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Abstract We study the relation among some security parameters for vectorial Boolean functions which pre-
vent attacks on the related block cipher. We focus our study on a recently-introducedsecurity criterion, called
weak differential uniformity, which prevents the existence of an undetectable trapdoor based on imprimitive
group action. We present some properties of functions with low weak differential uniformity, especially for
the case of power functions and 4-bit S-Boxes.
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1 Introduction

Differential and linear attacks are major cryptanalytic tools which apply to most cryptographic algorithms.
Therefore, functions which guarantee a high resistance to these attacks have been extensively studied. In par-
ticular, those with low differential uniformity and high non-linearity, e.g. Almost Perfect Nonlinear (APN)
functions or Almost Bent (AB) functions, have received a lotof attention. Since in the design of a block
cipher an invertible S-Box of even dimension is usually needed, there is strong interest in non-linear permu-
tations. However, we know examples of APN permutations in even dimension only for dimension 6, for more
details see [6]. For the highly interesting cases of dimension 4 and 8, the cipher designer will certainly use
4-differentially uniform S-Boxes, but she will also look atother security criteria, if applicable, although it is
not obvious which. Besides, even a 4-differentially uniform S-Box can hide a trapdoor in the related cipher,
if not carefully chosen. Algebraic trapdoors can be very dangerous, especially when they are undetectable
[25].
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We are investigating the security criterion introduced recently in [11], called weak differential uniformity.
As shown in [11], any cipher (with a prescribed structure) possessing a weakly-APN vectorial Boolean
function as S-Box cannot be successfully attacked using a trapdoor based on imprimitive group action.
Indeed, ciphers suffering from such a trapdoor have been built in [24] and might be used as standards without
anyone realizing the trapdoor existence. So, a designer would have advantage in choosing an invertible S-
Box which is simultaneously weakly APN and 4-differentially uniform, which exists for dimension 4 and 8
(and actually for any dimension). Results in [11] are generalized on any field in [1], where again the notion
of weakly APN plays an important security role.

In Section 2 we recall the attack [24] that can be mounted on anAES-like cipher when an imprimi-
tive group action is present. We recall also how a weakly APN S-Box would make this attack ineffective
[11], motivating thus this security criterion. In Section 3we present some first results on weak differen-
tial uniformity. In Section 4 we specialize to the case of monomial functions, where we see an interesting
connection with the property of having the image of a function derivative as an affine space, which is an
unexpected weakness within the underlying algorithms (seefor instance [10,12]). In Section 5 we relate
the weak differential uniformity with other algebraic properties of vectorial Boolean functions, in particu-
lar with the degrees of both the function components and the function derivative components. We can thus
improve some results given in [18] and give a formal proof of Fact 4 in [18]. In Section 6, we give some
results about the partially bent (quadratic), components of a weakly APN permutation and we note that in
even dimension weakly APN functions cannot be partially bent (quadratic), behaving thus as APN functions
[23,26]. In Section 7 we give some other properties of vectorial Boolean functions whose derivatives have
no constant components, allowing also a deeper understanding of 4-bit S-Boxes.

2 Cryptographic motivations for studying weak differential uniformity

Most block ciphers used for real-life applications areiterated block ciphers, i.e. obtained by a composition
of several key-dependent permutations of the message spacecalled “round functions”. LetC be a block
cipher, i.e. a set of permutations{ϕk}k∈K of the message spaceV, whereK is the key space. An interesting
problem is determining the properties of the permutation groupΓ∞(C ) =Γ∞ generated by the round functions
of C that imply weaknesses of the cipher.

A property ofΓ∞ considered undesirable is the imprimitivity. Paterson [24] showed that if this group is
imprimitive, then it is possible to embed a trapdoor in the cipher. On the other hand, if the group is primitive
no such trapdoor can be inserted. We give the idea of the basicchosen-plaintext attack by Paterson. First we
recall what it is an imprimitive group. LetG be a finite group acting transitively on a setV. We will write the
action ofg∈ G on an elementv∈V asvg. A partition B of V is said to beG-invariant if Bg∈ B, for every
B∈ B andg∈ G. A partitionB is trivial if B = {V} or B = {{v}|v∈V}. A non-trivialG-invariant parti-
tion B of V is called ablock systemfor the action ofG onV. EachB∈ B is called ablock of imprimitivity.
G is calledimprimitive in its action onV if it admits a block system, otherwise it is calledprimitive. Now
we suppose thatΓ∞ is imprimitive. Let us fix anyk∈ K and letϕk ∈ Γ∞ be the related encryption function.
Let B1, . . . ,Br be a non-trivial block system for the groupΓ∞. This attack works only if we know an efficient
algorithm (block sieving) with input any vectorv ∈ V and output the (unique) blockBl containingv. The
classical case is when the block system is formed by all the cosets of a known vector subspace ofV. Paterson
gives this trapdoor for a DES-like cipher (for more details on DES see [17]), but it can be extended to the
case of AES-like ciphers. We now describe the attack.
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Preprocessing performed ones per key
We choose one plaintextmi in each setBi , obtaining the corresponding ciphertextci . Then the effect ofϕk

on each blockBi is determined,

ci = miϕk ∈ B j ⇒ Biϕk = B j .

Real-time processing
Given any ciphertextc, we can computel such thatc ∈ Bl via the block sieving. Then, we can find the
plaintextm of c by examining the blockBl ϕ−1

k .
Attack cost
The preprocessing costsr encryptions. For any intercepted ciphertext, the search for the corresponding plain-
text is limited to a block, whose size is|V|

r , requiring at most|V|
r encryptions.

Moreover, a cipherC may have another weakness ifΓ∞(C ) is of small size, since not every possible per-
mutation of the message space can be realized by the cipher [14,16]. Attacks on ciphers whose encryptions
generate small groups were given in [21].

In [11] the authors define a class of iterated block ciphers, called translation based ciphers ([11], Def-
inition 3.1), large enough to include many common ciphers (as AES [15], SERPENT [2] and PRESENT
[5]), and provide some conditions on the S-Boxes of these ciphers that guarantee the primitivity ofΓ∞. In
particular, in Theorem 4.4 of [11], it is proved that ifC is a translation based cipher such that any S-Box
satisfies, for some integerr,

– the weak 2r -differential uniformity (see Definition 2 in the next section), and
– the stronglyr-anti-invariance (it means that no S-Box ofC sends a proper subspace of codimensionl of

the plaintext space to another proper subspace of codimension l ),

thenΓ∞(C ) is primitive.
In Theorem 2 of [12] , under the same hypotheses plus an additional cryptographic assumption, i.e. none of
the images of the derivatives of any S-Box is a coset of a linear subspace of the message space, it is proved
thatΓ∞ is the alternating group, and so, in other words,Γ∞ is huge.

Starting from these cryptographic motivations, in [18] theauthors provide a deep analysis of 4-bit vec-
torial Boolean functions focusing on the weak differentialuniformity. They determine several conditions,
computational and theoretical, which are either sufficientor necessary for a 4-bit vectorial Boolean func-
tion to be weakly 2-differential uniform (weakly APN). Moreover they consider two non-linearity measures,
n̂( f ) andni( f ) wheref is a vectorial Boolean function (see Section 5), and they give some relations between
such measures and the weakly APNness.

If the image of a derivative of an S-Box of a cipherC is an affine space then this can be another weak-
ness ofC . For example, in the yet unpublished PhD Thesis [7] the author shows how this condition could
induce a weakness based on the action of an alternative operation, calledhidden sum, for which the vector
space structure of the message space is preserved. In [8] some differential properties for permutations in the
affine group of the message space with respect to a hidden sum are investigated. In [1] the authors present
conditions on the S-box able to prevent a type of trapdoors based on this alternative operation. One of these
conditions is that the derivatives of the S-box do not map thespace to an affine subspace. Moreover, also
for the hash function case, in [10] the authors show an attackon a SHA-3 candidate (Maraca) [20], which
is especially effective when the associated vectorial Boolean function has this feature. In Section 4 we will
show a sufficient condition for monomial weakly APN vectorial Boolean functions in order to have that none
of their derivatives sends the message space to a proper affine subspace (Corollary 2).
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3 Weak differential uniformity

LetF= F2. Letm≥ 1, any vectorial Boolean function (vBf)f fromF
m toF

m can be expressed uniquely as a
univariate polynomial inF2m[x]. Any time we write thatf is a vBf, we will implicit meanf :Fm→F

m. When
f is also invertible we call it a vBf permutation. We denote thederivativeof f by f̂a(x) = f (x+a)+ f (x),
wherea∈ F

m\ {0}, and theimageof f by Im( f ) = { f (x) | x∈ F
m}.

A notion of non-linearity for S-Boxes that has attracted a lot of research.

Definition 1 Let m≥ 1. Let f be a vBf, for anya,b∈ F
m we define

δ f (a,b) = |{x∈ F
m | f̂a(x) = b}|.

Thedifferential uniformityof f is
δ ( f ) = max

a,b∈Fma6=0
δ f (a,b).

f is saidδ -differentially uniformif δ = δ ( f ).
Those functions withδ ( f ) = 2 are saidAlmost Perfect Nonlinear (APN).

There is a generalization of differential uniformity presented recently in [11], which we recall in the
following definition.

Definition 2 Let f be a vBf. f is weaklyδ -differential uniformif

|Im( f̂a)|>
2m−1

δ
, ∀a∈ F

m\ {0}.

If f is weakly 2-differential uniform, it is saidweakly APN.

As shown in [11], aδ -differentially uniform map is weaklyδ -differential uniform. Moreover the follow-
ing result holds

Lemma 1 The weakδ -differential uniformity is affine-invariant.

Proof If f is weaklyδ -differential uniform andg(x) = D( f (Cx+c))+d, for somem×mmatricesC andD
with coefficients inFm and for somec,d ∈ F

m, then we have

ĝa(x) = D( f (C(x+a)+ c))+d+D( f (Cx+ c))+d

= D( f (Cx+Ca+ c))+D( f (Cx+ c))

= D( f̂Ca(Cx+ c)),

for anya∈ F
m, and so Im(ĝa) = D(Im( f̂Ca)).

SinceC andD are permutations, we have that weakδ -differential uniformity is affine-invariant.

Remark 1In [4] another non-linearity notion,the locally almost perfect nonlinearity (locally APN), is in-
troduced. Note that, in general, the local-APN property is not equivalent to the weak-APN property. For
example, the monomial functionx11 defined overF6 is weakly APN but it is not locally APN. However, for
any dimension there exist Boolean functions that are both locally APN and weakly APN, e.g. the patched
inversion.
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Remark 2Suppose thatf is not a monomial function. Iff is weaklyδ -differential uniform thenf−1 is not
necessarily weaklyδ -differential uniform. We provide the following example. Let f : F4 → F

4 be

f (x) = x14+e10x13+ex12+e2x11+e9x10+e8x9+e3x8+e5x7

+e5x6+e11x5+e8x3+e10x2+ex+e12,

wheree is a primitive element ofF16 such thate4 = e+1. The inverse off is

f−1(x) = x14+e10x13+e14x12+e8x11+e7x10+e10x9+x8+e5x7+e14x6

+e2x5+e7x4+e5x3+e14x2+e11x+e14.

We have thatf is weakly APN whilef−1 is only weakly 4-differential uniform.

We recall that two vBf’sf and g are called CCZ-equivalent (Carlet-Charpin-Zinoviev equivalent) if
their graphsGf = {(x, f (x)) | x ∈ F

m} andGg = {(x,g(x)) | x ∈ F
m} are affine equivalent, while they are

called EA-equivalent (Extended Affine equivalent) if thereexist three affine functionsλ , λ ′ andλ ′′ such that
g= λ ′ ◦ f ◦λ +λ ′′.

Remark 2 and the fact that a vBff is CCZ-equivalent tof−1 imply the following result.

Proposition 1 The weak differential uniformity is not CCZ invariant.

On the other hand, weak differential uniformity behaves well with respect to EA invariance, as shown
below.

Proposition 2 The weak differential uniformity is EA invariant.

Proof Let f andg be EA equivalent and letf be weaklyδ -differential uniform.
Then,g= λ ′ ◦ f ◦λ +λ ′′ = g′+λ ′′, with g′ affine equivalent tof (andλ ′′ is an affinity overFm).
Since weak differential uniformity is affine invariant, we have|Im(ĝ′a)|> 2m−1/δ for all a∈ F

m\ {0}.
Note that Im(ĝa) = {b+λ ′′(a) | b∈ Im(ĝ′a)}= Im(ĝ′a)+λ ′′(a) and so|Im(ĝa)|= |Im(ĝ′a)|> 2m−1/δ for
anya∈ F

m\ {0}.

As seen in Section 2, if the image of a derivative of an S-Box isan affine space, then there may be a
weakness in the cipher. In this direction the following theorem can be useful. Moreover, in Section 4 we
prove a stronger result regarding the monomial functions (Corollary 2).

Theorem 1 Let f be a vBf onFm that is weakly APN but not APN. Then, there exists a∈ F
m\{0} such that

Im( f̂a) is not a coset of a subspace W⊆ F
m.

Proof By contradiction suppose that for anya 6= 0 we have Im( f̂a) = w+W for somew∈ F
m andW vector

subspace ofFm. Since f is weakly APN,|Im( f̂a)|> 2m−2, thus dimF(W) = m−1. Therefore, we have that
f̂a is a 2-to-1 function for alla 6= 0, which meansf is APN, contradicting our assumption.

4 Power functions

In this section we focus on monomial functions, also calledpower functions. In particular we prove that the
weak differential uniformity of a functionf is equal to that off−1, and we show some properties of Im( f̂a).

In this section when we writef = xd we mean thatf is a power function onF2m for any 0≤ d ≤ 2m−1.
We will also identifyF2m andFm without any further comments.

The following result is well-known (see for instance [3]).
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Lemma 2 Let f(x) = xd. For any a,a′ ∈ F
m, with a,a′ 6= 0, and any0≤ i ≤ 2m, we have

|{b∈ F
m | δ f (a

′,b) = i}|= |{b∈ F
m | δ f (a,b) = i}|.

In other words, the differential characteristics of a monomial function depend only onb.

Definition 3 Let f (x) = xd and 0≤ i ≤ 2m. We denote byωi the number of output differences ofb that occur
i times, that is

ωi( f ) = |{b∈ F
m | δ f (1,b) = i}|.

Thedifferential spectrumof f is the sequence ofωi( f )’s, denoted byS( f ).

Remark 3Note that if a monomial functionf has 2s-to-1 derivatives then it is weakly 2s-differential uniform,
since|Im( f̂a)|= 2m−s for anya∈ F

m\ {0}.

The following lemma is well-known, for instance see Lemma 1 in [3].

Lemma 3 Let f(x) = xd and g(x) = xe. If

– gcd(2m−1,d) = 1 and ed≡ 1 mod(2m−1),
or

– e≡ 2kd mod(2m−1), for some k,0≤ k≤ m,

then S( f ) = S(g).

From Lemma 3 we obtain our first result.

Corollary 1 Let f(x) = xd with gcd(2m−1,d) = 1. Then f is weaklyδ -differential uniform if and only if
f−1 is weaklyδ -differential uniform.

Proof For a power function we have

|Im( f̂a)|= |Im( f̂1)|= 2m−ω0, ∀a 6= 0.

From Lemma 3 we haveω0( f ) = ω0( f−1), and this concludes the proof.

Consider the following lemma for a power function (not necessarily a permutation).

Lemma 4 Let f(x) = xd. If there exists a∈ F
m, a 6= 0, such thatIm( f̂a) is a coset of a subspace ofF

m, then
Im( f̂a′) is a coset of subspace ofFm for all a′ 6= 0.

Proof We have Im( f̂a) = w+W, whereW is aF-vector subspace ofFm andw∈ F
m. If we now consider

a′ ∈ F
m\ {0} we have

f̂a′(x) = (x+a′)d + xd =

(

a′

a

)d [
(

x
a
a′

+a
)d

+
(

x
a
a′

)d
]

=

(

a′

a

)d

f̂a
(

x
a
a′

)

.

Therefore, Im( f̂a′) =
(

a′
a

)d
Im( f̂a) =

(

a′
a

)d
w+

(

a′
a

)d
W = w′+W′. SinceW′ = (a′/a)dW, alsoW′ is an

F-vector subspace ofFm and our claim is proved.

Here we give a sufficient condition for a power function to thwart the aforementioned weakness.
The following result is an obvious consequence of Theorem 1 and Lemma 4.

Corollary 2 Let f be a vBf permutation onFm that is weakly APN but not APN. If f(x) = xd, then for all
a∈ F

m\ {0}, Im( f̂a) is not a coset of a subspace W⊆ F
m.
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5 Weakly APN functions and degrees of derivatives

Without loss of generality, in the sequel we consider only vBf’s such thatf (0) = 0. Let v ∈ F
m\ {0}, we

denote by〈 f ,v〉 the component∑m
i=1vi fi of f , wheref1, . . . , fm are the coordinate functions off .

Definition 4 Thealgebraic degreeof a vectorial Boolean functionf is the maximal algebraic degree of the
coordinate functions off and is denoted by deg( f ).

We recall the following non-linearity measures, as introduced in [18]:

ni( f ) := |{v ∈ F
m\ {0} | deg(〈 f ,v〉) = i}|,

and
n̂( f ) := max

a∈Fm\{0}
|{v ∈ F

m\ {0} | deg(〈 f̂a,v〉) = 0}|.

In other words,ni( f ) corresponds to the number of component functions off which are of degreei andn̂( f )
corresponds to the number of components of the derivative functions of f which are constant.
We state two lemmas useful to extend some results of [18]. First, we recall that the algebraic degree of a
permutationf (x) = xd is the Hamming weight of the binary representation ofd, denoted by w(d).

Lemma 5 ([22], Corollary 6) Let f(x) = xd be a permutation. Then̂f1 has at least one constant component
if and only ifdeg( f ) = 2.

Lemma 6 ([19], Theorem 1)Let f(x) = xd, with d= 22k−2k+1 (Kasami exponent),gcd(k,n) = s andn
s

odd. Thenf̂1 is a2s-to-1 function.

Theorem 2 Let f be a vBf permutation such thatn̂( f ) = 0, i.e. no component of f has linear structure. Then
(i) if m = 3 then f is weakly APN;
(ii) if m = 4 then f is weakly APN;
(iii) if m = 2n, with n odd, then f is not necessarily weakly APN.

Proof (i) Let F3 = {x1, . . . ,x8} and letMa be the matrix of dimension 3× 8, whose columns aremj =
f̂a(x j ) for 1≤ j ≤ 8. We claim that ˆn( f ) = 0 implies rank(Ma) = 3 for anya. Otherwise, we could obtain
(0, . . . ,0) ∈ F

8 from a combination of the rows ofMa, and the corresponding component off̂a would be
identically 0.
If f is not weakly APN, we have|Im( f̂a)| ≤ 2 for somea∈ F

3\{0}. So we have at most 2 distinct columns,
which implies rank(Ma)≤ 2 and contradicts rank(Ma) = 3.

(ii) See [18] Proposition 2 .
(iii) Let t > 0 be such that gcd(22t+1

−22t
+1,2m−1) = 1, and consider the power functionf (x) = xd,

with d = 22t+1
−22t

+1. By hypothesis gcd(2t ,m) = 2, thus, by Lemma 6,f is 4-differentially uniform and
thus weakly 4-differential uniform. Since in our cased = 22t

(22t
−1)+1, then w(d) = w(22t

−1)+1 which
is strictly bigger than 2 fort > 0. So f is not quadratic and then, by Lemma 5, ˆn( f ) = 0.

In [18] it was shown that a weakly APN functionf overF4 hasn3( f ) ∈ {12,14,15}, moreover by a
computer check on the class representatives the authors exclude the casen3( f ) = 12 (Fact 4 in [18]).
We are now able to provide a formal proof.

Proposition 3 (Fact4 in [18]) Let f : F4 → F
4 be a weakly APN permutation. Then n3( f ) ∈ {14,15}.
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Proof Let f = ( f1, f2, f3, f4) with fi : F4 → F, and assume by contradiction that deg(S)≤ 2 for three distinct
linear combinationsS= ∑i vi fi , that we callS1,S2,S3.

From the theory of quadratic Boolean functions (see for instance [9])Ŝa is constant for everya∈V(S)
whereV(S) ⊆ F

4 is a vector subspace, called theset of linear structuresof S. It is well-known thatV(S)
has dimension 0 if and only ifS is bent, it has dimension 4 if and only ifS is linear (affine), and it has
dimension 2 otherwise. SinceV(S) is a vector space,S3 = S1+S2. If there existsa∈V(Si)∩V(Sj) different
from 0 for somei 6= j, thenn̂( f )≥ 2. But f weakly APN implies ˆn( f )≤ 1 (see [18] Theorem 1). Therefore,
V(Si)∩V(Sj) = {0} and dim(V(Si))≤ 2 for anyi.
For anyi, sincef is a permutation, thenSi is balanced, soSi is not bent, and then

dim(V(Si)) = 2, i = 1,2,3. (1)

Summarizing, deg(Si) = 2 for anyi andV(Si)∩V(Sj) = {0} for anyi 6= j.
Up to an affine transformtion, sinceV(S1)⊕V(S2)=F

4, we can assumeV(S1)=Span((1,0,0,0),(0,1,0,0))
andV(S2) = Span((0,0,1,0),(0,0,0,1)).

Let S1(x) = ∑i< j ci, jxix j +∑i cixi . SinceS1(x+(1,0,0,0))+S1(x) is constant we have thatci, j = 0 if i
or j equals 1. Similarly, sinceS1(x+(0,1,0,0))+S1(x) is constant we haveci, j = 0 if i or j equals 2. Then
S1(x) = x3x4+∑i cixi and analogously we haveS2(x) = x1x2+∑i c

′
ixi , for somec′i ’s.

So, S3(x) = x1x2 + x3x4 +∑i bixi , bi = ci + c′i , and we can compute the derivative ofS3 with respect to
a= (a1,a2,a3,a4) ∈ F

4\ {0} as

ˆ(S3)a(x) = a2x1+a1x2+a4x3+a3x4+ c, wherec is constant.

Hence ˆ(S3)a(x) is constant if and only ifa= 0, soS3 is bent and dim(V(S3)) = 0, contradicting (1).

6 Quadratic and partially bent functions

Theorem 3 A quadratic function is APN if and only it is weakly APN.

Proof Let f be weakly APN anda 6= 0 arbitrary. Then by definition,|Im( f̂a)|> 2m−2. Since f is quadratic,
f̂a is affine. Then Im( f̂a) is an affine subspace. Hence its size is a power of 2, the only possibility of being
equal 2m−1. So|Im( f̂a)|= 2m−1 for any non-zeroa, which means that̂fa is 2-to-1 for all non-zeroa.

As was shown in [26] there is no APN quadratic permutation over Fm for m even, and so, by previous
theorem, there is no weakly APN quadratic permutation overF

m for m even. This result was extended by
Nyberg [23] to the case of permutations with all components partially bent (formeven), in other words there
is no APN partially bent permutation. We are able to extend these results by relaxing the conditionAPN
permutationswith the conditionweakly APN permutation.

Definition 5 ([13]) A Boolean functionf is partially bent if there exists a linear subspaceV( f ) of Fm such
that the restriction off to V( f ) is affine and the restriction off to any complementary subspaceU of V( f ),
V( f )⊕U = F

m, is bent. In that case,f can be represented as a direct sum of the restricted functions, i.e.,
f (y+ z) = f (y)+ f (z), for all z∈V( f ) andy∈U .

Remark 4The spaceV( f ) is formed by the linear structures off , in fact

f (x+a)+ f (x) = f (y+ z+a)+ f (y+ z)= f (y)+ f (z)+ f (a)+ f (y)+ f (z) = f (a)

wherez,a∈V( f ) andy∈U . Moreover, since bent function exist only in even dimension, m−dim(V( f )) is
even. That means ifm is even, the dimension ofV( f ) is even.
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Theorem 4 For m even, a weakly APN permutation has at most2m−1
3 partially bent components. In partic-

ular f cannot have all partially bent components.

Proof Let f be a weakly APN permutation. Assume by contradiction thatf has more than2
m−1
3 partially

bent components, and denote those withf1, . . . , fs. f is a permutation, then dim(V( fi)) 6= 0 for all 1≤ i ≤ s,
otherwisefi is bent and it is not balanced. From Remark 4 we have that thereexist at least three nonzero
vectors in eachV( fi). So

s

∑
i=1

|V( fi)| ≥ 3s> 2m−1.

Thus, there existi and j such thata ∈ V( fi)∩V( f j) with a 6= 0. This implies ˆn( f ) ≥ 2, which contradicts
that f is weakly APN, since in that case ˆn( f ) ≤ 1 ([18] Theorem 1).

From the fact that a quadratic Boolean function is partiallybent (see for instance [23]), we have imme-
diately the following result.

Proposition 4 Let m even. Let f be a weakly APN permutation. Then f has at most2m−2− 1 quadratic
components.

Proof That depends on the fact that the set of components of degree less or equal to 2 is a vector space.

7 Properties linked to n̂( f )

In this last part of the paper we give some properties linked to the value of ˆn( f ) of a vBf. For alla∈ F
m\{0},

let Va be the vector space{v ∈ F
m : deg(〈 f̂a,v〉) = 0}. By definition, if t = maxa∈Fm\{0}dim(Va), then

n̂( f ) = 2t −1.

Proposition 5 Let f be a vBf and a∈ F
m\ {0}. f(a)+V⊥

a is the smallest affine subspace ofF
m containing

Im( f̂a). In particular, n̂( f ) = 0 if and only if there does not exist a proper affine subspace ofF
m containing

Im( f̂a), for all a∈ F
m\ {0}.

Proof Let a∈ F
m\{0}. Note thatVa = {v ∈ F

m : 〈 f̂a,v〉 is constant}. Letx∈ F
m, then f̂a(x) = f (a)+w, for

somew∈ F
m, and〈 f̂a(x),v〉= c∈ F for all v∈Va. In particularc= 〈 f̂a(0),v〉 = 〈 f (a),v〉 and so〈w,v〉= 0,

that is,w ∈ V⊥
a . Then we have Im( f̂a) ⊆ f (a)+V⊥

a . Now, let A be an affine subspace containing Im( f̂a),
thenA= f (a)+V, for some vector subspaceV in F

m. For all v∈ V⊥, we have〈 f̂a,v〉 = 〈 f (a),v〉 = c∈ F

and so, by definition,V⊥ ⊆Va. ThenA containsf (a)+V⊥
a .

Finally, n̂( f ) = 0 if and only ifVa = {0} for all a∈ F
m\ {0}, and so our claim follows.

Remark 5The proposition above gives a sufficient condition,i.e. n̂( f ) = 0, such that the derivates do not
map the message space to an affine subspace; and so a type of trapdoors can be avoided, as noted in Section
3.

The following proposition is well-known, but we propose a proof in our context.

Proposition 6 Let f : Fm → F
m be a Boolean permutation such thatn̂( f ) = 0. Then f has no partially bent

(quadratic) components.

Proof n̂( f ) = 0 implies that the linear structures set of any component contains only 0. So if there exists a
partially bent (quadratic) component, then it is bent. Butf is a permutation, then this is not possible.
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For the particular case of 4-bit S-Boxes we obtain two more results.

Corollary 3 Let f : F4 → F
4 be a vBf permutation.

(i) If n̂( f ) = 0. Then f is weakly APN and n3( f ) = 15.
(ii) If f is weakly APN and n3( f ) = 14. Thenn̂( f ) = 1.

Proof Let f be weakly APN, so ˆn( f ) ≤ 1 (see [18]). From Proposition 6, the claim follows.

So for weakly APN functionf : F4 → F
4 we have all the three cases. Below we provide an example for

each case reporting the algebraic normal form of the components of f :

– n̂( f ) = 0 andn3( f ) = 15:

f1 = x1x2x3+ x2x3x4+ x1x3+ x2x3+ x1+ x2+ x3+ x4

f2 = x1x2x4+ x1x2+ x1x3+ x2x3+ x2x4+ x4

f3 = x1x3x4+ x1x2+ x1x3+ x1x4+ x3+ x4

f4 = x2x3x4+ x1x4+ x2x4+ x2+ x3x4+ x3+ x4

– n̂( f ) = 1 andn3( f ) = 15:

f1 = x1x3x4+ x2x3x4+ x2x3+ x2x4+ x3x4+ x1

f2 = x1x2x4+ x1x3+ x1x4+ x2x3+ x2

f3 = x1x2x3+ x1x2x4+ x1x3x4+ x2x3x4+ x1x2+ x3x4+ x3

f4 = x2x3x4+ x1x2+ x1x4+ x2x3+ x4

– n̂( f ) = 1 andn3( f ) = 14:

f1 = x1x2x3+ x1x2x4+ x1x3+ x1+ x2x3x4+ x2x3+ x3x4

f2 = x1x2x4+ x1x2+ x1x3x4+ x1x3+ x1x4+ x2

f3 = x1x2x4+ x1x2+ x1x3x4+ x1x3+ x2x4+ x3

f4 = x1x3+ x1x4+ x2x3x4+ x2x4+ x4

8 Conclusions

As reported in Section 2 and 3, weak differential uniformityand the cryptographic condition that the image
of the derivatives of an S-Box is never a coset of a subspace ofthe message space are useful to prevent hiding
certain type of trapdoors in the related cipher.

First we study the algebraic structure of the image of the derivatives of a vectorial Boolean function. In
particular we prove that for any vBf that is weakly APN but notAPN, there is at least one derivative whose
image is not an affine subspace (Theorem 1). In the case of power functions, to be weakly APN but not APN
guarantees that none of the image of the derivatives is an affine subspace (Corollary 2). An interesting open
problem is to find families of vBf that are not monomial havingthis property.

Then we show that the sufficient condition ˆn( f ) = 0, that ensures weakly APNness for the 4-bit vBf’s,
does not guarantee this property form-bit vBf’s with m> 4 (Theorem 2). It would be interesting to find
sufficient conditions that imply weakly APNness for anym> 4.

In Section 6 we extend some results known for the (quadratic)partially bent components of an APN
permutation to the case of weakly APN permutations.

In the last section we report some other results linked to thevalue ofn̂( f ), in particular we prove that
this value is zero if and only if the derivates off do not map the message space to an affine subspace.
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