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Topological entanglement is an ubiquitous feature of many biological as well as artificial polymers
and fibers. While the equilibrium properties of entangled chains have been the subject of several
studies, little is known about their out-of-equilibrium behavior. Here, we address the problem of a
stretched knotted fiber driven by a periodic force applied to one of its termini. We show that the
onset of standing waves kinetically traps the knot in spatially localized states where the amplitude
of the oscillations is maximal, and its normal diffusive dynamics is replaced by discrete jumps.

The interest for knots in the biophysics and soft mat-
ter community has grown significantly since the seminal
works of Frisch and Wasserman [1] and Delbruck [2], who
correctly conjectured that knots are ubiquitous in long
enough polymers [3]. Since then, knots have been dis-
covered in DNA [4, 5] and proteins [6–10] and have been
shown to affect both functional [11] and mechanical [12–
14] properties of biopolymers. Furthermore, the recently
demonstrated possibility of producing knotted solitons in
fluid flows [15] and electromagnetic fields [16] as well as
that of producing and controlling entangled and knotted
disclination lines in liquid crystals with and without col-
loidal suspensions [17–21] have opened new and exciting
prospects for material science.

Novel experimental techniques, e.g. microfluidics ap-
paratuses and last-generation optical tweezer devices [30–
34], have now made it possible to directly monitor and
investigate the dynamics of macromolecular systems and
knotted chains at unprecedented time resolution [12, 35–
37]. Recently, also numerical studies have focused on
the dynamics of knots on tensioned polymers in presence
of external time-dependent electric fields [29] and fluid
flows [38], as well as on the motion of knotted polymers
through nanopores or in channels [14, 39]. Of remarkable
interest is the emerging picture showing that knots can
be actively controlled through external “stimuli”, open-
ing the way to their employment in the construction of
nano-devices and artificial materials with new properties.

Furthermore the advancement in self-assembling and
biomimetic materials opens up the possibility to produce
supramolecular fibers in the nano- and micro- scale with
exciting mechanical and electronic properties, which can
host stable knots [22, 23] or even self assemble [24] or
fold themselves [25–27] into a desired knot. The study
of topological entanglement in polymers and fibers under
non-equilibrium conditions, such as in presence of an ex-
ternal driving force, is therefore a particularly promising
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FIG. 1. A snapshot of the tensioned flexible polymer. The
31 knot, the simplest possible, is zoomed in in the lower part
of the figure.

research field with many possible technological ramifica-
tions [14, 28, 29].

Inspired by these possibilities, we studied the response
of a knot to the propagation of transverse waves in a
stretched fiber. Specifically, we simulated a knotted self-
avoiding chain under tension, as illustrated in Fig. 1. In
order to consider the phenomenon in its generality we
employ a very simplified model, and investigate the be-
haviour of a fully flexible, self-avoiding chain of N = 1024
beads stretched along the X axis. Chain connectivity
and excluded volume are provided by the FENE [40, 41]
bond potential and a purely repulsive Weeks-Chandler-
Anderson (WCA) potential [42], respectively. At the
chain termini we introduced a “wall” potential, which
prevents the knot from untying by passing through one
of the ends. This term acts on all beads except for the last
3 near the chain’s ends and only in the X direction. The
two ends of the chain are restrained to move on two linear
guides parallel to Z placed in the origin and in (D0, 0, 0)
respectively. The separation D0 between the terminal
beads was chosen based on the equilibrium properties of
knotted chains under tension [12, 35, 43–46]. Specifically,

mailto:potestio@mpi-mainz.mpg.de
mailto:luca.tubiana@univie.ac.at


2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100  150  200  250  300  350  400
 0.5

 1

 1.5

 2

 2.5

 3
b

ea
d

 in
d

ex
 i

A
o

u
t/

A
in

Period T [integration time]

FIG. 2. Quasi-node positions along the chain and transmis-
sion coefficient Tf , as functions of the forcing period. Data
obtained from ∼ 106τMD long simulations, performed at 34
different oscillation periods.

we chose a separation D0 = 600σ, with σ the diameter of
the bead, so that the chain is in the Hookean regime and
that the size of the knot remains substantially constant,
〈lk〉 ∼ 28σ, while the knot diffusion time at equilibrium
is minimized. The force and diffusion time vs. exten-
sion curves are reported as Supporting Information. We
drive the first bead sinusoidally, with amplitude A = 10σ,
along the Z-axis, generating transverse waves in the XZ
plane and leave the last one free to diffuse along Z, al-
lowing us to measure easily the transmission of the wave.

The dynamics of the system is described by a Langevin
equation with a weak coupling to the solvent m/γ =

1000τMD, where τMD = σ
√
m/ε and ε is the strength

of the WCA potential. All system setup parameters and
results are reported in reduced quantities, where lengths
are expressed in units of the bead diameter σ, the bead
mass m and the WCA energy ε. The temperature is set
to kBT = ε. A detailed description of the setup, includ-
ing the equations for the energy terms implemented and
the equation of the dynamics is reported in the supple-
mentary information. The localization of the knot was
carried out using the bottom-up knot search strategy and
the Minimally Interfering closure described in Tubiana et
al. [47].

In order to relate the chain dynamics to the knot mo-
tion, we focussed our attention on the following observ-
ables of the system: the position zN of the last bead in
the XZ plane; the displacements of the beads along Z;
and the knot motion along the chain.

The chain response to the forced oscillation was moni-
tored by means of the transmission coefficient Tf , defined
as:

Tf =
|F [zN ](ωf )|

A
(1)

where F [·](ω) is the Fourier transform of a time-
dependent function, ωf is the frequency of the forced
oscillation, and A is the forcing amplitude. In analogy
with a forced damped harmonic oscillator [48], we employ

Tf to assess if ωf is close to a characteristic frequency of
the system, i.e. if the chain is resonating with the forcing.

A second measure of the chain response to the driving
dynamics is the distribution of the displacement of the
beads. Specifically, we consider the root mean square
deviation of the Z coordinate of each bead:

Σi =

√
〈(zi − 〈zi〉)2〉 (2)

Eq. 2 allows us to identify B chain beads bi, i ∈
{1, 2, · · · B} for which Σi has a local minimum. These
beads, termed quasi-nodes, are those which experience
the least vertical motion. The term was chosen in anal-
ogy with the case of an ideal standing wave: in this case,
in fact, the bi’s would identify the wave nodes by con-
struction.

In Fig. 2 we report the bead index of the quasi-nodes
and the transmission coefficient for the 34 different val-
ues of the forced oscillation period Tf = 2π/ωf that we
have investigated. Both quantities undergo abrupt jumps
for the same values of Tf . In particular, for increasing
period we observe a systematic shift of the quasi-nodes
towards the forced bead (having index 1). Also the quasi-
nodes number suddenly changes for specific Tf ’s exactly
in correspondence of a sharp peak in the transmission
coefficient.

This behavior is easily rationalized in terms of a sys-
tematic onset of standing waves for values of ωf corre-
sponding to resonating frequencies of the chain. Increas-
ing Tf and thus moving away from the resonance, these
waves degrade to an irregular motion, until a new res-
onance is encountered. The change in the number of
boundaries is due to the appearance of standing waves of
different wavelength, therefore having a different num-
ber of nodes. This effect can be seen in the bottom
panels of Fig. 3 a) and b), which show the root mean
square deviation 〈Σi〉 averaged over 12 different simula-
tions for two different periods, one just before the tran-
sition, Tf = 153τMD, and one just after, Tf = 156τMD.

In both cases 〈Σi〉 shows a steadily growing back-
ground due to the diffusion of the free end of the chain.
However, while for Tf = 153τMD 〈Σi〉 shows only rel-
atively weak oscillations, for Tf = 156τMD we observe
very pronounced peaks of comparable amplitude. This
behavior suggests that in the second case most of the
energy given to the system by the forced oscillation is
absorbed by only one mode.

The dynamics of the knot can be expected to change
when the chain motion ceases to be an irregular fluctu-
ation and turns into a standing wave. This difference is
clearly visible in the trajectory of the knot, reported in
the top panels of Fig. 3 a) and b). For Tf = 153τMD,
Fig. 3 a), the knot diffuses along the chain in a fashion
which may appear compatible with a normal diffusion,
yet the plot of the probability for a bead to be included
in the knot, reported in the bottom panel, shows this
dynamics to be distinct from a diffusive one. The prob-
ability distribution has a global maximum far from the
forced bead, due to the fact that the wave train injected
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FIG. 3. Knot trajectories and chain dynamics for four different setups. a) 31 knot, Tf = 153τMD; b) 31 knot, Tf = 156τMD;
c) 41 knot, Tf = 156τMD; d) 31 knot, noisy forcing obtained by adding 4 sub-leading oscillations to the main forcing oscillation
at Tf = 156τMD. The top panel of each plot reports the knot center trajectory from one out of several different simulations
performed for each case (the initial position of the knots is marked in blue). The bottom panels show: in red, the probability
for one bead to be included in the knot, averaged over all trajectories; in green, the root mean square deviation 〈Σi〉 averaged
over all trajectories; in gray, 〈Σi〉, averaged on each trajectory independently. All quantities have been computed over several
different trajectories (12, with 6 different knot initial position for panels a) and b); 8 with 4 different knot initial position for
panels c) and d)). Movies of part of the trajectories in panels a) and b) are provided as Supporting Information.

in the chain pushes the knot towards the free terminus
of the chain, where it is reflected back.

A second and more interesting feature is that the knot
position probability distribution shows small but not neg-
ligible oscillations, whose maxima coincide with those of
the average root mean square deviation 〈Σi〉. This fea-
ture anticipates a substantially different behavior when
the forcing period falls immediately after a resonance.

In fact, for Tf = 156τMD, Fig. 3 b), the dynamics of
the knot changes dramatically. In this case the knot is
almost trapped in specific portions of the chain, delim-
ited by pairs of consecutive quasi-nodes. As shown in the
bottom panel of Fig. 3 b), the maxima of 〈Σi〉, from now
hereafter termed anti-nodes, coincide with the maxima of
the knot position distribution. The latter features here
much sharper peaks, and is almost zero in correspondence
of the quasi-nodes. Consistently, the knot dynamics is
characterized by discrete jumps from an anti-node to a
neighboring one. The oscillations we have previously ob-
served in the position distribution for Tf = 153τMD can
thus be interpreted as the degraded peaks of the previ-
ous resonance. This interpretation is supported by the
different number of quasi-nodes measured before and af-
ter the transition. In the Supporting Information two
videos are provided, showing the different dynamics of
both the chain and the knot for the two forcing periods
under exam. A completely analogous behavior can be
observed for another knot, namely the 41, whose discrete
dynamics at the resonant frequency is reported in panel
c) of Fig. 3.

The discrete dynamics of the knot upon onset of the
standing wave is quite resilient with respect to pertur-
bations of the latter. In panel d) of Fig. 3 we re-
port the trajectory and position distribution of a 31

knot subject to a disturbed forcing, where to the res-
onant oscillations other ones are added, having lower
amplitude but close-by frequency. The forcing applied
to the system of Fig. 3 d) is in fact the sum of the
fundamental forcing (A = 10σ, Tf = 156τMD) plus
four other terms with A = σ, T = 156 ± 1.5τMD and
A = 0.1σ, T = 156 ± 2τMD. Also in this case, the con-
finement between quasi-nodes and the sharp jumps across
the latter occur as observed when only a well-defined, si-
nusoidal forcing is applied.

It is at first counterintuitive that the knot is confined in
the anti-nodes, that is, the regions featuring the highest
mobility 〈Σi〉, rather than remaining stuck in a quasi-
node, where the chain fluctuates less. The explanation
can be found in the dynamical properties of the string in
the neighborhood of a standing wave node. The latter, in
fact, is by definition a point of the wave whose amplitude
is always zero. The spatial derivative of the wave function
in those points, however, oscillates more than anywhere
else along the chain. The anti-nodes undergo the oppo-
site behavior: their position along Z oscillates the most,
but the derivative of the wave vanishes, meaning that all
neighboring points move together and, therefore, are al-
most at rest relatively to each other. As shown in Fig. 3,
the knot is then more favorably located in the anti-node
region, as the latter is globally more mobile, but locally
more stable.

This line of reasoning can be made more quantitative.
Since the length of the knot does not vary sensibly during
our simulations, we can model it as a point-like mass, m,
constrained to move along the chain (see e.g. Di Stefano
et al. [29] and Huang and Makarov [44]). We then model
the chain as an ideal, sinusoidal standing wave z, given
by z(x, t) = A sin(ωt) sin(kx), where k = (n + 1

2 )π/L,
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in accord with the fact that our chain has one fixed end
and one free end. In fact, it is a well know result [49]
that a forced oscillation, imposed at one extreme of a
tensioned string having the other end free, induces a si-
nusoidal standing wave with amplitude exponentially de-
creasing as a function of the distance from the forced
end. Since the decay length is inversely proportional to
the friction of the medium, we make use of the weak cou-
pling between our chain and the thermostat to neglect
this damping in the model we here discuss.

In absence of an external potential, the Lagrangian of
the particle constrained to move on the standing wave
coincides with its kinetic energy: L ≡ T = m/2(v2x +v2z).
The Lagrangian equations of motion lead us to:

mẍ = mvz
∂vz
∂x

=
mkω2A2

2
cos2(ωt) sin(2kx) (3)

where we made use of the definition of z(x, t) to compute
vz = ż. The time average of the force along x over an os-
cillation period and the corresponding potential of mean
force are:

〈F (x)〉 =
mkω2A2

4
sin(2kx) (4)

V (x) = −
∫ x

0

〈F (x′)〉dx′ = −mω
2A2

4
sin2(kx) (5)

As shown in Fig. 4, this effective potential has max-
ima in correspondence of the standing wave nodes, and
minima in correspondence of the anti-nodes, coherently
with the observed behavior of the knot.

FIG. 4. a) Scheme of the theoretical model used to ana-
lyze the behavior of the oscillating knotted chain. The chain
is represented as an ideal standing wave (solid blue line) on
which a point-like mass representing the knot can move (red
disc). The dashed orange line shows the position derivative
of the standing wave. b) Comparison between the potential
of mean force (Eq. 5) corresponding to a standing wave with
n = 6 nodes and the probability for one bead to be included
in the knot obtained for Tf = 156τMD.

In summary, we have shown that the dynamics of a
knot on a tensioned fiber becomes discrete when the chain
is forced to oscillate at its resonating frequency. Specifi-
cally, the knot becomes localized in the anti-nodes, that
is, the globally most mobile and locally more stable re-
gions of the chain. The motion between anti-nodes does
not occur by a slow diffusive-like motion, rather by means
of discrete jumps. Analogous behavior is observed also
for the next-to-simplest topological entanglement, the 41
knot as well as when the chain is subjected to a noisy forc-
ing oscillation. Furthermore, while in our case we consid-
ered for simplicity a chain in which the right end is free
to move along the Z axis, we expect the same behaviour
to occur in a system setup in which the right end is fixed:
in fact, the only impact the different boundary condition
would have is on the wavelength of the fundamental os-
cillation and, hence, of the resonating frequency.

These results demonstrate how the onset of an out-
of-equilibrium steady state in a knotted chain can be ex-
ploited to induce a qualitatively different steady-state dy-
namics of a knot. Potential applications may span from
the localization of topological entanglements on micro-
scopic and macroscopic fibers to their control and use for
technological purposes.
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