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Closed circulatory systems display an exquisite
balance between vascular elasticity and viscous
fluid effects, to induce pulse-smoothing and avoid
resonance during the cardiac cycle. Stents in the
arterial tree alter this balance through stiffening and
because a periodic structure is introduced, capable of
interacting with the fluid in a complex way. While
the former feature has been investigated, the latter
received no attention so far. But periodic structures are
the building blocks of metamaterials, known for their
‘non-natural’ behaviour. Thus, the investigation of a
stent’s periodic microstructure dynamical interactions
is crucial to assess possible pathological responses.
A one-dimensional fluid–structure interaction model,
simple enough to allow an analytical solution for
situations of interest involving one or two interacting
stents, is introduced. It is determined: (i) whether
or not frequency bands exist in which reflected
blood pulses are highly increased and (ii) if these
bands are close to the characteristic frequencies of
arteries and finally, (iii) if the internal structure of
the stent can sensibly affect arterial blood dynamics.
It is shown that, while the periodic structure of
an isolated stent can induce anomalous reflection
only in pathological conditions, the presence of
two interacting stents is more critical, and high
reflection can occur at frequencies not far from the
physiological values.
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1. Introduction
Vascular elasticity interacts with blood viscosity in the arterial tree during the cardiac cycle
to avoid dynamic effects such as resonance, pressure blow-up and collapsing pulses. A stent,
implanted for the treatment of vascular stenosis or aneurysm, alters this delicate interaction,
so that it affects the local blood flow patterns and constitutes a site of blood pulse-wave
reflection [1]. This last effect is due to the increased stiffness and the changes in local blood
vessel geometry, characterizing the stented region [2,3]. It depends strongly on the mechanical
properties, geometry and the overall design of the stent [4–6]. The compliance characteristics
of blood vessel regions, where stents are placed, also differ from those of a healthy tissue
due to the presence of atheromatous plaques (stiffening), leading to stenosis (altered geometry
characteristics) and finally altered pulse characteristics [7–10].

Typically, stents are much smaller than the principal wavelength of arterial blood pulses and,
as a consequence, pulse wave reflection is expected to be small. However, as also mentioned
in [1], even the slightest changes in local flow pulsatility may have important physiological
consequences. Another important aspect is that stent–pulse wave interactions may alter the
blood pulse characteristics even in sites away from the stented region [1,3]. Finally, certain
cardiovascular conditions (e.g. atrial fibrillation) are associated with shorter pulse wavelengths
[11]. In these cases, increased frequencies manifest, especially when irregularities in the pulse
waveform occur and, consequently, higher harmonics are present, so that even the internal
structure of the stent might be significant during reflection/transmission. The aim of the present
article is to examine the possibility of increased reflection frequency bands due to the placement
of a single stent and the interaction of two successive stents, taking into account also the
periodicity of the stent structure. Bloch waves in periodic structures play a central role in
this endeavour.

The analysis of Bloch waves is common in solid-state physics, problems of photonics and
acoustics in periodic multi-scale media [12,13]. In the last decade, the notion of metamaterials
has been introduced and developed regarding applications in wave propagation problems (e.g.
[14–16]). As illustrated in [14,17], and in the book [18], there exists a formal connection between
dispersion properties of waves in infinite periodic media and transmission problems developed
for multi-scale structured interfaces [19–21]. Therefore, the presence of a stent in the arterial tree
configures in a sense a metamaterial, so that ‘non-natural’ effects typical of these materials might
be induced.

In the present paper, an analytical model, which takes into account the fluid–solid interaction
in the framework of a transmission problem for a pulsating flow through a stent reinforcing a
blood vessel, is proposed. It is known (e.g. [1–3]) that there is a reflection of the wave from
the boundary of the stent. However, the connection of the reflection/transmission properties
with the microstructure of the periodic stent has not been addressed. Intuitively, it is expected
that the stent periodic structure will not affect phenomena in the low-frequency regime due
to the large wavelength of the pulses. The important issue of frequency bands affected by the
stent periodic structure is also addressed in this paper. Moreover, the interaction between two
stents separated by a finite distance is analysed for the first time. It is demonstrated that the
reflection and transmission coefficients for a system of stents depend strongly on their distance
of separation. Analytical formulae are presented here to evaluate the reflections coefficients, and
the transmission resonances are also identified.

A basic feature of this study is the derivation of a simple model, capable of incorporating the
effects of the stent microstructure in pulse reflection analysis. Among the desired characteristics
of such a model are: low spatial dimensionality, linearity and the minimum number of free
parameters. Given these characteristics, several significant blood flow aspects, such as viscosity
and local fluid–elastic or rigid body interactions [1,2,22], complicated blood flow patterns and
turbulent flow issues [1,2,7], are not addressed. However, the proposed model could provide
indications, in terms of critical locations in the arterial tree or critical parameter values, for efficient
application of more involved, large-scale, computationally intensive simulations.
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The paper is organized as follows: initially, the linear one-dimensional arterial pulse model
with variable wave propagation speed is formulated. This model is supplemented by specific
forms of pulse wave speed variation within each characteristic cell of the stent (§2). An analytical
solution for the time harmonic volumetric flow pulse in a stented region is presented in §3.
Subsequently, the reflection–transmission characteristics for a simple stented region are analysed
with respect to the pulse frequency and stent properties, including the microstructure (§4). In §5,
the case of two successive stents is examined and a parametric analysis with respect to the length
of the stented regions and their separation length is conducted. Finally, the findings of the present
study are applied to a case of practical interest involving the comparison, in terms of reflection
characteristics, of two-stent placement strategies: a single long stent or two successive smaller
ones with a narrow gap between them.

2. Governing equations
The analysis is based on a simple one-dimensional system simulating pulse transmission through
a stented region of a blood vessel. The linearized one-dimensional model derived from averaging
and integration, over the blood vessel cross section, of the mass and momentum conservation
equations will be adopted [7,23]. The speed of sound will be approximated using essentially the
Moens–Korteweg [24,25] model.

(a) The linearized one-dimensional model
In the case of low Mach number flows and upon neglecting all nonlinear effects (e.g. convective
terms, turbulent flow, etc.), several simplified models assume constant pressure p and velocity
u over the blood vessel cross-sectional area A. If, in addition, the changes in the cross-sectional
area with respect to a reference state are assumed to be very small, i.e. A/Ao ≈ 1, the mass and
momentum balance equations are [7]

∂p
∂t

+ c2 ρ

Ao

∂q
∂x

= 0 (2.1)

and
∂q
∂t

+ Ao

ρ

∂p
∂x

= 0, (2.2)

where x and t are the spatial and temporal variable, respectively, q = Au is the volumetric
flow, c is the disturbance propagation speed and ρ is the fluid density, approximately constant
(independent of the pressure) for a nearly incompressible fluid. Assuming sufficient regularity of
the volumetric flow and pressure, we can eliminate one of the two fields. Solving for q, system
(2.1)–(2.2) reduces to the D’ Alembert-type equation

∂2q
∂t2 − ∂

∂x

(
c2 ∂q

∂x

)
= 0, (2.3)

where, following [3,7], the disturbance propagation speed is approximated as

c2 ≈ β
√

Ao

2ρ
, (2.4)

with

β =
√

πEb
(1 − v2)Ao

. (2.5)

In the definition of β, E and v are the Young’s modulus and Poisson’s ratio of the blood
vessel tissue, respectively, b is the thickness of the blood vessel and ρ denotes the density of the
blood. Note that in equation (2.3), c = c(x) is assumed to be a function of the spatial variable. This
assumption will allow for variable blood vessel properties in the stented area.
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Remark 2.1. Equations (2.1) and (2.2) could also be solved for the pressure p, to yield

∂2p
∂t2 − c2 ∂2p

∂x2 = 0. (2.6)

In this study, equation (2.3) will be adopted. This form is preferred because the dependent
variable appears in divergence form. This form is more suitable for variational methods, such
as finite elements. Thus, the analytical solutions that will be derived in this study could
constitute a reference for the application and verification of finite-element-based procedures for
similar problems.

(b) A model for the stented region
Inside the stented region, material properties of the blood vessel tissue are bound to differ from
those of a healthy part [3,26]. Differences are related not only to the presence of the stent itself
but also to the blood vessel condition that dictated the presence of the stent (e.g. arteriosclerosis)
[8–10]. With reference to equation (2.4), Young’s modulus, blood vessel thickness and diameter
are expected to vary. If the speed of sound for the healthy region is denoted by cref, the variability
in the stented region will be assumed in the form

c(x) = cref + cA + cBf (x), (2.7)

where cA, cB are constants and f (x) is a periodic function of period l, i.e. f (x + l) = f (x), such that
0 ≤ f (x) ≤ 1. Constant cA represents the minimum variation from the healthy region value due to
the altered properties of the damaged blood vessel and the stent or stent/graft system (figure 1).
Constant cB is linked to the maximum deviation, measured from the cref + cA state, which occurs
within the characteristic cell. This deviation is related to the effect of ‘stiffer’ regions associated
with the alloy wire stent grid patterns or the localized presence of alloy wires that constitute
the stent grid in a stent/graft system. In the following, assuming that the stent consists of n ∈ N

periodic cells and is confined between x = 0 and x = nl, the specific forms

c(x) = cref + cA + cB sin2 πx
l

(2.8a)

and

c(x) = cref + cA + cB cos2 πx
l

(2.8b)

will be adopted (figure 1). Using the length l of the periodic cell as a characteristic dimension, the
non-dimensional variables

ξ = x
l

η = creft
l

Q = q
qref

, (2.9)

may be introduced. In (2.9), qref represents some reference value of the volumetric flow. Then,
equation (2.3) takes the form

∂2Q
∂η2 − ∂

∂ξ

((
c

cref

)2
∂Q
∂ξ

)
= 0. (2.10)

Adopting the model presented in the previous section for the stented area, it is

c(ξ )
cref

=

⎧⎪⎪⎨
⎪⎪⎩

1, ξ ∈ (−∞, 0)

1 + A2 + B2 sin2(πξ ) or 1 + A2 + B2 cos2(πξ ), ξ ∈ (0, n)

1 , ξ ∈ (n, +∞),

(2.11)

where A2 = cA/cref and B2 = cB/cref. For a typical stent, the definition of the periodic cell and the
variability in the disturbance propagation speed are defined schematically in figure 1.
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blood vessel wall
periodic cell

plaque

cBsin2 (px/l)
cref + cA

–

cBcos2 (px/l)

l

c(x)

x

Figure 1. Schematic of the stented area: definition of the periodic cell and assumptions about the disturbance propagation
speed variability. (Online version in colour.)

Note further that it is
∫ 1

0

c(ξ )
cref

dξ =
∫ 1

0
[1 + A2 + B2f (ξ )] dξ = 1 + A2 + B2

2
, (2.12)

for both functions f (ξ ) = sin2(πξ ) and f (ξ ) = cos2(πξ ). Thus, the value

C = 1 + A2 + B2

2
(2.13)

is the mean non-dimensional speed in each characteristic cell.

Remark 2.2. The case f (ξ ) = sin2(πξ ) corresponds to a periodic cell which is more compliant at
its edges, whereas the case f (ξ ) = cos2(πξ ) corresponds to a periodic cell which is more compliant
at its central region.

3. Time-periodic volumetric flow rate in stented regions
In this section, the transmission problem for a blood vessel containing a stented region will
be analysed. The closed form solution of the specific problem for the determination of the
transmission and reflection coefficients is possible. Assuming solutions of the form Q = y(ξ )eiωη,
where ω is the angular frequency, equation (2.3) becomes

d
dξ

(
[1 + A2 + B2f (ξ )]

2 dy
dξ

)
+ ω2y = 0. (3.1)

Differentiating with respect to ξ and setting

[1 + A2 + B2f (ξ )]2 dy
dξ

= Y, (3.2)

it is
d2Y
dξ2 +

[
ω

1 + A2 + B2f (ξ )

]2
Y = 0. (3.3)

Assuming that f (ξ ) = sin2(πξ ) or f (ξ ) = cos2(πξ ) and applying the formulae 2 sin2 ϑ = 1−cos2ϑ

and 2cos2 ϑ = 1 + cos2ϑ , respectively, leads to

d2Y
dξ2 + ω2

C2(1 ∓ ε cos 2πξ )2 Y = 0, (3.4)
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Figure 2. Characteristic exponent region corresponding to periodic solutions (a) and characteristic exponent values
corresponding to solutions with increasing/decreasing amplitude (b). (Online version in colour.)

where the minus sign corresponds to the choice f (ξ ) = sin2(πξ ), the plus sign to f (ξ ) = cos2(πξ )
and

ε = B2

2C
= B2

2 + 2A2 + B2 < 1. (3.5)

Assuming that ε � 1 and since |cos 2πξ | ≤ 1, the expansion

(1 ∓ ε cos 2πξ )−2 = 1 ± 2ε cos 2πξ + O(ε2) ≈ 1 ± 2ε cos 2πξ (3.6)

might be adopted. Finally, equation (3.4), using (3.6) and setting πξ = z ⇒ dξ = π−1dz, produces
the form

d2Y
dz2 +

[( ω

πC

)2 ± 2ε
( ω

πC

)2
cos 2z

]
Y = 0. (3.7)

The above equation is the standard Mathieu equation (Y′′ + [a ± 2q cos(2z)]Y = 0), with

a =
( ω

πC

)2

and q = ε
( ω

πC

)2 = εa.

⎫⎪⎪⎬
⎪⎪⎭ (3.8)

The general solution is

Y(ξ ) = D1MS

(
a, εa, π

(
1
2

− ξ

))
+ D2MC

(
a, εa, π

(
1
2

− ξ

))
, (3.9)

for f (ξ ) = sin2(πξ ) and
Y(ξ ) = D1MS(a, εa, πξ ) + D2MC(a, εa, πξ ), (3.10)

for f (ξ ) = cos2(πξ ), where MS, MC are the Mathieu functions, linearly independent solutions of
(3.7). Given a, q = εa, there exists a characteristic exponent µ, such that (see [27,28])

Yμ(ξ ) = eiμξ g(ξ ), (3.11)

where g(ξ + π ) = g(ξ ) and µ = µ(ε,a) [27].
The case of periodic solutions corresponds to Im µ = 0 (figure 2a). Solutions of increasing

amplitude occur if Im µ < 0 and solutions of decreasing amplitude if Im µ > 0 (figure 2b). Note that
by using both positive and negative values of the term q = εa, in figure 2, both cases f (ξ ) = cos2(πξ )
and f (ξ ) = sin2(πξ ) have been considered.
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4. The transmission problem for a single-stented region
In this section, the pulse transmission problem for a blood vessel with a stented area will be
analysed. The reflection–transmission scheme in figure 3 is representative of the phenomenon of
pulse propagation through a stented area. An incoming pulse moving from the negative x-axis
towards positive x-values reaches the stented area at x = 0 and is partially reflected. The portion
of the pulse that enters the stented area is again partially reflected at x = nl (the right-hand end
of the stent). Another reflection occurs as the back-propagating pulse (the one reflected at x = nl)
reaches x = 0.

In the following, the volumetric flow rate in the reflection region, stented region and
transmission region are assumed of the form

QR = qR(ξ )eiωη, −∞ < ξ < 0. (4.1)

Q = y(ξ )eiωη, 0 < ξ < n, (4.2)

QT = qT(ξ )eiωη, n < ξ < ∞, (4.3)

respectively, where ω is the angular frequency. The flow rate in the reflection region consists of
the original incoming wave, with unit amplitude and the reflected wave with amplitude R

qR = eiωξ + Re−iωξ = (1 + R) cos ωξ + i(1 − R) sin ωξ . (4.4)

In the transmission region, the outgoing wave (moving towards x = + ∞) is of amplitude T,
i.e.

qT = Teiωξ = T cos ωξ + iT sin ωξ . (4.5)

Finally, in the stented region, evoking equation (3.1), we obtain

y = − 1
ω2

dY
dξ

, (4.6)

where Y is one of (3.10) or (3.11), depending on the particular form of f (x), as prescribed in the
previous section. Four constants, namely R, T, D1, D2 appear in total in (4.1), (4.2) and (4.3), taking
into account equation (3.10) or (3.11). For the solution of the transmission problem, consisting
of the determination of the reflection coefficient |R| and the transmission coefficient |T|, four
matching conditions for the fields prescribed at (3.11)–(4.3) are needed. These conditions are
obtained by the (i) continuity of the volumetric flow rate q and (ii) the continuity of c2∂q/∂x
appearing in divergence form in equation (2.3), at the interfaces x = 0 and x = nl. The first of these
conditions expresses continuity of mass and the second conservation of energy at the interfaces.
The four interface conditions (in non-dimensional variables) read

dqR

dξ
= Y(ξ ) and qR(ξ ) = − 1

ω2
dY
dξ

, at ξ = 0 (4.7)

dqT

dξ
= Y(ξ ) and qT(ξ ) = − 1

ω2
dY
dξ

, at ξ = n. (4.8)

Using (4.1)–(4.3), (4.7) and (4.8), a linear system (for the determination of R, T, D1, D2) of the
form Au = b is formulated, where

A =

⎡
⎢⎢⎢⎣

iω 0 0 1
1 0 ω−2π 0
0 iωeiωn −MS(n) −MC(n)
0 eiωn ω−2πM′

S(n) ω−2πM′
C(n)

⎤
⎥⎥⎥⎦ , u =

⎡
⎢⎢⎢⎣

R
T

D1
D2

⎤
⎥⎥⎥⎦ and b =

⎡
⎢⎢⎢⎣

iω
−1
0
0

⎤
⎥⎥⎥⎦ , (4.9)

and the ‘canonical’ form of the Mathieu functions has been employed, i.e. MC(0) = M′
S(0) = 1.

For the solution of the above system, Cramer’s rule may be employed.
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Figure 3. Reflection–transmission phenomenon for the stented area. (Online version in colour.)
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Figure 4. Reflection–transmission diagrams for the single-stent case and different numbers of characteristic cells, in the cases
where the internal structure is taken into account; (ε = 0.03) and not (ε = 0). In all cases, it is f = cos2(πξ ) and C = 3.
(Online version in colour.)

(a) Numerical evaluation of transmission and reflection
Transmission properties of stented areas will be studied with respect to parameters C, ε,
characterizing the stiffness magnitude of the stented region, compared to that of a healthy blood
vessel and the number of periodic cells n ∈ N in the stent. Both cases of periodic functions, namely
f (x) = cos2(πx/l) and f (x) = sin2(πx/l), will be examined. The purpose of this analysis is (i) to
determine whether or not there exist frequency bands in which reflection is maximized and (ii)
to investigate if these frequency bands are close to the characteristic frequencies of arterial blood
pulses. In the case where these frequency bands exist and include characteristic frequencies of
arterial blood pulses, the inherent periodic microstructure of a stent might contribute to pulse
blockage and reversal. When frequencies of maximal reflection are far from the characteristic
pulse frequencies, the periodic structure of the stent is not affecting blood pulse transmission.
Physical intuition suggests that the microstructure of the stent will not affect long pulse waves
like those appearing in the arterial tree under normal healthy conditions.

Figures 4 and 5 are reflection–transmission diagrams for a single stented area. In both figures,
the case f = cos2(πξ ) is considered. The first column, corresponding to ε = 0, is the case where
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(Online version in colour.)

constant wave speed is assumed along the stent (no internal structure). Figure 4 corresponds
to the mean speed C = 3, whereas figure 5 corresponds to C = 1.5, i.e. a more compliant stent.
The squares of the reflection and transmission coefficients are plotted along with the calculated
quantity

E = |R|2 + |T|2 = 1. (4.10)

The above relation expresses the energy conservation in the system considered and provides
a further test of the accuracy regarding the computations. Two numbers of characteristic cells
inside the stented area have been considered, namely n = 4, 12. It can be seen that, in all cases,
there is a frequency band where reflection is maximized, for ε = 0.03 (right column). As the
number of the characteristic cells increases (total length of the stent increases), so does reflection.
However, the high reflection zone becomes narrower. At the same time, a band of increased
transmission occurs before the intense reflection tongue. In all cases, for small values of the non-
dimensional frequency ω, and in particular for ω < 1, no visible changes due to the effect of the
stent microstructure occur at the reflection and transmission coefficients.

(b) Transmission for increased compliance of the stent
Figure 5 corresponds to exactly the same parameters as figure 4, with only C being different
and equal to 1.5. It is evident, from the second column plots in figure 5, that the maximized
reflection band is now displaced towards lower frequencies. This indicates that a very compliant
stent, having at the same time an intense internal structure, can be problematic. That is because
intense reflection zones tend to appear in lower frequencies. In all cases, frequency bands where
transmission characteristics are enhanced appear before the intense reflection tongues.

As increased mean compliance leads to a translation of the intense reflection zones towards
lower non-dimensional frequencies, and thus the frequency bands of arterial blood pulses in
normal conditions, the limiting case should be examined. Combining equations (2.13) and (3.5),
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C = (1− ε)−1. (Online version in colour.)

results to

C = 1 + A2

1 − ε
. (4.11)

The limiting case is thus A = 0 and C = (1 − ε)−1.
Figure 6 is a plot of this scenario for a very small value of the stent internal structure parameter

(ε = 0.02, figure 6a) and for a relatively higher value, i.e. ε = 0.03 (figure 6b). The value ε = 0 is not
depicted in this case, as it corresponds to full transmission, given that no stent would actually
exist, or it would be infinitely compliant. This situation approximately appears for ε = 0.02 and
n = 4, i.e. a small stent with negligible variation in the properties due to its internal structure.
As the number of characteristic cells increases, a ‘bump’ in the response appears approximately
at ω ≈ 3.2.

The reflection–transmission diagram changes significantly as the microstructural parameter ε

increases. Again, as the number of characteristic cells (i.e. the total length of the stent) increases,
the high reflection zones become narrower and more intense. However, even in this extreme
case, the critical non-dimensional frequency values are very high to affect normal blood pulse
waves, which are characterized by much lower frequencies. The intense reflection zones might be
significant for higher harmonics of pulse waves related to pathological situations such as atrial
flutter or atrial fibrillation.

The effect of compliance variation inside the characteristic cell, as expressed by function f (x)
is examined next. The two prescribed cases f (ξ ) = cos2(πξ ) and f (ξ ) = sin2(πξ ) are compared in
figure 7, for ε = 0.03, n = 4, 12 and two values of the mean non-dimensional wave speed C = 1.5,
3. It is seen that the case f (ξ ) = cos2(πξ ) yields systematically a slightly higher absolute maximum
in the reflection coefficient. This is justified by the fact that, in this case, the jump in the overall
stiffness, during the transition from the healthy to the stented region, is higher as f (ξ ) = cos2(πξ )
attains it maxima at the ends of the stent (see also figure 1).

The case f (ξ ) = sin2(πξ ) appears to translate high reflection bands at lower non-dimensional
frequencies. For this last case, the zone of increased transmission characteristics appears after the
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colour.)

high reflection frequency zone. Before this zone, bands of small increase in the reflection appear.
The situation is different for f (ξ ) = cos2(πξ ), where the high reflection band precedes the high
reflection tongue and slightly increased reflection bands then follow.

Finally, contour plots of the effect that the internal structure parameter has on the reflection
coefficient are depicted in figure 8, for f (ξ ) = cos2(πξ ) (figure 8a) and f (ξ ) = sin2(πξ ) (figure 8b).
The limit case C = (1 − ε) −1 is examined. The results in figure 8 verify the fact that high reflection
zones become narrower and more intense as the number of characteristic cells increase. In
addition, it is evident from comparing the first and second column contour plots that increased
reflection zones ahead of the main reflection tongue characterize the case f (ξ ) = sin2(πξ ).

The above analysis of the transmission problem for a single stent reveals that the answer to
the first point is positive, so that there are frequencies for which reflection becomes very intense.
Figures 4–8 indicate that frequency bands exist, within which very high reflection is observed.
Regarding the second point, whether these frequency bands are near characteristic frequencies of
blood pulses in humans, the following simplified analysis may apply. The non-dimensional cyclic
frequency is related to the actual frequency vd (in Hz), as

ω = 2π lvd

cref
. (4.12)

Thus, the characteristic length of the periodic cell is

l = ωcref

2πvd
. (4.13)

Based on figure 6, the worst case scenario appears to be ω ≈ 3. Typical values for cref are in the
order of 4 m s−1, so that

l ≈ 2v−1
d m. (4.14)
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Figure 8. Reflection coefficient difference |R(ε)| − |R(0)| comparison between the stent characteristic cell structure
f (ξ )= cos2(πξ ) (a) and f (ξ )= cos2(πξ ) (b). (Online version in colour.)

It can be concluded from equation (4.7) that the blood pulse frequency must be on the order
of hundreds of Hz, when l ≈ 4–5 mm. The fact that the typical frequency of blood pulses is
approximately 1.3 Hz suggests that the periodicity in the stent structure is not associated with
minimization of transmission through a single stented area, at least not in extreme pathological
cases. This result is in agreement with the physics of the related phenomena as the blood pulse
waves are much longer than typical stent lengths [1,7].

The intense reflection zones, however, could affect higher harmonics in pathological situations
(e.g. supraventricular tachycardia [11]), where severe irregularities in the pulse waveforms are
present and the energy spectrum spreads to include higher frequencies. Pathological conditions
such as atrial flutter or atrial fibrillation are characterized by pulses of frequency much larger
than the normal (for supraventricular tachycardia 250 or more pulses per minute can occur).
In addition, the associated pulse waveform is highly irregular, suggesting the presence of
higher harmonics. In these cases, more sophisticated models, able to represent accurately short
pulse waves and perhaps nonlinear effects, should be applied. However, the proposed model
is a fast and reliable approach to provide guidelines for efficient application of large-scale,
computationally intensive simulations.

5. The transmission problem for two successive stented regions
In this section, the pulse transmission problem for a blood vessel with two successive stented
areas will be analysed. The reflection–transmission scheme in figure 9 is representative of the
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Figure 9. Reflection–transmission phenomenon for two successive stented regions. (Online version in colour.)

pulse propagation phenomenon through a series of stented regions. An incoming pulse moving
from the negative x-axis towards positive x-values reaches the first stented region at x = 0 and
is partially reflected. The portion of the pulse that enters the stented region is again partially
reflected at x = nl (the right-hand end of the first stent). The pulse, that subsequently propagates
inside the region between the two stents, reaches the second stented region, at point x = nl + d,
where it is partially transmitted and reflected. The reflection wave returns to the first stented
region and again reflection and transmission occurs. Finally, the wave that travels inside the
second region undergoes another reflection as it exits, at x = (n + m)l + d and progresses to the
transmission region. The overall configuration, consisting of several partially reflecting interfaces,
is expected to produce a ‘richer’ reflection coefficient diagram than that representing the case of
a single stent. That is, bands of increased reflection are expected to appear in lower frequencies,
thus possibly affecting lower harmonics of the arterial pulse spectrum.

In the following, the volumetric flow rate in the reflection region, stented regions, intermediate
region and transmission region are assumed of the form

QR = qR(ξ )eiωη, −∞ < ξ < 0, (5.1)

Q1 = y1(ξ )eiωη, 0 < ξ < n, (5.2)

Q = v(ξ )eiωη, n < ξ < n + d, (5.3)

Q2 = y2(ξ )eiωη, n + d < ξ < n + m + d (5.4)

and QT = qT(ξ )eiωη, n < ξ < ∞, (5.5)

respectively. The flow rate wave in the reflection and transmission regions are the same as those
appearing in the case of a single stent. In the intermediate region, it is

v(ξ ) = D3e−iωξ + D4eiωξ . (5.6)

In the stented regions, the same approximation as that used for a single stent is employed. The
constants for the first stented regions are D1, D2, while the two constants for the second stented
region are D5, D6.

Eight constants will appear in total in the analysis for the two stented regions. For the
solution of the transmission problem, and the determination of the reflection coefficient |R| and
transmission coefficient |T|, eight matching conditions are needed. These conditions are obtained
again by the continuity of the volumetric flow rate and the continuity of c2∂q/∂x, appearing in
divergence form in equation (2.3), at the interfaces x = 0 and x = nl, x = (n + d)l and x = (n + m + d)l.
The eight interface conditions (in non-dimensional variables) read

dqR

dξ
= Y1(ξ ) and qR(ξ ) = − 1

ω2
dY1

dξ
, at ξ = 0, (5.7)

dv

dξ
= Y1(ξ ) and v(ξ ) = − 1

ω2
dY1

dξ
, at ξ = n (5.8)

dv

dξ
= Y2(ξ ) and v(ξ ) = − 1

ω2
dY2

dξ
, at ξ = n + d (5.9)
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Figure 10. Reflection–transmission diagrams for two stents with n=m= 4, and different values of d, ε. In all cases, it is
f = cos2(πξ ), C = 3. (Online version in colour.)

and
dqT

dξ
= Y2(ξ ) and qT(ξ ) = − 1

ω2
dY2

dξ
, at ξ = m + n + d. (5.10)

Using these equations, a linear system (for the calculation Di, i = 1, 2, . . . , 6, R and T) of the
form Au = b is formulated. The explicit form of the system can be found in appendix A.

(a) Transmittance of the two-stent system
A parametric study regarding the reflection and transmission characteristics of a two-stent system
will be conducted. In the following analysis, the case f (x) = cos2(πξ ) will be considered. For the
two-stent system response, several control parameters exist. Apart from the stent compliance
moduli C and ε, there are the number of periodic cells in the first stent n ∈ N, the number of
periodic cells in the second stent m ∈ N and the distance between the two stented regions d.

Figures 10 and 11 are reflection transmission diagrams for the cases of the mean non-
dimensional wave speed C = 3 and C = 1.5. In both cases, the number of periodic cells for each
stent is n = m = 4. The case where no effects of the microstructure are considered, that is ε = 0, is
presented in column a. The respective R–T diagrams for ε = 0.03 are depicted in column b. The
parameter varying at each row is the distance between the two stents d. The plots at the first and
second row in figures 10 and 11 correspond to the choices d = 0.5, 4, respectively.

Figure 10 is suggestive of the implications induced by the presence of two stents successively
placed in a blood vessel and having distance d between them. Though the effect of increasing ε

is very small and again enhances reflection at high frequencies, the effect of altering the distance
between the stents is dramatic, even in the low-frequency regime. Bands of maximized reflection,
with values even higher than |R| = 0.9 appear in the non-dimensional frequency range 0 < ω < 1.
As the distance between the two stents increases, the first reflection coefficient peak decreases,
while the following high reflection zone moves to lower frequencies. The presence of variability
in the stent properties influences the response in very high non-dimensional frequencies
(ω ≈ 10).
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Figure 11. Reflection–transmission diagrams for two stents with n=m= 4, and different values of d, ε. In all cases, it is
f = cos2(πξ ), C = 1.5. (Online version in colour.)

(b) Influence of the stent compliance on the transmittance of the two-stent system
The influence of the stent microstructure is more evident in the case C = 1.5, shown in figure 11,
referring to a two-stent geometry. In this case, the stents are more compliant, compared to that
characterized by C = 3, and the effect of increased ε becomes more significant. For d = 4, an
increased reflection zone appears approximately at ω ≈ 5.

The limit case C = (1 − ε)−1 of a very compliant stent, where the influence of the periodic
structure is crucial, is analysed in the following. Results for this case are shown in figure 12. The
values d = 0.5, 1, 4 and 8 are considered. In all cases, it is ε = 0.03. Finally, the number of periodic
cells in the stents is n = m = 4 for figure 12a, while it is n = m = 8 for figure 12b. In all cases ‘bumps’
in the reflection–transmission coefficient curves appear around the non-dimensional frequency
ω ≈ 3. The amplitude of these spikes increases with increase in the number of periodic cells. As
the distance d between the two stents increases, more spikes of lower amplitude appear. The main
spikes at the same time become narrower.

The significant effect of the distance d between the two stents will be studied in more detail.
For this purpose the case of no periodic structure inside the stents is assumed and thus ε is set to
zero. Contour plots of the reflection coefficient as a function of the non-dimensional frequency ω

and the distance between the stents d are depicted in figures 13 and 14. Figure 13 corresponds to
a relatively ‘stiff’ stent with C = 3.

Figure 14 contains similar results for the case of a more compliant stent with C = 1.5. In
both cases four different combinations of the stent lengths are examined. These combinations
are: (i) n = m = 4, (ii) n = 4 and m = 8, (iii) n = 8 and m = 4 and (iv) n = m = 8. In all cases, the
regime of relatively low non-dimensional frequencies is studied. Figure 13, corresponding to
C = 3, indicates that a very narrow band exists, characterized by high transmission at very
low frequencies, i.e. ω < 0.05, and occurring for all values of d. Regarding the configuration
with n = m = 4, for relatively higher frequencies, increase in d leads to the formation of high
reflection zones with intermediate narrow enhanced transmission bands. For a given frequency,
as d increases, the high reflection zones become narrower. An important observation is that the
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Figure 12. Reflection–transmission diagrams for two stents with n=m= 4, and different values of d. It is f = cos2(πξ ),
C = (1− ε)−1 and ε = 0.03. (Online version in colour.)

diagrams for n = 4 and m = 8 (figure 13b) and for n = 8 and m = 4 (figure 13c) are identical. This
fact suggests that, at least in this frequency range, the reflection–transmission characteristics of a
two-stent system with different stents do not depend on which of the stents appears first. This
observation might be important for practical situations when the small or large stents need to be
placed at a specific location. As the number of periodic cells increases (case n = m = 8), a narrow,
enhanced transmission band is formed approximately at ω = 1.2 for all values of d. High reflection
branches converge to this zone from lower and higher frequency regions.
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Figure 13. Contour plot of the reflection coefficient for the case of two successive stents as a function of the frequencyω and the
non-dimensional distance between them d. The stent has C = 3 and no periodic structure (ε = 0). (Online version in colour.)

Similar patterns characterize the case of a more compliant stent with C = 1.5, depicted in
figure 14. For the more compliant stent, the enhanced transmission band at ω ≈ 1.2 appears in
all of the cases considered. Additionally, other high reflection zones appear in the case n = m = 8,
at ω ≈ 0.6 and ω ≈ 1.8. The general rule is that these narrow high reflection bands appear in lower
frequencies as the length of the stents and/or the compliance increases. Again, for C = 1.5, the
reflection–transmission characteristics of the two-stent system with different stents do not depend
on which of the stents appears first.

It is important finally to mention the relation between the case of the two stents with the small
gap between them and the Fabry–Pérot-type reflector configurations [29,30]. Qualitatively similar
phenomena regarding the study of water wave propagation over patches of undulating seabed
profiles with a gap between them have been studied recently in [31].

6. Discussion and conclusion: a long or two successive smaller stents?
The effect of the stent periodic structure on pulse reflection and transmission coefficients, as well
as the interaction of two successively placed stents has been investigated. It has been established
that the periodic structure inside a stent can create high reflection phenomena at high frequencies.
This could potentially affect higher harmonics of irregular pulses in pathological cases. The case
of two successively placed stents is more critical, as high reflection zones appear in relatively
low frequencies. The gap between the stents influences significantly the reflectance and the
corresponding range of frequencies.
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In this section, a test case is presented where the arterial pulse wave reflection is investigated at
a blood vessel region, treated with either one long stent or two smaller stents placed one after the
other featuring a very small gap between them (see also figure 15). The objective is to study which
strategy is preferable in terms of reflection–transmission characteristics. The optimum strategy of
course depends on several other important factors, which include alteration of local blood flow
patterns, re-blockage effects, as well as the mechanical response of the vessel wall and facilitation
of the operation procedure.

The only criterion adopted in the following parametric analysis will be the minimization of
the reflection coefficient. The parameters to be considered are: the mean value stent compliance as
indicated by C, the magnitude of the periodicity in the internal structure ε, the number of periodic
cells in the two successive stents and the gap between them. In all cases, the long stent will consist
of 10 periodic cells. The total length of the two successive stents will be exactly the same.

The effect of the stent compliance and the number of characteristic cells in the two successive
stents is analysed in figure 16. The reflection coefficient for C = 1.5 and d = 0.5 is shown in
figure 16a. The first row corresponds to the selection n = 5, m = 5 and the second to the selection
n = 3, m = 7. The analysis of the previous section suggests that the symmetric cases where n > m
yield identical reflection coefficients and therefore need not be examined. Figure 16b depicts the
case of a less compliant stent (C = 3) for the same set of parameters. As expected, the reflection
coefficients attains higher maxima for the case C = 3.
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Figure 15. Treatmentwith a longor two successive small stents featuring a small gap of lengthd between them. (Online version
in colour.)
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Figure 16. Comparison of reflection coefficients |R| for the cases of a single and two successive stents. Column (a) corresponds
to more compliant stents. (Online version in colour.)

Figure 16 verifies that the cases of the single long stent and the two successive stents are
qualitatively and quantitatively different. The irregularities that appear when two stents are
present include both high reflection bands, where the reflection coefficient is almost twice the
one corresponding to the single stent case, and enhanced transmission zones.

Two important conclusions are to be drawn. First, at very low frequencies both cases lead to
the same reflection coefficient values. Second, the single stent case yields higher values of the
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Figure 17. Comparison of reflection coefficients |R| for the cases of a single and two successive stents for the case of a very
compliant stent. The effect of the periodic structure of the stents is depicted in (b). (Online version in colour.)

reflection coefficient in the vicinity of the lowest frequency reflection tongue. In that sense, the
case of the two stents might be favourable. However, the next high reflection tongues are less
intense in the case of the single stent. Thus, if higher harmonics are considered, the two-stent case
might lead to significant increase regarding the reflection observed.

The influence of the stent periodic structure is examined in figure 17, for both strategies. A very
compliant stent (C = 1.2) is considered. Figure 17a is the reference case with ε = 0 and figure 17b
depicts the case ε = 0.01, where the periodic microstructure is present. Each row corresponds
to a different value of the distance d. For low non-dimensional frequencies, i.e. ω < 0.5, the two-
stent approach appears to be favourable in terms of reduced reflection. The first reflection coefficient
peak reduces with increase in distance d, up to d = 1. However, if higher frequencies are considered
(0.5 < ω < 0.8), the single-stent treatment is better. This is because increased reflection tongues
appear in this frequency range for the two-stent system. Their magnitude increases with increase
in d. After this frequency range, which is the most critical in terms of applications, the two-
stent system produces a succession of high transmittance and high reflection zones. The intensity
of these zones increases with increase in d. The stent internal structure affects only very high
frequencies.
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As a conclusion, it can be stated that the use of two successive stents might be favourable in
low frequencies, if the gap between them is appropriately selected. However, this approach must
be carefully analysed and designed, as a shift to slightly higher frequencies might produce the
opposite result. Future studies, using the present model, could be employed for a more detailed
analysis of transmittance characteristics in specific frequency bands. These studies will provide
more precise indications about case-dependent, optimum treatment strategies.
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Appendix A
The linear system for the determination of the reflection and transmission coefficients in the case
of two successive stented regions is Au = b, with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iω 0 0 1 0 0 0 0
1 0 ω−2π 0 0 0 0 0
0 0 MS(n) MC(n) −iωeiωn iωe−iωn 0 0
0 0 ω−2πM′

S(n) ω−2πM′
C(n) eiωn e−iωn 0 0

0 0 0 0 −iωeiωn1 iωe−iωn1 MS(n1) MC(n1)
0 0 0 0 eiωn1 e−iωn1 ω−2πM′

S(n1) ω−2πM′
C(n1)

0 −iωe−iωn2 0 0 0 0 MS(n2) MC(n2)
0 eiωn2 0 0 0 0 ω−2πM′

S(n2) ω−2πM′
C(n2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A 1)

u =
[
R T D1 D2 D3 D4 D5 D6

]T
, (A 2)

and b =
[
iω −1 0 0 0 0 0 0

]T
, (A 3)

where n1 = n + d and n2 = n + m + d, and the ‘canonical’ form of the Mathieu functions has been
employed, i.e. MC(0) = M′

S(0) = 1.

References
1. Duraiswamy N, Schoephoerster RT, Moreno MR, Moore Jr JE. 2007 Stented artery flow

patterns and their effects on the artery wall. Annu. Rev. Fluid Mech. 39, 357–382. (doi:10.1146/
annurev.fluid.39.050905.110300)

2. Alderson H, Zamir M. 2004 Effects of stent stiffness on local hemodynamics with particular
reference to wave reflections. J. Biomech. 37, 339–348. (doi:10.1016/S0021-9290(03)00289-6)

3. Sherwin SJ, Formaggia L, Peiró J, Franke V. 2003 Computational modelling of 1D blood flow
with variable mechanical properties and its application to the simulation of wave propagation
in the human arterial system. Int. J. Numer. Meth. Fluids 43, 673–700. (doi:10.1002/fld.543)

4. Migliavacca F, Petrini L, Montanari V, Quagliana I, Auricchio F, Dubini G. 2005 A predictive
study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys.
27, 13–18. (doi:10.1016/j.medengphy.2004.08.012)

5. Moravej M, Mantovani D. 2011 Biodegradable metals for cardiovascular stent application:
interests and new opportunities. Int. J. Mol. Sci. 12, 4250–4270. (doi:10.3390/ijms12074250)

6. Colombo A, Stankovic G, Moses JW. 2002 Selection of coronary stents. J. Am. Coll. Cardiol. 40,
1021–1033. (doi:10.1016/S0735-1097(02)02123-X)

7. Van de Vosse FN, Stergiopulos N. 2011 Pulse wave propagation in the arterial tree. Annu. Rev.
Fluid Mech. 43, 467–499. (doi:10.1146/annurev-fluid-122109-160730)

 on July 24, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1146/annurev.fluid.39.050905.110300
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110300
http://dx.doi.org/10.1016/S0021-9290(03)00289-6
http://dx.doi.org/10.1002/fld.543
http://dx.doi.org/10.1016/j.medengphy.2004.08.012
http://dx.doi.org/10.3390/ijms12074250
http://dx.doi.org/10.1016/S0735-1097(02)02123-X
http://dx.doi.org/10.1146/annurev-fluid-122109-160730
http://rspa.royalsocietypublishing.org/


22

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170015

...................................................

8. Gosling RG, Dunbar G, King DH, Newman DL, Side CD, Woodcock JP, Fitzgerald DE, Keates
JS, MacMillan D. 1971 The quantitative analysis of occlusive peripheral arterial disease by
a non-intrusive ultrasonic technique. Angiology 22, 52–55. (doi:10.1177/000331977102200109)

9. Stergiopulos N, Spiridon M, Pythoud F, Meister JJ. 1996 On the wave transmission and
reflection properties of stenoses. J. Biomech. 29, 31–38. (doi:10.1016/0021-9290(95)00023-2)

10. Stergiopulos N, YoungDF, Rogge TR. 1992 Computer simulation of arterial flow with
applications to arterial and aortic stenoses. J. Biomech. 25, 1477–1488. (doi:10.1016/
0021-9290(92)90060-E)

11. Katritsis DG, Camm AJ, Gersh BJ. 2016 Clinical cardiology: current practice guidelines. Oxford,
UK: Oxford University Press.

12. Carta G, Brun M. 2015 Bloch-Floquet waves in flexural systems with continuous and discrete
elements. Mech. Mat. 87, 11–26. (doi:10.1016/j.mechmat.2015.03.004)

13. Brun M, Giaccu GF, Movchan AB, Movchan NV. 2012 Asymptotics of eigenfrequencies
in the dynamic response of elongated multi-structures. Proc. R. Soc. A 468, 378–394.
(doi:10.1098/rspa.2011.0415)

14. Cabuz AI, Felback D, Cassagne D. 2007 Homogenization of negative-index composite
metamaterials: a two-step approach. Phys. Rev. Lett. 98, 037403. (doi:10.1103/PhysRevLett.
98.037403)

15. Willis JR. 2011 Effective constitutive relations for waves in composites and metamaterials.
Proc. R. Soc. A 467, 1865–1879. (doi:10.1098/rspa.2010.0620)

16. Milton GW. 2013 Adaptable nonlinear bimode metamaterials using rigid bars, pivots, and
actuators. J. Mech. Phys. Solids 61, 1561–1568. (doi:10.1016/j.jmps.2012.08.012)

17. Bigoni D, Movchan AB. 2002 Statics and dynamics of structural interfaces in elasticity. Int. J.
Solids Struct. 39, 4843–4865. (doi:10.1016/S0020-7683(02)00416-X)

18. Lekner J. 1987 Theory of reflection of electromagnetic and particle waves. Dordrecht, The
Netherlands: Springer Science+Business Media.

19. Brun M, Guenneau S, Movchan AB, Bigoni D. 2010 Dynamics of structural interfaces: filtering
and focussing effects for elastic waves. J. Mech. Phys. Solids 58, 1212–1224. (doi:10.1016/
j.jmps.2010.06.008)

20. Brun M, Movchan AB, Jones IS. 2013 Special issue on dynamics of phononic materials
and structures ‘phononic band gap systems in structural mechanics: finite slender elastic
structures and infinite periodic waveguides’. J. Vib. Acous. 135, 041013. (doi:10.1115/
1.4023819)

21. Carta G, Brun M, Movchan AB. 2014 Dynamic response and localisation in strongly damaged
waveguides. Proc. R. Soc. A 470, 20140136. (doi:10.1098/rspa.2014.0136)

22. Capuani D, Bigoni D, Brun M. 2005 Integral representations at the boundary for Stokes flow
and related symmetric Galerkin formulation. Arch. Mech. 57, 363–385.

23. Alastruey J, Passerini T, Formaggia L, Peiró J. 2012 Physical determining factors of the arterial
pulse waveform: theoretical analysis and calculation using the 1-D formulation. J. Eng. Math.
77, 19–37. (doi:10.1007/s10665-012-9555-z)

24. Korteweg D. 1878 Uber die Fortpflanzungsgeschwindigkeit des schalles elastiischen röhnen.
Annalen der Physik. 241, 525–542. (doi:10.1002/andp.18782411206)

25. Moens A. 1878 Die Pulskurve. Leiden, The Netherlands: E. J. Brill (in German). See
https://archive.org/details/diepulscurve00iseb.

26. Zunino P et al. 2015 Integrated stent models based on dimension reduction: review and future
perspectives. Ann. Biomed. Eng. 44, 604–617. (doi:10.1007/sRSPA2017001510439-015-1459-4)

27. Abramowitz M, Stegun IA (eds). 1972 Handbook of mathematical functions. United States
Department of Commerce, National Bureau of Standards, Applied Mathematics Series 55,
10th printing.

28. Polyanin AD, Zaitsev VF. 2003 Handbook of exact solutions for ordinary differential equations,
2nd edn. London, UK: Chapman & Hall/CRC.

29. Fabry C, Pérot A. 1899 Theorie et application d’une nouvelle method de spectroscopie
interferentielle. Ann. Chim. Phys. 16, 115–146.

30. Pérot A, Fabry C. 1899 On the application of interference phenomena to the solution of various
problems of spectroscopy and metrology. Astrophys. J. 9, 87–115. (doi:10.1086/140557)

31. Couston LA, Guo Q, Chamanzar M, Alam MR. 2015 Fabry- Pérot resonance of water waves.
Phys. Rev. E 92, 043015. (doi:10.1103/PhysRevE.92.043015)

 on July 24, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1177/000331977102200109
http://dx.doi.org/10.1016/0021-9290(95)00023-2
http://dx.doi.org/10.1016/0021-9290(92)90060-E
http://dx.doi.org/10.1016/0021-9290(92)90060-E
http://dx.doi.org/10.1016/j.mechmat.2015.03.004
http://dx.doi.org/10.1098/rspa.2011.0415
http://dx.doi.org/10.1103/PhysRevLett.98.037403
http://dx.doi.org/10.1103/PhysRevLett.98.037403
http://dx.doi.org/10.1098/rspa.2010.0620
http://dx.doi.org/10.1016/j.jmps.2012.08.012
http://dx.doi.org/10.1016/S0020-7683(02)00416-X
http://dx.doi.org/10.1016/j.jmps.2010.06.008
http://dx.doi.org/10.1016/j.jmps.2010.06.008
http://dx.doi.org/10.1115/1.4023819
http://dx.doi.org/10.1115/1.4023819
http://dx.doi.org/10.1098/rspa.2014.0136
http://dx.doi.org/10.1007/s10665-012-9555-z
http://dx.doi.org/10.1002/andp.18782411206
https://archive.org/details/diepulscurve00iseb
http://dx.doi.org/10.1007/sRSPA2017001510439-015-1459-4
http://dx.doi.org/10.1086/140557
http://dx.doi.org/10.1103/PhysRevE.92.043015
http://rspa.royalsocietypublishing.org/

	Introduction
	Governing equations
	The linearized one-dimensional model
	A model for the stented region

	Time-periodic volumetric flow rate in stented regions
	The transmission problem for a single-stented region
	Numerical evaluation of transmission and reflection
	Transmission for increased compliance of the stent

	The transmission problem for two successive stented regions
	Transmittance of the two-stent system
	Influence of the stent compliance on the transmittance of the two-stent system

	Discussion and conclusion: a long or two successive smaller stents?
	References

