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Abstract We study the relation among some security parameters feowakBoolean functions which pre-
vent attacks on the related block cipher. We focus our stadyr@cently-introduced security criterion, called
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Keywords Permutation vectorial Boolean functionsPower functions Weak differential uniformity
Mathematics Subject Classification (201094A60- 06E30- 20B40

1 Introduction

Differential and linear attacks are major cryptanalyticlsowhich apply to most cryptographic algorithms.
Therefore, functions which guarantee a high resistandetgetattacks have been extensively studied. In par-
ticular, those with low differential uniformity and high ndinearity, e.g. Almost Perfect Nonlinear (APN)
functions or Almost Bent (AB) functions, have received adbattention. Since in the design of a block
cipher an invertible S-Box of even dimension is usually regkdhere is strong interest in non-linear permu-
tations. However, we know examples of APN permutations enelimension only for dimension 6, for more
details se€[[6]. For the highly interesting cases of dinm@ndiand 8, the cipher designer will certainly use
4-differentially uniform S-Boxes, but she will also lookather security criteria, if applicable, althoughiit is
not obvious which. Besides, even a 4-differentially uniide-Box can hide a trapdoor in the related cipher,
if not carefully chosen. Algebraic trapdoors can be verygggiaus, especially when they are undetectable
[25].
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We are investigating the security criterion introducedbretly in [11], called weak differential uniformity.
As shown in [I1], any cipher (with a prescribed structurejsassing a weakly-APN vectorial Boolean
function as S-Box cannot be successfully attacked usinggadtor based on imprimitive group action.
Indeed, ciphers suffering from such a trapdoor have bedtib{24] and might be used as standards without
anyone realizing the trapdoor existence. So, a designeldwmave advantage in choosing an invertible S-
Box which is simultaneously weakly APN and 4-differentyaliniform, which exists for dimension 4 and 8
(and actually for any dimension). Resultslin][11] are geliwzd on any field in[[l], where again the notion
of weakly APN plays an important security role.

In Section 2 we recall the attack [24] that can be mounted oARBS8-like cipher when an imprimi-
tive group action is present. We recall also how a weakly ARBIo® would make this attack ineffective
[11], motivating thus this security criterion. In Sectionn& present some first results on weak differen-
tial uniformity. In Section 4 we specialize to the case of mmmal functions, where we see an interesting
connection with the property of having the image of a funttiterivative as an affine space, which is an
unexpected weakness within the underlying algorithms {se@stance[[10,12]). In Section 5 we relate
the weak differential uniformity with other algebraic pesfies of vectorial Boolean functions, in particu-
lar with the degrees of both the function components andithetion derivative components. We can thus
improve some results given in [18] and give a formal proof att4 in [18]. In Section 6, we give some
results about the partially bent (quadratic), componehtsweakly APN permutation and we note that in
even dimension weakly APN functions cannot be partiallytijgnadratic), behaving thus as APN functions
[23)26]. In Section 7 we give some other properties of véat@oolean functions whose derivatives have
no constant components, allowing also a deeper undersntié-bit S-Boxes.

2 Cryptographic motivations for studying weak differential uniformity

Most block ciphers used for real-life applications @egzated block ciphersi.e. obtained by a composition
of several key-dependent permutations of the message sp#ied “round functions”. Lets” be a block
cipher, i.e. a set of permutatiofigy }kc.» of the message spaWewhere 7 is the key space. An interesting
problem is determining the properties of the permutatiaugf.(%¢") = . generated by the round functions
of ¢ that imply weaknesses of the cipher.

A property ofl, considered undesirable is the imprimitivity. Patersor] Ehbwed that if this group is
imprimitive, then it is possible to embed a trapdoor in thgheir. On the other hand, if the group is primitive
no such trapdoor can be inserted. We give the idea of the blaggen-plaintext attack by Paterson. First we
recall what it is an imprimitive group. L& be a finite group acting transitively on a setWe will write the
action ofg € G on an element € V asvg. A partition % of V is said to bez-invariantif Bge 4, for every
B € # andg € G. A partition Z is trivial if 2 = {V} or Z = {{v}|v € V}. A non-trivial G-invariant parti-
tion # of V is called ablock systenfor the action ofG onV. EachB € 4 is called alock of imprimitivity
G is calledimprimitivein its action onV if it admits a block system, otherwise it is callpdmitive. Now
we suppose thdt, is imprimitive. Let us fix anyk € 7 and letgy € I, be the related encryption function.
LetBy,...,B; be a non-trivial block system for the gro@ip. This attack works only if we know an efficient
algorithm plock sieving with input any vectow € V and output the (unique) blodB; containingv. The
classical case is when the block system is formed by all teetsmf a known vector subspace/fPaterson
gives this trapdoor for a DES-like cipher (for more detaitsRES see[[17]), but it can be extended to the
case of AES-like ciphers. We now describe the attack.
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Preprocessi ng perforned ones per key
We choose one plaintext in each seB;, obtaining the corresponding ciphertextThen the effect oy
on each bloclB; is determined,

C = Mm@y € Bj = B¢y = Bj.

Real -ti me processing

Given any ciphertext, we can computé such thatc € B, via the block sieving. Then, we can find the
plaintextm of ¢ by examining the blocB, ¢k’l.

Attack cost

The preprocessing costencryptions. For any intercepted ciphertext, the seancthéocorresponding plain-

text is limited to a block, whose size %‘ requiring at mosf\r/—‘ encryptions.

Moreover, a ciphe®” may have another weaknes$df(%) is of small size, since not every possible per-
mutation of the message space can be realized by the ciphd]l Attacks on ciphers whose encryptions
generate small groups were givenl[inl[21].

In [11] the authors define a class of iterated block cipheaied translation based ciphers([11], Def-
inition 3.1), large enough to include many common ciphessARS [15], SERPENT[[2] and PRESENT
[5]), and provide some conditions on the S-Boxes of theskeripthat guarantee the primitivity 6%. In
particular, in Theorem 4.4 of [11], it is proved that4f is a translation based cipher such that any S-Box
satisfies, for some integey

— the weak 2-differential uniformity (see Definition]2 in the next semt)), and
— the stronglyr-anti-invariance (it means that no S-Box#@fsends a proper subspace of codimensioh
the plaintext space to another proper subspace of codiorehsi

thenl (%) is primitive.

In Theorem 2 of{[12] , under the same hypotheses plus an additcryptographic assumption, i.e. none of
the images of the derivatives of any S-Box is a coset of a lisahspace of the message space, it is proved
thatl, is the alternating group, and so, in other worf@sjs huge.

Starting from these cryptographic motivations,[inl[18] ¢éhehors provide a deep analysis of 4-bit vec-
torial Boolean functions focusing on the weak differentialformity. They determine several conditions,
computational and theoretical, which are either sufficmmhecessary for a 4-bit vectorial Boolean func-
tion to be weakly 2-differential uniform (weakly APN). Mareer they consider two non-linearity measures,
A(f) andn;(f) wheref is a vectorial Boolean function (see Secfidn 5), and theg game relations between
such measures and the weakly APNness.

If the image of a derivative of an S-Box of a ciph€ris an affine space then this can be another weak-
ness of¢’. For example, in the yet unpublished PhD Thesis [7] the auwthows how this condition could
induce a weakness based on the action of an alternativetmperealledhidden sumfor which the vector
space structure of the message space is preservéd. In [8]differential properties for permutations in the
affine group of the message space with respect to a hiddensuimvastigated. I ]1] the authors present
conditions on the S-box able to prevent a type of trapdoasedban this alternative operation. One of these
conditions is that the derivatives of the S-box do not mapsihece to an affine subspace. Moreover, also
for the hash function case, in[10] the authors show an attack SHA-3 candidate (Maraca) |20], which
is especially effective when the associated vectorial Bawlfunction has this feature. In Sectidn 4 we will
show a sufficient condition for monomial weakly APN vectbBaolean functions in order to have that none
of their derivatives sends the message space to a propex siffirspace (Corollaky 2).
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3 Weak differential uniformity

LetF =IF,. Letm> 1, any vectorial Boolean function (vBf)from F™ to F™ can be expressed uniquely as a
univariate polynomial iff',m [x]. Any time we write thaff is a vBf, we will implicit meanf : F™ — F™. When

f is also invertible we call it a vBf permutation. We denote degivativeof f by fa(x) = f(x+a)+ (),
wherea € F™\ {0}, and thémageof f by Im(f) = {f(x) | xe F™}.

A notion of non-linearity for S-Boxes that has attractedtaofresearch.
Definition 1 Letm> 1. Let f be a vBf, for anya,b € F™ we define
5t (a,b) = [{x€ F™| fa(x) = b}|.
Thedifferential uniformityof f is
o(f) = a’bé%l;(#oéf (a,b).
f is saido-differentially uniformif & = (f).

Those functions withd(f) = 2 are saidAlmost Perfect Nonlinear (APN)

There is a generalization of differential uniformity prased recently in[[I1], which we recall in the
following definition.
Definition 2 Let f be a vBf.f is weaklyd-differential uniformif
R om-1
[Im(fa)| > 5 vae FM\ {0}.
If fis weakly 2-differential uniform, it is saidieakly APN

As shown in[[11], &-differentially uniform map is weaklg-differential uniform. Moreover the follow-
ing result holds

Lemma 1 The weald-differential uniformity is affine-invariant.

Proof If f is weaklyd-differential uniform andy(x) = D(f(Cx+c)) +d, for somem x mmatrices<C andD
with coefficients inf™ and for somes,d € F™, then we have
0a(X) = D(f(C(x+a)+c))+d+D(f(Cx+c))+d
=D(f(Cx+Ca+c))+D(f(Cx+c))
= D(fea(Cx+0)),

—_~

for anya € F™, and so Infga) = D(Im(fca)).
SinceC andD are permutations, we have that wegklifferential uniformity is affine-invariant.

Remark 1In [4] another non-linearity notiorthe locally almost perfect nonlinearity (locally APN$ in-
troduced. Note that, in general, the local-APN propertyas equivalent to the weak-APN property. For
example, the monomial functiofd! defined oveif® is weakly APN but it is not locally APN. However, for
any dimension there exist Boolean functions that are bathllp APN and weakly APN, e.g. the patched
inversion.
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Remark 2Suppose that is not a monomial function. If is weakly d-differential uniform thenf ~1 is not
necessarily weaklg-differential uniform. We provide the following exampleetLf : F* — F* be

f(x) = x4+ et03 - ext? 4 x4 %10+ 50 + 8 + X7
+28 + el + 853 1+ 9% + ex+e'?,

wheree s a primitive element oF 1 such thag* = e+ 1. The inverse of is

f1x) = xM + el 4 et x4 /X104 €100 438 + X + et
+ 3 +e/x 1+ 3 + et 4 etlx+- et

We have thaf is weakly APN whilef 1 is only weakly 4-differential uniform.

We recall that two vBf'sf andg are called CCZ-equivalent (Carlet-Charpin-Zinoviev eglent) if
their graphsGs = {(x, f(x)) | x € F™} andGg = {(x,9(x)) | x € F} are affine equivalent, while they are
called EA-equivalent (Extended Affine equivalent) if therest three affine functions, A’ andA” such that
g=AofoA+A"

RemarK and the fact that a vBfis CCZ-equivalent td ~* imply the following result.

Proposition 1 The weak differential uniformity is not CCZ invariant.

On the other hand, weak differential uniformity behaves| with respect to EA invariance, as shown
below.

Proposition 2 The weak differential uniformity is EA invariant.

Proof Let f andg be EA equivalent and lett be weaklyd-differential uniform.
Theng=A'ofoA+A"=d + A", with ¢ affine equivalent td (andA” is an affinity over™).

Since weak differential uniformity is affine invariant, wave|Im(g',)| > 2™1/5 for all a € F™\ {0}.
Note that Infga) = {b+A"(a) | be Im(d,)} = Im(g,) + A" (a) and solm(da)| = |Im(q/,)| > 2™ 1/ for
anyae F™\ {0}.

As seen in Sectiofl] 2, if the image of a derivative of an S-Boarnisaffine space, then there may be a
weakness in the cipher. In this direction the following ttezo can be useful. Moreover, in Sectldn 4 we
prove a stronger result regarding the monomial functiors¢(Cary(d).

Theorem 1 Let f be a vBf orf™ that is weakly APN but not APN. Then, there existsld"\ {0} such that
Im(f,) is not a coset of a subspace WEF™.

Proof By contradiction suppose that for aay# 0 we have Ir‘(’]fa) =w+W for somew € F™ andW vector
subspace of ™. Sincef is weakly APN,|Im(fa)| > 2M-2 thus dink(W) = m— 1. Therefore, we have that
fa is a 2-to-1 function for ala # 0, which meang is APN, contradicting our assumption.

4 Power functions

In this section we focus on monomial functions, also catledier functionsin particular we prove that the
weak differential uniformity of a functior is equal to that of ~, and we show some properties of(lfh).
In this section when we writé = x4 we mean thaf is a power function offom for any 0< d < 2™m-1,
We will also identifyFom andF™ without any further comments.
The following result is well-known (see for instan€eé [3]).
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Lemma 2 Let f(x) = xd. For any aa € F™, with a,@ # 0, and any0 < i < 2™, we have
{beF™|5(a,b) =i}|=[{beF"|5(a,b)=i}|.
In other words, the differential characteristics of a morariunction depend only oh.

Definition 3 Let f(x) = x4 and 0< i < 2™. We denote byy the number of output differencesithat occur
i times, that is
w(f)=|{bcFM|&(1,b) =i}

Thedifferential spectrunof f is the sequence @b (f)’s, denoted bys(f).

Remark 3Note that if a monomial functiofi has 2-to-1 derivatives then it is weakly’&lifferential uniform,
since|lm(f,)| = 2™ S for anya e F™\ {0}.

The following lemma is well-known, for instance see Lemma {3].

Lemma 3 Let f(x) = x4 and gx) = »°. If

—gcd2™—-1,d)=1anded=1 mod(2™-1),
or
— e=2%d mod(2™—1), for some kp <k <m,

then S(f)=5(g).
From Lemm&B we obtain our first result.

Corollary 1 Let f(x) = xd with gcd 2™ — 1,d) = 1. Then f is weakly-differential uniform if and only if
f 1 is weaklyd-differential uniform.

Proof For a power function we have
Im(fa)| = [Im(f1)| =2"— &, Va#0.
From LemmdB we havey(f) = ap(f~1), and this concludes the proof.
Consider the following lemma for a power function (not nezgsy a permutation).

Lemma 4 Let f(x) =xI. If there exists & F™, a+ 0, such thaim(f,) is a coset of a subspace®F, then

Im(fy) is a coset of subspace Bf" for all a’ # 0.

Proof We have Inif,) = w+W, whereW is aF-vector subspace &™ andw € F™. If we now consider
a e F™\ {0} we have

fo(x) = (x+a)9+xd = (%)d {(x§+a)d+ (xg)d} = (%/)d fa (xg).

- Nd o\ d A\ d
Therefore, Inify) = (i) Im(fa) = (i) W+ (%) W =w +W. SinceW’ = (a/a)%W, alsoW’ is an

a a
F-vector subspace @™ and our claim is proved.

Here we give a sufficient condition for a power function to #ntxthe aforementioned weakness.
The following result is an obvious consequence of Thedlemdll@mmaX.

Corollary 2 Let f be a vBf permutation ofi™ that is weakly APN but not APN. If(x) = x4, then for all
ae F™\ {0}, Im(fa) is not a coset of a subspace WIF™.
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5 Weakly APN functions and degrees of derivatives

Without loss of generality, in the sequel we consider only'sBuch thatf (0) = 0. Letv e F™\ {0}, we
denote by(f,v) the componeny ", v; f; of f, wherefy,..., f,, are the coordinate functions f

Definition 4 Thealgebraic degre®f a vectorial Boolean functiof is the maximal algebraic degree of the
coordinate functions of and is denoted by dég).

We recall the following non-linearity measures, as intreetlin [18]:

ni(f) .= {v e F™\ {0} | deg((f,v)) =i},

and
A(f):= ma € F™\ {0} | deg (fa,Vv)) = 0}|.
(1)i=_ max [{v ™\ {0} | deg (fa,v)) = O}
In other wordsn;(f) corresponds to the number of component functionswhich are of degreeandn f)
corresponds to the number of components of the derivativetions off which are constant.
We state two lemmas useful to extend some results of [183t,Rire recall that the algebraic degree of a
permutationf (x) = xd is the Hamming weight of the binary representationl olenoted by wd).

Lemma 5 ([22], Corollary 6) Let f(x) = x4 be a permutation. Thefi has at least one constant component
if and only ifdeq f) = 2.

Lemma 6 ([19], Theorem 1)Let f(x) = x¥, with d = 22 — 2%+ 1 (Kasami exponentycd k, n) = s and?
odd. Thenf; is a 25-to-1 function.

Theorem 2 Let f be a vBf permutation such thitf ) = 0, i.e. no component of f has linear structure. Then
(i) if m = 3then f is weakly APN;

(ii) if m = 4 then f is weakly APN;

(iii) if m = 2n, with n odd, then f is not necessarily weakly APN.

Proof (i) Let F@ = {X1,...,xg} and letM, be the matrix of dimension 8 8, whose columns arm; =
fa(xj) for 1 < j < 8. We claim than(f) = 0 implies rankM,) = 3 for anya. Otherwise, we could obtain
(0,...,0) € F® from a combination of the rows d¥l,, and the corresponding componentfgfwould be
identically 0.

If f is not weakly APN, we havim(f,)| < 2 for somea € 3\ {0}. So we have at most 2 distinct columns,
which implies rankM,) < 2 and contradicts rarik,) = 3.

(i) See [18] Proposition 2 .

(iii) Let t > O be such that gc(dzt+1 —22 y12m- 1) = 1, and consider the power functidiix) = x4,
withd =22 —22 1 1. By hypothesis ga@, m) = 2, thus, by LemmBl6f is 4-differentially uniform and
thus weakly 4-differential uniform. Since in our cabe- 2% (22 — 1)+ 1, then wid) = w(22 — 1) + 1 which
is strictly bigger than 2 fot > 0. Sof is not quadratic and then, by Lemimarkf § = 0.

In [18] it was shown that a weakly APN functiohover F* hasns(f) € {12,14,15}, moreover by a
computer check on the class representatives the authdrglexbe cases(f) = 12 (Fact 4 in[[18]).
We are now able to provide a formal proof.

Proposition 3 (Fact4in [18]) Let f: F* — F* be a weakly APN permutation. Theg(h) € {14, 15}.
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Proof Let f = (fy, fo, f3, f4) with f; : F* — F, and assume by contradiction that (®g< 2 for three distinct
linear combination$= y;v; fj, that we callS;, S, Ss.

From the theory of quadratic Boolean functions (see forinst [9])S; is constant for everg e V(S
whereV (S) C 4 is a vector subspace, called thet of linear structuresf S. It is well-known thatV (S)
has dimension 0 if and only & is bent, it has dimension 4 if and only §is linear (affine), and it has
dimension 2 otherwise. SindS) is a vector spac&s = S; +$. If there exista € V(S) NV (S)) different
from O for some # |, thenn( f) > 2. But f weakly APN implies{f) < 1 (see[[18] Theorem 1). Therefore,
V(S)NV(S)) = {0} and dim{V(S)) < 2 for anyi.

For anyi, sincef is a permutation, the§ is balanced, s§ is not bent, and then

dimV(S)) =2, i=123. 1)

Summarizing, de@ ) = 2 for anyi andV (S)NV(S;) = {0} for anyi # j.
Up to an affine transformtion, sind&S;) &V (S;) = 4, we can assumé(S; ) = Sparf(1,0,0,0), (0,1,0,0))
andV($) = Spari(0,0,1,0),(0,0,0,1)).

Let S;(X) = ¥i<jCi,jXiXj + ¥;CiX. SinceSy(x+ (1,0,0,0)) + Si(x) is constant we have thatj = 0 if i
or j equals 1. Similarly, sinc&;(x+ (0,1,0,0)) + Si(x) is constant we have ; =0 if i or j equals 2. Then
Si(X) = Xaxa + ¥ Cix and analogously we ha(x) = x1x2 + ¥ ¢/x;, for somec/’s.

So, S3(X) = x1X2 + XaXa + Yibixi, bi = ¢i +¢{, and we can compute the derivative $f with respect to
a=(ay,a,a3,a4) € F*\ {0} as

(S3)4(X) = @2X1 + A1Xo + auXa + agX4 + C, Wherec is constant.

Hence(S3) ,(x) is constant if and only i = 0, soSz is bent and dinfV (S3)) = 0, contradicting({IL).

6 Quadratic and partially bent functions

Theorem 3 A quadratic function is APN if and only it is weakly APN.

Proof Let f be weakly APN ana # 0 arbitrary. Then by definitionm(fa)| > 2™2. Sincef is quadratic,
fa is affine. Then Injf,) is an affine subspace. Hence its size is a power of 2, the oslilibity of being
equal 2. So|Im(fa)| = 2™ for any non-zer@, which means that, is 2-to-1 for all non-zera.

As was shown in[[26] there is no APN quadratic permutatiorr @®&for m even, and so, by previous
theorem, there is no weakly APN quadratic permutation @/&for m even. This result was extended by
Nyberg [23] to the case of permutations with all componeatsiglly bent (formeven), in other words there
is no APN partially bent permutation. We are able to exterab¢hresults by relaxing the conditiédPN
permutationsvith the conditionweakly APN permutatian

Definition 5 ([13]) A Boolean functionf is partially bent if there exists a linear subsp&(¢d ) of F™ such
that the restriction of toV (f) is affine and the restriction df to any complementary subspddef V(f),
V(f)@U =F™, is bent. In that casd, can be represented as a direct sum of the restricted fusciien,
fly+z)=f(y)+ f(2), forallze V(f) andy € U.

Remark 4The spac#/(f) is formed by the linear structures bf in fact
fx+a)+f(x)=f(y+z+a)+f(y+z2=f(y)+f(29+f(@)+f(y)+f(z2)=f(a)

wherez,a € V(f) andy € U. Moreover, since bent function exist only in even dimensior dim(V (f)) is
even. That means ifis even, the dimension &f(f) is even.
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Theorem 4 For m even, a weakly APN permutation has at n?é"§tl partially bent components. In partic-
ular f cannot have all partially bent components.

Proof Let f be a weakly APN permutation. Assume by contradiction thaas more thar@% partially
bent components, and denote those Vfith. ., fs. f is a permutation, then difW (fi)) ZOforall 1<i <s,
otherwisef is bent and it is not balanced. From Remiark 4 we have that thest at least three nonzero
vectors in eacN (fj). So

S
IV(fi)] >3s>2"-1.
M

Thus, there existand j such that € V(fi) "V (fj) with a# 0. This impliesn{f) > 2, which contradicts
that f is weakly APN, since in that casg ) < 1 ([18] Theorem 1).

From the fact that a quadratic Boolean function is partibtyt (see for instancg [23]), we have imme-
diately the following result.

Proposition 4 Let m even. Let f be a weakly APN permutation. Then f has at 2ibst— 1 quadratic
components.

Proof That depends on the fact that the set of components of dezgget equal to 2 is a vector space.

7 Properties linked toA(f)

In this last part of the paper we give some properties linketié value oh(f) of a vBf. For allac F™\ {0},
let Va be the vector spacév € F™ : deq(fa,v)) = 0}. By definition, if t = max,cpm (0, dim(Va), then
A(f) =2t —1.

Proposition 5 Let f be a vBf and & F™\ {0}. f(a)+V;" is the smallest affine subspaceit containing
Im(fa). In particular, A(f) = 0 if and only if there does not exist a proper affine subspad&afontaining
Im(fa), foralla e F™\ {0}.

Proof Letac F™\ {0}. Note thal, = {v € F™ : (f,,) is constan. Letx € F™, thenfy(x) = f(a) +w, for
somew € F™, and(fa(x),v) = c € F for all v € Va. In particularc = (f4(0),v) = (f(a),v) and so(w,V) = 0,
that is,w € V;-. Then we have Irff,) C f(a) + V4. Now, letA be an affine subspace containing(fia),
thenA = f(a) +V, for some vector subspabein F™. For allv € V., we have(fa,v) = (f(a),v) =ce F
and so, by definitiony+ C V,. ThenA containsf (a) 4 V;-.

Finally, A(f) = 0 if and only ifV; = {0} for alla € F™\ {0}, and so our claim follows.

Remark 5The proposition above gives a sufficient conditioa, Ai(f) = 0, such that the derivates do not
map the message space to an affine subspace; and so a tygelobisacan be avoided, as noted in Section

B
The following proposition is well-known, but we propose a@frin our context.

Proposition 6 Let f: F™ — F™ be a Boolean permutation such thétf ) = 0. Then f has no partially bent
(quadratic) components.

Proof A(f) = 0 implies that the linear structures set of any componentadas only 0. So if there exists a
partially bent (quadratic) component, then it is bent. Big a permutation, then this is not possible.
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For the particular case of 4-bit S-Boxes we obtain two moselts.

Corollary 3 Let f: F* — F* be a vBf permutation.
(i) If A(f) =0. Then f is weakly APN andg;(if ) = 15.
(ii) If f is weakly APN and g(f) = 14. ThenA(f) = 1.

Proof Let f be weakly APN, sa(f) < 1 (seel[18]). From Propositidd 6, the claim follows.
So for weakly APN functiorf : F4 — F4 we have all the three cases. Below we provide an example for
each case reporting the algebraic normal form of the commuterué f :
— A(f) =0 andnz(f) = 15:
f1 = XqXoX3 + XoX3Xq + X1X3 + XoX3 -+ X1 + X2 + X3 + X4
f2 = X1XoXg + X1 X + X1 X3 + XoX3 + XoXg + X4
f3 = X1XaX4 + X1 X2 + X1X3 + X1 X4 + X3+ X4
f4 = XoX3Xg + X1 X4 + XoXaq + X2 + X3Xa4 + X3 + X4
— A(f) =1andns(f) =15:
f1 = X1X3Xa + XoX3Xa + X2X3 + XoXa + XaX4 + X1
fo = XgXoXgq + X1X3 + X1 X4 + XoX3 + X2
f3 = XqXoX3 + X1X2X4 + X1X3Xgq + X2X3X4 + X1 X2 + X3X4 + X3
fa = XoXgXa + X1X2 + X1Xq + XoX3 + X4
— A(f) =1andns(f) = 14:
f1 = XaXoX3 + X1XoXg + X1 X3 + X1 + XoX3Xq + XoX3 + X3Xg
f2 = X1XoXa + X1X2 + X1XaXa + X1 X3 + X Xq + X2
f3 = XqXoXg + X1 X2 + X1X3X4 + X1X3 + XoXg4 + X3
fa4 = XaX3 + X1 Xg + XoX3Xq + XoXq4 + X4

8 Conclusions

As reported in Sectiol 2 and 3, weak differential unifornaityd the cryptographic condition that the image
of the derivatives of an S-Box is never a coset of a subspatteafiessage space are useful to prevent hiding
certain type of trapdoors in the related cipher.

First we study the algebraic structure of the image of thévdtves of a vectorial Boolean function. In
particular we prove that for any vBf that is weakly APN but ARN, there is at least one derivative whose
image is not an affine subspace (Theokém 1). In the case ofrfonetions, to be weakly APN but not APN
guarantees that none of the image of the derivatives is areaftibspace (Corollaly 2). An interesting open
problem is to find families of vBf that are not monomial havihgs property.

Then we show that the sufficient conditiaff ) = 0, that ensures weakly APNness for the 4-bit vBf’s,
does not guarantee this property forbit vBf's with m > 4 (TheoreniR). It would be interesting to find
sufficient conditions that imply weakly APNness for any> 4.

In Sectiorn[ we extend some results known for the (quadrpticjally bent components of an APN
permutation to the case of weakly APN permutations.

In the last section we report some other results linked toséthee ofri( f), in particular we prove that
this value is zero if and only if the derivates bflo not map the message space to an affine subspace.
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