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Figure 13. Contour plot of the reflection coefficient for the case of two successive stents as a function of the frequencyω and the
non-dimensional distance between them d. The stent has C = 3 and no periodic structure (ε = 0). (Online version in colour.)

Similar patterns characterize the case of a more compliant stent with C = 1.5, depicted in
figure 14. For the more compliant stent, the enhanced transmission band at ω ≈ 1.2 appears in
all of the cases considered. Additionally, other high reflection zones appear in the case n = m = 8,
at ω ≈ 0.6 and ω ≈ 1.8. The general rule is that these narrow high reflection bands appear in lower
frequencies as the length of the stents and/or the compliance increases. Again, for C = 1.5, the
reflection–transmission characteristics of the two-stent system with different stents do not depend
on which of the stents appears first.

It is important finally to mention the relation between the case of the two stents with the small
gap between them and the Fabry–Pérot-type reflector configurations [29,30]. Qualitatively similar
phenomena regarding the study of water wave propagation over patches of undulating seabed
profiles with a gap between them have been studied recently in [31].

6. Discussion and conclusion: a long or two successive smaller stents?
The effect of the stent periodic structure on pulse reflection and transmission coefficients, as well
as the interaction of two successively placed stents has been investigated. It has been established
that the periodic structure inside a stent can create high reflection phenomena at high frequencies.
This could potentially affect higher harmonics of irregular pulses in pathological cases. The case
of two successively placed stents is more critical, as high reflection zones appear in relatively
low frequencies. The gap between the stents influences significantly the reflectance and the
corresponding range of frequencies.
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Figure 14. Contour plot of the reflection coefficient for the case of two successive stents as a function of the frequencyω and the
non-dimensional distance between them d. The stent has C = 1.5 and no periodic structure (ε = 0). (Online version in colour.)

In this section, a test case is presented where the arterial pulse wave reflection is investigated at
a blood vessel region, treated with either one long stent or two smaller stents placed one after the
other featuring a very small gap between them (see also figure 15). The objective is to study which
strategy is preferable in terms of reflection–transmission characteristics. The optimum strategy of
course depends on several other important factors, which include alteration of local blood flow
patterns, re-blockage effects, as well as the mechanical response of the vessel wall and facilitation
of the operation procedure.

The only criterion adopted in the following parametric analysis will be the minimization of
the reflection coefficient. The parameters to be considered are: the mean value stent compliance as
indicated by C, the magnitude of the periodicity in the internal structure ε, the number of periodic
cells in the two successive stents and the gap between them. In all cases, the long stent will consist
of 10 periodic cells. The total length of the two successive stents will be exactly the same.

The effect of the stent compliance and the number of characteristic cells in the two successive
stents is analysed in figure 16. The reflection coefficient for C = 1.5 and d = 0.5 is shown in
figure 16a. The first row corresponds to the selection n = 5, m = 5 and the second to the selection
n = 3, m = 7. The analysis of the previous section suggests that the symmetric cases where n > m
yield identical reflection coefficients and therefore need not be examined. Figure 16b depicts the
case of a less compliant stent (C = 3) for the same set of parameters. As expected, the reflection
coefficients attains higher maxima for the case C = 3.
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Figure 15. Treatmentwith a longor two successive small stents featuring a small gap of lengthd between them. (Online version
in colour.)

1.0
C = 1.5, e = 0

n = 10

n = 5, m = 5, d = 0.5

n = 10

n = 3, m = 7, d = 0.5

C = 3, e = 0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5

w w

w w
2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

|R
|

|R
|

(a) (b)

Figure 16. Comparison of reflection coefficients |R| for the cases of a single and two successive stents. Column (a) corresponds
to more compliant stents. (Online version in colour.)

Figure 16 verifies that the cases of the single long stent and the two successive stents are
qualitatively and quantitatively different. The irregularities that appear when two stents are
present include both high reflection bands, where the reflection coefficient is almost twice the
one corresponding to the single stent case, and enhanced transmission zones.

Two important conclusions are to be drawn. First, at very low frequencies both cases lead to
the same reflection coefficient values. Second, the single stent case yields higher values of the
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Figure 17. Comparison of reflection coefficients |R| for the cases of a single and two successive stents for the case of a very
compliant stent. The effect of the periodic structure of the stents is depicted in (b). (Online version in colour.)

reflection coefficient in the vicinity of the lowest frequency reflection tongue. In that sense, the
case of the two stents might be favourable. However, the next high reflection tongues are less
intense in the case of the single stent. Thus, if higher harmonics are considered, the two-stent case
might lead to significant increase regarding the reflection observed.

The influence of the stent periodic structure is examined in figure 17, for both strategies. A very
compliant stent (C = 1.2) is considered. Figure 17a is the reference case with ε = 0 and figure 17b
depicts the case ε = 0.01, where the periodic microstructure is present. Each row corresponds
to a different value of the distance d. For low non-dimensional frequencies, i.e. ω < 0.5, the two-
stent approach appears to be favourable in terms of reduced reflection. The first reflection coefficient
peak reduces with increase in distance d, up to d = 1. However, if higher frequencies are considered
(0.5 < ω < 0.8), the single-stent treatment is better. This is because increased reflection tongues
appear in this frequency range for the two-stent system. Their magnitude increases with increase
in d. After this frequency range, which is the most critical in terms of applications, the two-
stent system produces a succession of high transmittance and high reflection zones. The intensity
of these zones increases with increase in d. The stent internal structure affects only very high
frequencies.
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As a conclusion, it can be stated that the use of two successive stents might be favourable in
low frequencies, if the gap between them is appropriately selected. However, this approach must
be carefully analysed and designed, as a shift to slightly higher frequencies might produce the
opposite result. Future studies, using the present model, could be employed for a more detailed
analysis of transmittance characteristics in specific frequency bands. These studies will provide
more precise indications about case-dependent, optimum treatment strategies.
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Appendix A
The linear system for the determination of the reflection and transmission coefficients in the case
of two successive stented regions is Au = b, with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iω 0 0 1 0 0 0 0
1 0 ω−2π 0 0 0 0 0
0 0 MS(n) MC(n) −iωeiωn iωe−iωn 0 0
0 0 ω−2πM′

S(n) ω−2πM′
C(n) eiωn e−iωn 0 0

0 0 0 0 −iωeiωn1 iωe−iωn1 MS(n1) MC(n1)
0 0 0 0 eiωn1 e−iωn1 ω−2πM′

S(n1) ω−2πM′
C(n1)

0 −iωe−iωn2 0 0 0 0 MS(n2) MC(n2)
0 eiωn2 0 0 0 0 ω−2πM′

S(n2) ω−2πM′
C(n2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A 1)

u =
[
R T D1 D2 D3 D4 D5 D6

]T
, (A 2)

and b =
[
iω −1 0 0 0 0 0 0

]T
, (A 3)

where n1 = n + d and n2 = n + m + d, and the ‘canonical’ form of the Mathieu functions has been
employed, i.e. MC(0) = M′

S(0) = 1.
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