the form [Dagan,
1989]:

D*ijðtÞ ¼
U2

ð2pÞm=2

Z t

0

Z 1

�1
:::

Z 1

�1
e�{ k1Ut

�
	 di1 �

k1ki

k2

� �
dj1 �

k1kj

k2

� � bCY ðkÞ dk1:::dkm
i
dt;

i; j ¼ 1; :::;m ð9Þ

where the ensemble average of the velocity, U, is in the x1
direction, and d is the Kronecker delta. Note that (9) is
limited to small variance of the log conductivity, i.e., sY2 < 1.
Rubin et al. [1999] (see equation (38)) conclude that the
dispersion tensor representing the effects of the small-scale
variability, or in other words, the variability which is wiped
out, is given by:

eDens
ij ðtÞ ¼ D*ijðtÞ �

U2

ð2pÞm=2

Z t

0

Z p
l1

� p
l1

:::

Z p
lm

� p
lm

e�{ k1Ut
"

	
�
di1 �

kik1

k2

��
dj1 �

kjk1

k2

� bCY ðkÞ dk1::: dkm

#
dt: ð10Þ

This derivation, similar to (9), is limited to sY
2 < 1.

[10] In (10), the superscript ‘‘ens’’ intends to emphasize
that this tensor is applicable to solute plumes which are
ergodic with respect to the integral scale of the small-scale
(wiped out) variability. This is in line with the discussion by
Dagan [1991]. The idea is that nonergodic plumes are those
which are not too much larger than the integral scale of the
wiped out variability. As such, the wiped out spatial
variability affects the displacement of its centroid and
cannot be modeled only as a dispersive effect. We shall
revisit this topic in Section 3.
[11] Rubin et al. [1999] applied their results to the case of

an exponential covariance. Let us expand their work for the
case of a Gaussian covariance. The power spectrum of
the Gaussian covariance model can be determined by taking
the Fourier transform of the Gaussian covariance model,
which, in two dimensions, is [Rubin, 2003, chap. 3]

CY ðr1; r2Þ ¼ s2Y exp �p
4

r1

IY ;1

� �2

þ r2

IY ;2

� �2
" #( )

; ð11Þ

where r is the separation distance, leading to

bCY ðk1; k2Þ ¼
2s2Y IY ;1 IY ;2

p
exp � 1

p
ðk21 I2Y ;1 þ k22 I

2
Y ;2Þ

� �
; ð12Þ

where IY,1 and IY,2 are the longitudinal and transverse log
transmissivity integral scales, respectively. Substituting (12)
into (10) and solving for i = j = 1 as well as i = j = 2, we
obtain the longitudinal and transverse components of the
block-effective macrodispersion tensor for the Gaussian
covariance model as follows:

eDens
11 ðtÞ ¼ D*11ðtÞ �

4s2YUIY ;1IY ;2
p2

Z p
l1

0

sinðk1UtÞ
k1

e
�I2

Y ;1
k2
1

p

	
Z p

l2

0

1� k21
k21 þ k22

� �2

e
�I2

Y ;2
k2
2

p dk2

" #
dk1; ð13Þ

and

eDens
22 ðtÞ ¼ D*22ðtÞ �

4s2YUIY ;1IY ;2
p2

Z p
l1

0

k1 sinðk1UtÞe
�I2

Y ;1
k2
1

p

	
Z p

l2

0

k22

ðk21 þ k22 Þ
2
e
�I2

Y ;2
k2
2

p dk2

" #
dk1: ð14Þ

[12] D*11(t) andD*22(t) in (13) and (14) are for the Gaussian
covariance case and are given by

D*11ðtÞ ¼
4s2YUIY ;1IY ;2

p2

Z 1

0

sinðk1UtÞ
k1

e
�I2

Y ;1
k2
1

p

	
Z 1

0

1� k21
k21 þ k22

� �2

e
�I2

Y ;2
k2
2

p dk2

" #
dk1; ð15Þ

D*22ðtÞ ¼
4s2YUIY ;1IY ;2

p2

Z 1

0

k1 sinðk1UtÞe
�I2

Y ;1
k2
1

p

	
Z 1

0

k22

ðk21 þ k22 Þ
2
e
�I2

Y ;2
k2
2

p dk2

" #
dk1: ð16Þ

In the isotropic case, IY,1 = IY,2 = IY, closed form results for
(15) and (16) are given by:

D*11ðtÞ ¼
UIY

p2 t03

	
�
4� 3p t02 þ 2 �2þ p t02

� �
:exp �p t02

4

� �
þ p2 t03 Erf

ffiffiffi
p

p
t0

2

� ��
;

ð17Þ

and

D22*ðtÞ ¼
UIY

p2 t03
�4þ 4 exp �p t02

4

� �
þ p t02

� �
; ð18Þ

where t0 = t U/IY is dimensionless time.
[13] Figure 3 depicts the longitudinal block-effective dis-

persion coefficient (eD11
ens ) as a function of travel time, and as

a function of l. The time dependence of these coefficients is
a well-documented effect [Dagan, 1984; Rubin, 2003,
chaps. 8 and 10; Rubin and Bellin, 1994]. The scale l plays,
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as one would expect, a prominent role in determining the
magnitude of these coefficients. As l increases, a larger part
of the variability is wiped out, and coefficients increase in
magnitude, to compensate for this loss. As l increases and
more variability is wiped out, the integral scale of the wiped
out variability increases as well, and with it the time to reach
the large time, asymptotic level. However, for l values that
can be expected in applications, which are of the order of IYor
less, the time to asymptotes is quite short, and the asymptotic
limit can be used throughout the simulation. We also note the
different patterns of eD11

ens imparted by the two types of spatial
covariances. This is an outcome of the different distributions
of variability between smaller and larger scales which
characterize these covariances, as shown in Figure 4.
[14] The large-time asymptotic limit of the longitudinal

ensemble average block-scale macrodispersion coefficient is
given by

eDens;1
11 ¼ D*

;1
11 � U2

Z 1

0

CY ðUt; 0Þ dt ¼ s2YUIY ;1 � s2
Y
UIY ;1

ð19Þ

where

IY ;1 ¼
1

s2
Y

Z 1

0

CY ðr; 0Þ dr ð20Þ

is the longitudinal integral scale of Y . From (19) we note
that the asymptotic limit of eD11

ens can be easily determined
from CY, using equations (8) and (20). Closed form
expressions for IY and s2

Y
for both the exponential and

Gaussian covariance models are provided in Appendix A,
allowing a quick computation of (19). In the case of a two-
dimensional isotropic Gaussian covariance,

eDens;1
11 ¼ s2Y IYU 1� erf

ffiffiffi
p

p

l

� �� �
ð21Þ

where we assumed l1 = l2 = l. For l ! 1, i.e., when the
homogenized regions are infinitely large, eD11

ens ,1
is equal to

sY
2IYU, the well known result for the large-time asymptotic

limit of macrodispersion [Dagan, 1984] [see also Rubin,
2003, chaps. 8 and 10].

3. Applications

[15] eDij
ens are obtained by ensemble averaging, and as

such, are applicable for deterministic prediction only at the
limit where space and ensemble averaging over Y coincide.
A solute body that disperses with eDij

ens must satisfy
conditions which are investigated below. Our discussion
follows that of Dagan [1991] which investigated the limits
of applicability of (9). In that work solute bodies that
disperse with Dij

* were referred to as ergodic. The notable
difference between the work of Dagan [1991] and the
analysis below is that here we evaluate ergodicity with
respect to bCeY (k), and not with respect to bCY (k).
[16] Let us consider the case of an instantaneous release of

solute with constant concentration, C0, within the volume,
V0, which extends over the thickness of the aquifer, with A0,
which is centered at the origin, representing the horizontal
projection of V0. The spreading of the resulting plume can
be described through its spatial moments

RiðtÞ ¼
1

M0

Z
Cðx; tÞxidx;

SijðtÞ ¼
1

M0

Z
Cðx; tÞ

�
xi � RiðtÞ

�
	 xj � RjðtÞ
� �

dx; ð22Þ

where M0 = n C0A0 is the total mass of solute released into
the aquifer per unit of thickness, Ri, i = 1,2 is the i-th
component of the trajectory of the plume’s centroid R,
C(x, t) is the average concentration over the aquifer’s
thickness, and Sij, i, j = 1, 2 are the second-order spatial
moments. For a plume of limited size, the moments in (22)
are not deterministic, and can only be characterized by their
statistical moments. The actual spatial moments are

Figure 3. The longitudinal ensemble average block-scale
macrodispersion as a function of l (marked on each curve)
and dimensionless travel time with IY,1 = IY,2 = IY and l1 =
l2 = l for a Gaussian covariance model, (13), and an
exponential covariance model (equation (42) of Rubin et al.
[1999]).

Figure 4. Variance of the small-scale fluctuations of the
exponential and Gaussian covariance models with IY,1 =
IY,2 = IY, and l1 = l2 = l.
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expected to differ from their expected values. In the case of
uniform in the average flow, the expected value of the
centroid’s displacement is given by:

hRiðtÞi ¼ di1Ut ð23Þ

while the second moments satisfy [Kitanidis, 1988; Dagan,
1991]:

hSijðtÞi ¼ Sijð0Þ þ XijðtÞ � RijðtÞ; ð24Þ

where Sij(0) is the second moment of V0 about its centroid,
Xij(t) is the particle displacement variance-covariance
tensor, and Rij is the variance-covariance tensor of R.
Inasmuch as D*

ij = 1/2 dXij(t)/dt, the plume becomes ergodic
when Rij(t) = 0, and the variance of Sij(t) is equal to zero
[Rubin, 2003, sect. 10.3]. At the first-order approximation
in sY

2, Rij assumes the following form [Dagan, 1991]:

RijðtÞ ¼
1

A2
0p

Z
A0

Z
A0

Z 1

�1

Z 1

�1

cos k1 ða1 � b1Þ þ k2 ða2 � b2Þ½ � 1� cosðk1UtÞ½ �
k21

	 d1i �
k1ki

k2

� �
d1j �

k1kj

k2

� � bCY ðk1; k2Þ dk1 dk2 d2a d2b;

ð25Þ

wherea= (a1,a2),b= (b1,b2), and k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. Furthermore

Xij(t) is given by [Dagan, 1989]

XijðtÞ ¼
1

p

Z 1

�1

1� cosðk1tUÞ
k21

Z 1

�1
d1i �

k1ki

k2

� �
d1j �

k1kj

k2

� �
	 bCY ðk1; k2Þ dk1 dk2: ð26Þ

[17] Following the same procedure employed by Dagan
[1991], coupled with (5), a relationship analogous to (24),
only applicable to a solute body which disperses due to the
action of eY only, is:

heSijðtÞi ¼ eXijðtÞ � eRijðtÞ; ð27Þ

where

eXijðtÞ ¼ XijðtÞ �
1

p

Z p
l1

� p
l1

1� cosðk1tUÞ
k21

	
Z p

l2

� p
l2

d1i �
k1ki

k2

� �
d1j �

k1kj

k2

� �bCY ðk1; k2Þ dk1 dk2 ð28Þ

and

eRijðtÞ ¼ RijðtÞ �
1

A2
0p

Z
A0

Z
A0

Z p
l1

� p
l1

Z p
l2

� p
l2

	 cos k1 ða1 � b1Þ þ k2 ða2 � b2Þ½ � 1� cosðk1UtÞ½ �
k21

	 d1i �
k1ki

k2

� �
d1j �

k1kj

k2

� �bCY ðk1; k2Þ dk1 dk2 d2a d2b:

ð29Þ

Let us now define the nonergodic dispersion tensor:

eDeff
ij ðtÞ ¼ 0:5

dheSijðtÞi
dt

: ð30Þ

[18] eDij
eff is of limited value in applications, since

nonergodic plumes are expected to show different patterns
of evolution. Small plumes are affected significantly by
local patterns of spatial variability, and are less amenable
to description using dispersion coefficients. However, we
can use this concept in order to determine the conditions
under which eDij

eff ! eDij
ens . This is important because it will

allow us to determine the conditions under which
the plume becomes ergodic with respect to the subgrid
variability, and hence is useful for grid design. Our
analysis is focused on A0 as representative of the plume’s
dimensions. Although in principle A0 represents the
plume’s initial dimensions, we have established (see
Figure 3) that the pre-asymptotic regime of eDij

ens is
relatively short, and hence A0 can be viewed as generally
representative of the plume’s scales.
[19] Closed-form expressions for eD11

eff
and eD22

eff
for the

case of an exponential covariance are provided in Appendix
B, for A0 = l1 � l2, where l1 and l2 are in the x1 and x2
directions, respectively. Inspection of (28) and (29) reveals
that eDij

eff (t) ! 0 as li ! 0, since variations of all scales are
reproduced on the grid. On the other hand as li increases,eDij
eff (t) approaches Dij

eff (t), because none of the hydraulic
property variations are captured on the grid.
[20] Figure 5 shows the ratio between eD11

eff ,1 andeD11
ens ,1

, the large-time asymptotic limits of eD11
eff

and eD11
ens

,
as a function of l2 for various values of l = l1 = l2. This
diagram is useful for determining the conditions that warrant
the use of eD11

ens
. If the difference is large, li can be

reduced, resulting in a larger value of l2/l2, so that eD11
eff ,1/eD11

ens ,1 is close to its ergodic limit of 1. We have found
that when the large-time asymptotic limits of the two
coefficients are close, they are also close at early times.
As l2/l2 increases, eD22

ens
-eD22

eff
declines to zero faster

than eD11
ens ,1-eD11

eff ,1, such that when the use of eD11
ens

is
warranted, the use of eD22

ens
is warranted, as well.

[21] Figure 5 shows that for l2/l>1.5, eD11
ens ,1 is very

close to eD11
eff ,

,1 irrespective of l/IY. For l2/l = 1.5 the relative
difference between the two is less than 2.6%, for the
exponential covariance model (Figure 5a) and 3.5% for
the Gaussian covariance model (Figure 5b). This suggests
that the plume becomes ergodic with respect to the wiped
out variability when it is about 50% wider than l. Under
this condition, the effects of the subgrid variability can
be modelled as Fickian dispersion. In other words, the
wiped out variability can be accounted for using a
dispersive flux, with the dispersion coefficient given byeDij
ens .
[22] Figure 6 extends Figure 5 to facilitate applications. It

shows l2/IeY as a function of l/IY for different l2/IY ratios. It
shows that the transverse dimension of the plume is
generally quite large compared to the integral scale of the
small-scale fluctuations. That partially explains the results
shown in Figure 5. The shaded lines in Figure 6 correspond
to l2/l = 1.5, which was found in Figure 5 to provide a safe
definition of the ergodic limit. Thus the regions above the
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shaded lines define the range of scale where the eDij
ens theory

is applicable.

4. Numerical Testing

[23] In this section we report about numerical testing ofeDij
ens . We will limit our test to cases where l2 is sufficiently

large compared to l2 to make the eDij
ens concept applicable.

The general plan is to simulate transport over a fine grid,
such that spatial variability is captured in its entirety,
followed by coarsening of the grid, and employing eDij

ens to
account for the lost variability. More specifically, our goal is
to test our theory for l > �, and with that establish our
ability to relax the link between the dimensions of
homogenized regions and grid block dimensions.
[24] Numerical simulations are performed on planar flow

in a heterogeneous domain characterized by an isotropic,

exponential spatial covariance. The grid blocks are squares
of dimension � � l. Unconditional realizations of the log
conductivity fields are generated through HYDRO_GEN,
the generator of correlated random functions developed by
Bellin and Rubin [1996]. The domain is 48 IY long and 60 IY
wide. Solute is released instantaneously over an area A0

which is assumed rectangular with sides of length l1 and l2
in the longitudinal and transverse directions, respectively.
Simulations are conducted with l1 = IY and several
transverse dimensions, l2, to simulate plumes of different
sizes.

4.1. Fine-Grid Generation

[25] To make the numerical results for different values of
l insensitive to numerical errors introduced by the flow
solver, in the first set of simulations the numerical grid
spacing is set to �1 = �2 = � = 0.25 IY, following
previously established standards [Bellin et al., 1992; Chin,
1997]. Numerical experiments conducted by several authors
[e.g., Ababou et al., 1989; Bellin et al., 1992; Chin, 1997]
have shown that higher wave numbers have a negligible
dispersive effect. This is also confirmed by the fact that for
l = 0.25 IY, the asymptotic large-time limit of the effective
block-scale macrodispersion coefficient, eD11

eff ,1/(U IY sY
2)

(B5), is equal to 0.003, a value much smaller than D*11(t!
1), (equation (9)).
[26] The log-hydraulic conductivity is generated at the

center of the numerical grid blocks, and the flow solver is
based on Galerkin’s finite element scheme with triangular
elements obtained by splitting the square in two parts. The
particle-tracking methodology to solve for transport is
discussed in Appendix C.

4.2. Fine-Grid Results

[27] Figure 7 compares numerical and analytical results
for the expected value of the longitudinal spatial moments
hS11i (see equation (22)) for several values of l as a

Figure 5. Ratio between the asymptotic large-time limits
of the longitudinal effective, eD11

eff , and ensemble average,eD11
ens , block-scale macrodispersion coefficients versus l2/l

for l1! 0 and several values of l = l 1 = l 2. (a) For the
exponential isotropic covariance model (A1). (b) For the
Gaussian isotropic model (11).

Figure 6. l2/IeY as a function of l/IY for several values of
l2/IY (marked on the curves) for the exponential isotropic
covariance (A1) (solid line), and the Gaussian isotropic
covariance (11) (dashed line). The shaded lines correspond
to l2/l = 1.5. The regions above the lines can be assumed to
safely satisfy the ergodic limit eD11

ens = eD11
eff .
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function of time. The grid blocks are fixed at � = 0.25 IY,
irrespective of l. The results are for sY

2 = 0.2 and l2 = 10 IY.
Unresolved small-scale variability is modeled through eDii

ens

(equations (42) and (43) of Rubin et al. [1999]), since, as
shown in Figure 5, the smallest l2/l, which is equal to 1.7, is
large enough such that eD11

eff is close to eD11
ens . These large l

results resemble both the analytical solution and the
numerical fine-grid solution, with differences that increase
with l, but do not exceed 3.5% for the unrealistically high
l = 6 IY at large times. For sY

2 = 1 these differences are 5.2,
7.4 and 5 times larger than with sY

2 = 0.2, for l/IY = 2, 4 and
6, respectively, suggesting a linear increase of the difference
with sY

2. These differences are due to the inability of eDii
ens to

capture higher-order terms at scales smaller than l, and the
assumed independence of small- and large-scale fluctua-
tions in (4), whose effects are accounted for in the fine-grid
simulation.

4.3. Effect of Grid Block Size on Numerical Error

[28] Our previous discussion focused on the eDij
ens concept

and on its ability to compensate for the wiped out
variability. In particular we establish the order relationship
between l2 and l2 (see Figure 1) needed to secure its
applicability. The issue we raise now is how much we can
increase � while maintaining the applicability of eDij

ens . In
this regard, one should be concerned about being able to
capture bCY (k) accurately. Our discussion is motivated by
noting that bCY

(k) is characterized by IY > IY. It is common
to employ a grid block scale which is of the order of
�0.25 IY, and hence with IY > IY, there is some latitude to
work with large �. This effect is demonstrated in Figure 8,
which shows the increase of IY corresponding to the
increase in l. Figure 9 compares the average longitudinal

moments of S11 corresponding to different l values and a
fixed l2. We maintained a constant ratio �/IY = 0.25 (this
obviously translates to different �/IY ratios, as shown in
Figure 9, as can be verified with the aid of Figure 8).
[29] Figure 9 shows the relative difference between

hS11i computed with different l as shown and � =
0.25 IY , and hS11i computed using fine grid � = 0.25 IY
and l ! 0. The relative difference shown in Figure 9 is
�S11(t) = [hS11 (t,� = 0.25 IY ,l)i - h S11(t,� = 0.25 IY, l!
0) i]/hS11(t, � = 0.25 IY, l ! 0)i. We note that in the range
of values investigated, �S11 is rather small: for tU/IY > 0.25,
its maximum values are 4.7%, 7.6%, and 9.9% for l/IY = 2,
4 and 6, respectively. To separate errors associated witheDij
ens from numerical error due to large �, we repeated the

analysis with the moments shown in Figure 7, which are
obtained by using the same refined grid with � = 0.25 IY,

Figure 7. Unconditional hS11i for different l for a trans-
verse source size of l2/IY = 10. Diamonds indicate the
moments obtained with the fine-grid simulation. The other
symbols indicate numerical moments obtained by perform-
ing transport experiments on large-scale velocity fields and
accounting for unresolved small-scale variability with the
ensemble average block-scale macrodispersion. The first-
order solution for hS11i, (B1), is indicated with a solid line.
In all cases sY

2 = 0.2, l1 = l2 = l, and � = 0.25 IY.

Figure 8. The ratio of the integral scale of Y to that of Y as
a function of l for both exponential (A1) and Gaussian (11)
spatial correlations of hydraulic conductivity with IY,1 =
IY,2 = IY and l1 = l2 = l.

Figure 9. Relative difference, �S11, for several block
sizes and values of l. Numerical simulations are performed
choosing � in such a way as to maintain constant the ratio
between � and IY , the integral scale of the large-scale
spatial variability. In all cases l1 = l2 = l, �1 = �2 = �,
sY

2= 0.2 and l2 = 10 IY.
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irrespective of l. The resulting �S11 are smaller than in the
previous case. Specifically, the maximum values of �S11
for l/IY = 2, 4 and 6 are 2.5%, 2.7%, and 4.1%,
respectively. The portion of the differences shown in Figure
9 exceeding these values are the consequence of numerical
error, which for Galerkin’s flow solver is proportional to the
grid size, and should not be attributed to our method. We
conclude that for small l the numerical grid can be
designed with the aid of Figure 8 such as to respect the
condition � = 0.25IY , while for large l a smaller grid size
is needed to limit numerical error of the flow solver, and
inspection of Figure 8 with IY = 4� provides the value of l
corresponding to the selected �.

5. Summary and Conclusions

[30] This paper develops and tests a theory for modeling
the effects of subgrid-scale variability on solute mixing,
using block-effective macrodispersion coefficients, follow-
ing ideas presented by Rubin et al. [1999]. The fundamental
question we consider in this paper is how to allow flexibility
in numerical grid design, on the one hand, without
discounting the dispersive action of the unmodeled
variability, on the other. Our approach allows analysis of
grid spacing and elimination of unnecessary high grid
density. It is formally applicable to mild heterogeneity,
sY
2 � 1. The block-effective macrodispersion coefficients

depend, in general, on the grid-scale and the plume scale,
and they are derived based on Nyquist’s theorem which
allows separation between the length scales which affect
mixing and those which affect advection. When the ratio
between the plume’s lateral dimensions and the block’s
scales exceeds �1.5, the dependence on the plume’s scale
vanishes. When this ratio is met, the plume is ergodic with
regard to the integral scale of the wiped out, subgrid-scale
heterogeneity, and the block-effective coefficients can in
fact be considered as deterministic descriptors of the effects
of the wiped out variability on mixing.
[31] Unlike the case of macrodispersion coefficients, the

block effective ones reach their asymptotic limit quite early,
for typical plume and grid scales. This implies that in cases
where the block effective macrodispersion coefficients are
applicable, they are uniform, provided that blocks of equal
dimensions are employed. However, it is reasonable to
expect that the numerical grids be designed adaptively [cf.
Durlofsky et al., 1997], which allows variable li and �i. In
this case, grid blocks of similar dimensions will be
characterized by different eDij

ens , depending on the dimen-
sions of the homogenized regions. Our method allows a
systematic analysis of the relationships between the
numerical grid block’s dimensions �i (i = 1,.., m) and the
dimensions of uniform regions li. In applications, this
relationship can be used in different ways. The first is to
select �i given li. Alternatively, it can be used to select li
for given �i, when �i are determined such as to minimize
numerical error, or to limit the computational burden. In
both cases the plume’s scales li need to be considered as
well. For example, following Figure 5, we note that in
planar flow situations we should adhere to a ratio l2/l > 1.5,
in order to be able to model effectively the effects of the
wiped out variability using eDij

ens . Once the appropriate l is
selected, values for eDij

ens can be determined using Figure 3
or equation (10). Closed form solutions for planar flow for

the Gaussian and exponential covariance models of Y are
provided as well.

Appendix A: Variance and Integral Scale of the
Large-Scale Variability

[32] Let us consider first the two-dimensional exponential
isotropic covariance model

CY ðr1; r2Þ ¼ s2Y e�r 0 ; r 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22
I2Y

s
ðA1Þ

with the following power spectrum:

bCY ðk1; k2Þ ¼
s2Y I2Y

½1þ ðk21 þ k22 ÞI2Y �
3=2

: ðA2Þ

Substituting (A2) into (8), and assuming l1 = l2 = l, we
obtain after integration:

s2
Y
¼ 2

p
cot�1 �

p2I2Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p72I2Y þ �2

q� �
�2
Y : ðA3Þ

[33] The integral scale of Y along the direction x1 is
obtained by substituting (7) into (20), and integrating:

IY ;1 ¼
p2I2Y

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2I2Y þ l2

q
cot�1 l

I2
Y
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2I2Y þ l2

q� � ðA4Þ

[34] The corresponding expressions for the isotropic
Gaussian covariance model, which is obtained from (11)
assuming IY,1 = IY,2, are as follows:

s2
Y
¼ erf

ffiffiffi
p

p
IY

l

� �2
s2Y ðA5Þ

and

IY ;1 ¼ erf

ffiffiffi
p

p
IY

l

� ��1

IY : ðA6Þ

Appendix B: Effective Small- and Large-Scale
Plume Moments and Macrodispersion Coefficients

[35] We consider here a two-dimensional aquifer with
constant thickness and spatial correlation of the hydraulic
conductivity described by the model (A1). For an instanta-
neous release of solute with constant concentration, C0,
within the volume, V0, extending over the entire thickness,
b, of the aquifer and with rectangular horizontal projection
A0 = l1 � l2 centered at the origin of the coordinate system,
the effective longitudinal second-order moment is given by

hS11ðtÞi ¼ S11ð0Þ þ X11ðtÞ �
64 s2Y I

2
Y

l01
2
l02
2 p

Z 1

0

Z 1

0

k 02
2
1� cosðk 01 t0Þ
� �

sin½k
0
2
l0
2

2
�
2
sin½k

0
1
l0
1

2
�
2

k 01
4
k 01

2 þ k 02
2

� �2
1þ k 01

2 þ k 02
2

� �3
2

dk 02 dk
0
1 ðB1Þ
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where X11 is the longitudinal particle displacement variance
obtained by Dagan [1984] and is reproduced here for
convenience:

X11ðtÞ
s2Y I

2
Y

¼� 0:231647þ 2 t0 þ 3
ð1þ t0Þ e�t0 � 1

t02
þ Eið�t0Þ

� �
� 3 lnðt0Þ: ðB2Þ

Here and throughout Appendix B, t0 = tU/IY is the dimension-
less time, l0i = li/IY, and k

0
i = kiIY, i = 1, 2.

[36] Similarly, the large-scale effective longitudinal sec-
ond-order moment assumes the following form

hS11ðtÞi ¼ X 11ðtÞ �
64 s2Y I

2
Y

l01
2
l02
2 p

Z p
l0
1

0

Z p
l0
2

0

	
k 02

2
1� cosðk 01 t0Þ
� �

sin½k
0
2
l0
2

2
�
2
sin½k

0
1
l0
1

2
�
2

k01
4
k 01

2 þ k 02
2

� �2
1þ k 01

2 þ k 02
2

� �3
2

dk 02 dk
0
1; ðB3Þ

where

X 11ðtÞ ¼ 2 s2Y I2Y

Z p
l0
1

0

2þ 3 k 01
2

� �
p2 þ 3 k 01

2
1þ k 01

2
� �

l0
2
2

k 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p2

l0
2
2

q
l0
2 p2 þ k 01

2 l0
2
2

� �
8><>:

� 3

p
1þ k 01

2
� �

cot�1 k 01
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p
l0
2

� �2
s

l0
2

24 35 9=;
	
1� cosðk 01 t0Þ
� �

k 01
dk 01 ðB4Þ

is the large-scale component of the variance of the particle
displacement. It represents the spreading of an ergodic
plume in the two-dimensional large-scale log conductivity
field Y . In (B3) and (B4), l0i = li/IY, for i = 1, 2.
[37] The effective longitudinal small-scale macrodisper-

sion coefficient, eD11
eff , assumes the following form

eDeff
11 ðtÞ ¼

1

2

d

dt
hS11ðtÞi �

d

dt
hS11ðtÞi

� �
¼ D

eff
11 ðtÞ � D

eff

11 ðtÞ; ðB5Þ

where

D
eff
11 ðtÞ ¼ D*11ðtÞ �

32 s2Y U IY

l01
2
l02
2 p

Z 1

0

Z 1

0

k 02
2
sinðk

0
2
l0
2

2
Þ
2
sinðk

0
1
l0
1

2
Þ
2
sinðk 01 t0Þ

k 01
3

k 01
2 þ k 02

2
� �2

1þ k 01
2 þ k 02

2
� �3

2

dk 02 dk
0
1; ðB6Þ

with D11* representing the longitudinal dispersion coefficient
of an ergodic plume [Dagan, 1984]

D*11ðtÞ
s2Y U IY

¼
�6 1þ t0ð Þ þ exp t0ð Þ 6þ t02 �3þ 2 t0ð Þ

h i
2 exp t0ð Þ t03

: ðB7Þ

[38] Similarly, the longitudinal large-scale effective dis-
persion coefficient assumes the following form

D
eff

11 ðtÞ ¼ D
ens

11 ðtÞ �
32 s2Y U IY

l01
2
l02
2p

Z p
l0
1

0

Z p
l0
2

0

k 02
2
sinðk

0
2
l0
2

2
Þ
2
sinðk

0
1
l0
1

2
Þ
2
sinðk 01 t0Þ

k 01
3 k 01

2 þ k 02
2

� �2
1þ k 01

2 þ k 02
2

� �3
2

dk 02 dk
0
1; ðB8Þ

where the longitudinal large-scale ergodic dispersion
coefficient is given by

D
ens

11 ðtÞ
s2Y U IY

¼
Z p

l0
1

0

2þ 3 k 01
2

� �
p2 þ 3 k 01

2
1þ k 01

2
� �

l0
2
2

k 01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p2

l02
2

q
l0
2 p2 þ k 01

2 l0
2
2

� �
264

� 3

p
1þ k 01

2
� �

cot�1 k 01
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p2

l0
2
2

s
l0
2

 ! #
	 sinðk 01 t

0Þ dk 01: ðB9Þ

[39] Similar expressions can be obtained in the transverse
direction:

eDeff
22 ðtÞ ¼ D

eff
22 � D

eff

22 ; ðB10Þ

where

D
eff
22 ðtÞ ¼ D*22ðtÞ �

32 s2Y U IY

l01
2
l02
2 p

Z 1

0

Z 1

0

	
sinðk

0
1
l0
1

2
Þ
2
sinðk

0
2
l0
2

2
Þ
2
sinðk 01 t0Þ

k 01 k 01
2 þ k 02

2
� �2

1þ k 01
2 þ k 02

2
� �3

2

dk 02 dk
0
1; ðB11Þ

with

D*22ðtÞ
s2YUIY

¼
et

0 �6þ t0
2

� �
þ 2 3þ t0 3þ t0ð Þð Þ

2 et
0
t0
3 : ðB12Þ

Furthermore, the large-scale effective transverse macrodis-
persion coefficient is given by

D
eff

22 ¼ D
ens

22 ðtÞ �
32 s2Y U IY

l01
2
l02
2 p

Z p
l0
1

0

Z p
l0
2

0

	
sinðk

0
1
l0
1

2
Þ
2
sinðk

0
2
l0
2

2
Þ
2
sinðk 01 t0Þ

k 01 k 01
2 þ k 02

2
� �2

1þ k 01
2 þ k 02

2
� �3

2

dk 02 dk
0
1; ðB13Þ

with

D
ens

22 ðtÞ
s2Y U IY

¼
Z p

l0
1

0

1þ 3 k 01
2

� �
p

cot�1 k 01 l
0
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p2

l0
2
2

s !24
�

k 01 3p2 þ 1þ 3 k 01
2

� �
l0
2

2
� �

l0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k 01

2 þ p2

l02
2

q
p2 þ k 01

2 l0
2
2

� �
0B@

1CA
375 sinðk 01 t0Þ dk 01:

ðB14Þ

Appendix C: Particle-Tracking Methodology

[40] Following the Lagrangian approach, the total mass
per unit of thickness, m0 = M0/b = n C0A0, of solute with
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constant concentration, C0, released instantaneously within
the volume V0 = A0b, where b is the thickness of the
formation, is split into a large number, NP, of noninteracting
particles. Each particle is tracked according to the following
scheme:

X n
p;iðtÞ ¼ X n

p;iðt ��tÞ þ uni ðXn
pðt ��tÞÞ�t þ�X n

B;p;iðtÞ; ðC1Þ

where Xp,i
n , i = 1,2 is the i-th component of the trajectory of

the particle p in the realization n of the log conductivity
field, ui

n is the ith component of the large-scale velocity field
obtained numerically by solving the flow equation, �t is the
time step, and �XB;p,i

n is the i-th component of the Brownian
motion introduced to model block dispersivity and pore-
scale dispersion, if present,

�X n
B;p;iðtÞ ¼ �np;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 eDens

ii ðtÞ þ Dd;i

h i
�t

r
: ðC2Þ

In (C2), Dd,i is the pore-scale dispersion tensor and �p,i
n is a

random variable normally distributed with zero mean and
unit variance. Furthermore, �t is chosen such that both
�XB;p

n and �Xn = Un (Xp
n (t-�t)) �t are much smaller than

the grid block size. In our simulations, this is accomplished
with �t/(U IY) = 0.05 and 0.01 for sY

2 = 0.2 and sY
2 = 1,

respectively. Initial spacing between the particles is 0.05 IY
in both the longitudinal and transverse directions. Pore-scale
dispersion is neglected in our simulations.
[41] The spatial moments are computed as follows

Rn
i ðtÞ ¼

1

NP

XNP
p¼1

X n
p;iðtÞ;

SnijðtÞ ¼
1

NP

XNP
p¼1

X n
p;i tð Þ � Rn

i ðtÞ
h i

X n
p;j tð Þ � Rn

j ðtÞ
h i

: ðC3Þ

To obtain a representative sample of the statistical
population of all possible plume moments, the transport
experiment is repeated in MC independent Monte Carlo
realizations of the log conductivity field. The statistics of
the plume moments

hRiðtÞi ¼
1

MC

XMC

n¼1

Rn
i ðtÞ; hSijðtÞi ¼

1

MC

XMC

n¼1

SnijðtÞ; ðC4Þ

RijðtÞ ¼
1

MC

XMC

n¼1

h
Rn
i ðtÞ � hRiðtÞi

i
Rn
j ðtÞ � hRjðtÞi

h i
;

var½SijðtÞ� ¼
1

MC

XMC

n¼1

SnijðtÞ � hSijðtÞi
h i2

ðC5Þ

are then computed. The ergodic second-order moments Xij

are computed by substituting the moments hSiji and Rij

obtained by (C4) and (C5) into (24). The number of Monte
Carlo realizations is chosen to control the convergence of
var[Sij], the highest order moment considered, as suggested
by Bellin et al. [1992].
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