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[1] We propose closed-form approximate solutions for the moments of a nonreactive tracer
that can be used in applications, such as risk analysis. This is in line with the tenet that
analytical solutions provide useful information, with minimum cost, during initial site
characterization efforts and can serve as a preliminary screening tool when used with prior
knowledge. We show that with the help of a few assumptions, the first-order solutions of the
concentration moments proposed by Fiori and Dagan (2000) can be further simplified to
assume a form similar to well-known deterministic solutions, therefore facilitating their use
in applications. A highly anisotropic formation is assumed, and we neglect the transverse
components of the two-particle correlation trajectory. The proposed solution compares well
with the work of Fiori and Dagan while presenting the same simplicity of use of existing
solutions for homogeneous porous media.
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1. Introduction
[2] Despite the fact that stochastic hydrogeology is well

consolidated in the literature [e.g., Rubin, 2003], its accep-
tance among practitioners is still limited. In part, this is due
to the limited amount of data typically available in applica-
tions, which in most cases are insufficient to infer the
model of spatial variability. Some of the difficulties hinder-
ing the application of stochastic models have been allevi-
ated by recent technological breakthroughs, which allow to
acquire, at an affordable cost, much more data than in the
past, for aquifer characterization and inference of the sto-
chastic model of spatial variability at a variety of scales
[e.g., Hubbard and Rubin, 2000]. However, in order to
facilitate the use of stochastic methods, simple-to-use proto-
cols for risk analysis should be devised, possibly based on
simple analytical solutions [e.g., Andricevic and Cvetkovic,
1996].

[3] In this work, we provide a simple expression to
quantify uncertainty in concentration of a nonreactive
tracer, which is based on closed-form solutions for the con-
centration ensemble mean and variance. The latter depends
on the interplay between macroscale advection and local
scale dispersion, and it is representative of the dilution
processes occurring in porous formations [e.g., Kapoor
and Kitanidis, 1998]. In particular, we show that with a
few assumptions the expressions available in literature for

the concentration distribution in a homogeneous media
[e.g., van Genuchten and Alves, 1982] can be used to
obtain the ensemble mean concentration, while similar
expressions can be obtained for the coefficient of variation.
The only parameters required are those characterizing the
model of spatial variability, which can be obtained through
field tests. This approach is appealing because it allows to
evaluate uncertainty in the concentration and its effect
on risk analysis with a minimized additional effort with
respect to solving flow and transport within a deterministic
framework.

2. Problem Formulation
[4] A passive tracer is instantaneously released within a

source volume Vo of dimensions L1, L2, and L3 in a 3-D
heterogeneous formation. We assume that the inlet concen-
tration is constant, C0, within Vo, while the initial concen-
tration in the porous systems is zero. The quantity of
interest here is the concentration Cðx; tÞ, where x(x1, x2, x3)
is the Cartesian coordinate vector and t is time. In addition,
we introduce the following assumptions:

[5] 1. Flow is at steady state in an unbounded domain
and uniform in the average with the mean velocity
UðU ; 0; 0Þ.

[6] 2. The hydraulic logconductivity Y ¼ ln K, where K
is the hydraulic conductivity, is represented as a statisti-
cally stationary Random Space Function and the porosity is
constant. Y is normally distributed and statistically station-
ary with constant mean hY i and variance �2

Y . Its covariance
function CY is given by a Gaussian model with IY ;h and IY ;v
denoting the horizontal and vertical integral scales of Y,
respectively.

[7] 3. Hydrodynamic local dispersion is given by a
constant and isotropic diagonal dispersion tensor D ¼
diag½Dd�.
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[8] Because of the randomness of K, C is also random.
In this study we consider the following expressions for the
ensemble mean concentration hCi and variance �2

C :

hCi
C0
¼
Y3

i¼1

�ðxi � UitÞ; (1)

�2
C

C2
0
¼
Y3

i¼1

Z Li=2

�Li=2
�iðxi; aiÞdai � hCi2; (2)

where aða1, a2, a3Þ is the initial location of a solute particle
within Vo and the functions � and �i are given by Fiori
and Dagan [2000]

�ðxi � UitÞ ¼
1
2

erf
xi � Uit þ Li=2ffiffiffiffiffiffiffiffiffiffi

2Xt;ii
p

 !

� 1
2

erf
xi � Uit � Li=2ffiffiffiffiffiffiffiffiffiffi

2Xt;ii
p

 ! (3)

�iðxi; aiÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Xt;ii

p exp
�ðxi � ai � UitÞ2

2Xt;ii

" #
ðerf ½A� � erf ½B�Þ;

(4)

where A and B assume the following expressions:

A ¼ Li þ ðxi � UitÞð1� �ii þ ai�iiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xt;iið1� �2

iiÞ
p

B ¼ �Li þ ðxi � UitÞð1� �ii þ ai�iiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xt;iið1� �2

iiÞ
p ;

(5)

with �ii ¼ Zii=Xt;ii denoting the trajectory autocorrelation
function. Xt;ii and Zii are the one- and two-particle covarian-
ces and are assumed to be multi-Gaussian [Fiori and
Dagan, 2000, equations (14) and (15)]. In the following we
develop an analytical solution for �2

C under the hypothesis
of small source (i.e., L1 � IY ;h, L2 � IY ;h and L3 � IY ;v)
and �2

Y < 1, which builds on the semianalytical solution by
Fiori and Dagan [2000].

3. Approximation for r2
C

[9] The integrals contained in (2) cannot be solved ana-
lytically and therefore numerical quadratures are needed or,
as an alternative, suitable simplifications should be intro-
duced such that an analytical expression can be obtained.
We decide for the second option since resorting to several
numerical quadrature hampers the use of (2) in applications.
As shown by Fiori and Dagan [2000], the computation of
the trajectory autocorrelation function, �ii, also requires three
numerical quadratures [Fiori and Dagan, 2000, equations
(14) and (15)]. We start by observing that it is more conven-
ient (and robust) to develop an approximate solution of the
coefficient of variation CVC ¼ �C /hCi instead of �2

C :

CV2
C ¼

Y3

i¼1

Z Li=2

�Li=2
�iðxi; aiÞdai

Y3

i¼1

�ðxi � UitÞ
" #2 � 1: (6)

The three integrals over ai in (6) can be carried out after
assuming that ai varies slightly in (5), given the small source
assumption, such that the following approximation can be
introduced into equation (5): ð1� �ii þ �iiaiÞ ffi (1 � �ii).
This is consistent with the assumption of small source (Li/IY
� 1) introduced by Fiori and Dagan [2000] in order to com-
pute Zii. With this approximation, equation (6) reduces to

CV2
C ¼

Y3

i¼1

�ðxi � UitÞ

Y3

i¼1

�ðxi � UitÞ
� 1; (7)

where the function � assumes the following expression
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1
2

erf
ðxi � UitÞð1� �iiÞ þ Li=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

" #

� 1
2

erf
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2Xt;iið1� �iiÞ
p

" #
:

(8)

Equation (8) is very simple, as it coincides with the func-
tion � (3) used in the expression (1) after replacing
ðxi � UitÞ with ðxi � UitÞ ð1� �iiÞ and Xt;ii with Xt;ii
ð1� �iiÞ. When �ii ! 0 such that � ! �, CVC (7) tends to
0. Hence, �2

C can be approximated by a simple transforma-
tion of the classic deterministic solution for hCi.

[10] The above simplifications eliminated three numeri-
cal quadratures, but this does not suffice for an analytical
expression for �ii and �2

C . However, as discussed by Fiori
and Dagan [2000], the main contribution to �2

C stems from
longitudinal spreading, with the longitudinal autocorrela-
tion function �11 that overwhelms both �22 and �33. Longi-
tudinal spreading increases the interfacial area of the plume
with the surrounding fluid thus enhancing the effect of local
scale dispersion. Therefore, we may further simplify the
analysis and assume �22 ’ 0 and �33 ’ 0, such that (7)
reduces to

CV2
C ¼

�ðx1 � UtÞ
�ðx1 � UtÞ � 1 (9)

Equation (9) is the core of the present contribution since it
provides CVC in a simple and convenient form for applica-
tions. Once CVC is known, �2

C can be computed through
the following expression: �2

C ¼ hCi
2 CV2

C with hCi given
by (1).

[11] Despite its simplicity, (9) still requires a few numeri-
cal quadratures in order to compute �11. This term is crucial
as it accounts for the interactions between large scale advec-
tion and local scale dispersion, which control dilution, and
therefore it is expected to exert a large impact on �2

C .
[12] To further simplify the computation of �11, we con-

sider that most sedimentary formations are characterized
by a strong anisotropy in the integral scales, i.e., e ¼ IY ;v/
IY ;h � 1 [see Rubin, 2003, Table 2.1]. Indelman and Dagan
[1999] showed that for e� 1, the longitudinal velocity co-
variance function u11 is well approximated by �2

uCY=�
2
Y ,

where �2
u is the longitudinal velocity variance. This approx-

imation leads to the suppression of the term k2
i /k2 (where ki
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is the wave number) in the expression of Zii [see Fiori and
Dagan, 2000]. Furthermore, in agreement with a common
assumption adopted in applications, we assume the Fickian
limit (i.e., Xt;ii ¼ 2UAiit, with Aii denoting the macrodisper-
sivity tensor) when computing �11. For a Gaussian CY and
with the above simplifications, an analytical form for �11
can be obtained as follows:

�11ðt0Þ ¼
ePe
2�t0

ln 1þ 4�t0 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPeþ 2�t0Þðe2Peþ 2�t0Þ

p
Peð1þ eÞ2

" #
;

(10)

where t0 ¼ tU=IY ;h and Pe ¼ UIY ;h=Dd . Expression (10)
assumes the following limiting values:

�11 ! 1 ðt0 ! 0Þ
�11 ! e Pe lnðt0=PeÞ=t0 ðt0 ! 1Þ:

(11)

The large time limit (11) is the same as that obtained for
the exponential CY model by the first-order exact solution
proposed by Fiori and Dagan [2000], and is independent of
the particular model adopted for CY. Summarizing, equa-
tion (9), together with equations (8), (3), and (10), allows
the computation of CVC, which after multiplication with
(1), leads to �C . As opposed to other approaches, where the
probability density function (pdf) of C is analytically
derived from governing equations [e.g., Tartakovsky et al.,
2009; Sanchez-Vila et al., 2009], a complete characteriza-
tion of C in terms of its pdf can be achieved after adopting
the Beta distribution model which depends on hCi and �C
only [see, e.g., Fiorotto and Caroni, 2002; Bellin and
Tonina, 2007].

4. Comparison With the Work of Fiori and
Dagan [2000]

[13] We test here the approximation developed against
the complete solution provided by Fiori and Dagan [2000].
For the Fiori and Dagan [2000] solution, Xt;ii and Zii are
calculated through numerical quadratures. The comparison
is performed in terms of concentration statistics evaluated
along the ensemble mean plume trajectory at the following
two positions: �x ¼ (2.5IY ;h, 0, 0) and �x ¼ (10IY ;h, 0, 0).
Simulation input data are included in the figure captions.

[14] Figures 1a and 1b depict CVC as a function of
dimensionless time for Pe ¼ 1000 at x1/IY ;h ¼ 2.5 and 10,
respectively. The proposed approximated solution (AP) is
smaller than CVC provided by Fiori and Dagan [2000]
(FD2000). We also note that the difference between AP
and FD2000 reduces with increasing distance from the
source. At a given position, larger differences are observed
along the leading and trailing fringes of the plume where
uncertainty is the highest [Rubin, 1991]. At short distances
from the source, these differences are mainly due to
neglecting �22 and �33 in (9). Nevertheless, the approximate
solution is able to capture the main features of the full solu-
tion, with reasonable tolerance.

[15] Similar results, but for Pe ¼ 100, are depicted in
Figures 2a and 2b. Comparing Figure 1 with Figure 2, we
note that at the centroid location of the ensemble mean
plume the agreement between AP and FD2000 improves

when decreasing Pe. Similarly to the case with Pe ¼ 1000,
the main differences are observed at the trailing fringe of the
plume. These differences are slightly larger for Pe ¼ 100
(compare Figures 1 and 2). Again, this is an outcome of
neglecting �22 and �33 in the model for CVC, given that their
impact on dilution is enhanced for smaller Pe.

[16] In Figure 3, we evaluate CVC at the mean plume
centroid, for Pe ¼ 100 and 1000. As expected, CVC

decreases with travel distance. Figure 3 also illustrates that
uncertainty is larger at higher Pe. Although AP underesti-
mate CVC, and thus the uncertainty, when compared to
FD2000, the overall comparison is good. Note that this
underestimation may be a positive outcome of our approxi-
mation because the solution of FD2000 generally overesti-
mates �2

C since it neglects the dependence of �ii on the
separation vector between particle positions at the source.
This has also been shown numerically by Tonina and Bellin
[2008]. Furthermore, the performance of AP (relative to

Figure 1. Coefficient of variation of the concentration
CVC versus dimensionless time at the distances (a) x1/IY ¼
2.5 and (b) x1/IY ¼ 10 along the mean plume trajectory
(x2 ¼ x3 ¼ 0). The solid line indicates the exact first-order
solution by Fiori and Dagan [2000] (FD2000), while the
dashed line indicates our approximation (AP). Results are
for Pe ¼ 1000, L1¼ L2 ¼ 0.1IY ;h, L3 ¼ 0.1IY ;v, e ¼ 0:1, and
�2

Y ¼ 0.3.
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FD2000) improves with decreasing Pe and the differences
between AP and FD2000 are due to the assumptions listed
in section 3.

5. Summary and Final Remarks
[17] The importance of quantifying uncertainty in con-

taminant transport has been emphasized in the hydrogeo-
logical community over the past years [Rubin, 2003].
Several field evidences and theoretical developments illus-
trated the significance of concentration fluctuations and our
inability to model in detail the concentration field. As
pointed out by Fitts [1996] and Kapoor and Kitanidis
[1998], peak concentrations found in the field can be larger
than the maximum mean concentration modeled through
the common approach used in most applications (the stand-
ard deterministic approach). The uncertainty in the concen-
tration is generally very large (especially for nonergodic
cases) and therefore cannot be ignored. Accounting for �2

C
in practical applications is of interest since it allows one to
evaluate an upper bound on exceedance probabilities.
Moreover, �2

C is an indicator of the proximity of the mean
concentration to the actual, erratic concentration. The chal-
lenge is that most expressions for �2

C require numerical quad-
ratures and are provided in a rather complex mathematical

form to be used in conjunction with the available determinis-
tic solution.

[18] In this work, we report a simple-to-use expression to
estimate concentration uncertainty. The solution for CVC

developed here relies on the first-order approximation of
Fiori and Dagan [2000] and consequently inherits its
assumptions (e.g., steady state uniform-in-the-average flow,
small �2

Y ), while introducing the following further approxi-
mations: (1) �22 and �33 are neglected, (2) highly aniso-
tropic formation (e� 0:1), and (3) small source, such that
ai varies slightly in equation (6). Despite these assumptions,
the limits of applicability of the Fiori and Dagan [2000] so-
lution goes beyond expected, as shown by Tonina and
Bellin [2008] (e.g., source dimensions as large as 10IY). As
pointed out by Bellin et al. [1994], if CVC is used as a mea-
sure of uncertainty, then point concentrations can be opera-
tionally equivalent as the concentration within a sampling
device of dimensions smaller than 0.2IY. Our approxima-
tion performs well against the first-order solution of Fiori
and Dagan [2000] at the mean plume’s centroid. At the
plume’s fringe, where uncertainty is highest, the quality of
the approximation deteriorates but it is still acceptable in
applications.

[19] As a final remark, we highlight that our approxima-
tion, when used with prior knowledge, could provide useful
information toward allocation of resources and data acquisi-
tion, which in turn could be used for model refinement and
conditioning. This is particularly important in health risk
assessment where multiple sources of uncertainty exists
and characterization efforts should be prioritized [e.g., de
Barros et al., 2009]. Within this context, our approximate
solution may serve as a preliminary tool of analysis. We
favored simplicity in the mathematical expressions without
compromising accuracy in the solutions for the concentra-
tion moments. We argue that in applications, the amount of
uncertainty is so large that it becomes difficult to justify the
use of complex models (especially in the presence of scarce
data and early stages of analysis) and also to predict in great
detail the concentration field.

Figure 3. Coefficient of variation of the plume’s centroid
motion versus dimensionless time. Results for Pe ¼ 100
and 1000 using FD2000 and AP. In all cases, L1 ¼ L2 ¼
0.1IY ;h, L3 ¼ 0.1IY ;v, e ¼ 0:1, and �2

Y ¼ 0.3.

Figure 2. Same as Figure 1, but for Pe ¼ 100.
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