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The effects of recharge on flow nonuniformity 
and macrodispersion 

Yoram Rubin and Alberto Bellin• 
Department of Civil Engineering, University of California, Berkeley 

Abstract. The spatial, statistical structure of the fluid velocity field in the case of 
uniformly recharged heterogeneous aquifers is investigated, and the spatial covariances 
of the velocity field are derived. This information is necesary for an investigation of 
flow and macrodispersion using the Lagrangian formalism proposed by Dagan (1984). 
The resulting first two moments of the velocity are nonstationary. They are functions 
of a parameter • which characterizes the degree of flow nonuniformity and is related to 
the recharge. The displacement variances are computed and tested favorably using 
numerical simulations. Simple relations are developed which relate the transport 
parameters found for the case of uniform-in-the-average flows to nonuniform flows 
using a simple, nonlinear transformation of the travel time, based on B. 

1. Theoretical Development 

The effects of distributed recharge on the motion of 
passive solutes in heterogeneous porous media are investi- 
gated using the Lagrangian formalism suggested by Dagan 
[1989]. Our goal is to relate the kinetics of fluid particles in a 
spatially yahable velocity field to the evolution of the 
concentration field over time and space. Given the spatial 
variability in the velocity, this goal is hard to attain, yet the 
Lagrangian approach, posed in a stochastic framework, 
offers the possibility to bypass that difficulty. 

Our starting point is the specification of the concentration 
field associated with a single solute particle [Dagan, 1982, 
1984, 1989] 

AM 
AC(x, t, x0, to) ..... /5Ix- X(t, x 0, to)] (1) 

where A C denotes the incremental contribution to the con- 

centration at time t and at the space coordinate x due to a 
particle that was released at time t0 from x0. The mass of the 
particle is given by AM, and X(t; x0, to) denotes its 
displacement in space as a function of time (the terms in 
parenthesis will be omitted for brevity subsequently). Here, 
/5 is the Dirac delta, and n is porosity. Here and subse- 
quently, boldface letters denote vectors, capital letters de- 
note random functions, and lower case letters denote real- 
izations of random functions or constants. 

Equation (1) is a general model and in order to make it site 
specific, X should reflect the specific flow dynamics prevail- 
ing at a particular site. Under the conditions generally met in 
practice, X cannot be accurately specified since the conduc- 
tivity field is heterogeneous, and its variations cannot be 
mapped deterministically. An alternative is to model X as a 
random function. Such an approach allows one to treat the 
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problems of heterogeneity and data uncertainty quantita- 
tively and has a long, respectable tradition in the field of 
groundwater hydrology [see Gelhar, 1986; Dagan, !989; 
Neuman et al., 1987; Graham and McLaughlin, 1989a, b; 
Sposito et al., 1986]. 

It is common for the stochastic-Lagrangian methods 
[Dagan, 1989; Rubin, 1990] to determine the velocity field by 
solving the flow equation as a function of the boundary 
conditions and a random function model representing the 
heterogeneous conductivity field. The randomness of the 
conductivity leads to a definition of the velocity as a space 
random function (SRF). The velocity SRF can then be 
related to the statistics of X through a simple kinematic 
relationship. 

Dagan [1984] and Rubin [1990] reported on the spatial 
covariances of the velocity and the displacement X for the 
case of two-dimensional, steady flow in the horizontal plane, 
where the conductivity is modeled as a stationary SRF with 
an exponential, isotropic covariance function. Rubin and 
Dagan [1992b] and Zhang and Neuman [1992] reported on 
the velocity statistics in the case of three-dimensional, 
steady flow for an anisotropic, axisymmetric correlation 
structure of the logconductivity. Zhang and Neuman [ 1992] 
suggested some simple expressions for the case of three- 
dimensional isotropic logconductivity covariances. Re- 
charge was not considered in these studies. 

To our knowledge the effects of natural recharge on the 
displacement statistics have not been investigated so far using 
a stochastic framework, and this is the task undertaken here. 

In our study, recharge is assumed to be uniformly distrib- 
uted, and flow is considered at the regional scale [Dagan, 
1986], which justifies the shallow flow approximation. Hence 
flow is taken as essentially horizontal, and the vertical 
component of the flow induced by the recharge is assumed 
negligible. 

Toward this goal we define the fluid velocity at the space 
coordinate x = (x•, x2) as Uk(x) = Vk(x) + uk(x), k = 1, 
2, where Vk(x) = (Uk(x)), uk(x) is the local deviation of the 
velocity from its mean, and angle brackets denote the 
expectation operator. An alternative to a deterministic ap- 
proach is to derive the velocity SRF model given the spatial 
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structure of the hydraulic conductivity field by solving the 
flow equation coupled with Darcy's law 

1 OH(x) 
Uk(x) = -- K(x) k = 1, 2 (2) 

n Oxk 

where H denotes the hydraulic head and K is the hydraulic 
conductivity. Subsequently, we model K as a lognormal 
SRF, that is, K(x) = exp [ Y(x)], where Y is normal. Y in this 
study is assumed to have a constant mean, that is, Y = m r + 
Y', where m r is the expected value of Y and Y' is the local 
deviation from the mean. Using H(x) = (H(x)) + h(x) where 
(H(x)) represents a deterministic trend and h stands for the 
local deviation, then under a perturbation expansion, trun- 
cated at first order, (2) simplifies to 

Ut.(x) = - emy[1 + (x)] Jk(x) - (3) 
n Ox k 

where J•(x) = -O•tt(x))/Ox•. Equation (3) is the key to the 
derivation oœ the velocity SRF model as it relates Uk to the 
local variations Y and H. Previous works (Dagan [1982], 
Gelhat and Axness [1983], and many others) assumed -/k to 
be uniform. In the present study the presence of recharge 
precludes such an option, and ,/k becomes a function of the 
space coordinates. 

For a spatially correlated logconductivity and through (3) 
the velocity becomes a spatially correlated random function. 
The expected value of the velocity can be obtained by taking 
expected value over (3), yielding V•(x) = exp (m r),/k(x)/n, 
where (Y'(x)Oh(x)/Ox•) is ignored. After defining the veloc- 
ity random residual by subtracting the expected value from 
Uk, (3), the velocity spatial covariance tensor is obtained as 

u2•(x, x') 1 a 
= Cr(x, x') 

V(x) 

1 0 

J•(x) Ox• 
C rH(x', x) 

C x') 

1 0 2 

ox.ox 
r(x, x'); (4) 

j,k=l,2 

where the summation convention for repeating indices is not 
applicable. Equation (4) is an expansion of the relationship 
developed by Dagan [1984] for a constant Jk to the more 
general case of a nonuniform flows. In (4), C r(x, x') = 
(Y'(x)Y'(x')} denotes the spatial covariance of the logcon- 
ductivity, CrH(X, x') = {Y'(x)h(x')) is the log conductivity 
head cross covariance, and F(x, x') is the head residuals 
variogram, defined as 0.5([h(x) - h(x')]2}. 

C rn and F depend on the Y spatial structure and the 
average flow conditions. Dagan [1985] derived explicit ex- 
pressions for these functions for two-dimensional flow with a 
constant Jk and for a logconductivity field with an exponen- 
tial, isotropic covariance, and later [Dagan, 1989] for three- 
dimensional flow conditions and anisotropic covariances. 
Rubin and Dagan [1987] derived those functions for two- 
dimensional steady state flow conditions and for an isotropic 
exponential covariance but in the presence of a uniformly 
distributed recharge. Under these conditions the mean head 
gradient cannot be considered as constant in both magnitude 

and orientation. Substituting the explicit expressions derived 
for Crn [Rubin and Dagan, 1987, equations (16), (17), and 
(18)] and F [Rubin andDagan, 1987, equations (19), (20), and 
(21)] for the case of distributed recharge into (4) leads to 
explicit expressions for the velocity covariances. 

The general expressions obtained are cumbersome and not 
very informative, and hence are not repeated here. Results for 
particular flow configurations will be given subsequently. In 
general, both ull(x, x') and tt22(X , X') are nonstationary. In the 
case where the recharge is equal to zero the mean head 
gradient is not a function of the space coordinate, and the 
covariances simplify to the expressions which were derived by 
Rubin [1990] and were later tested numerically by Bellin et al. 
[1992]. 

The derivation of u O. is the first, though the major step, 
toward defining the displacement statistics. This goal is pur- 
sued in section 2 for the particular case of nonuniform, unidi- 
rectional flow. 

2. The Case of Nonuniform, Unidirectional 
Flow 

The case of nonuniform, unidirectional flow offers a good 
opportunity to consider macrodispersion in nonuniform 
flows. The transmissivity field is heterogeneous but statisti- 
cally stationary, and the only source of nonuniformity in the 
mean flow is the recharge. Such a flow regime prevails in a 
uniformly recharged domain bounded by two parallel head 
boundaries and two parallel no-flow boundaries. 

Consider a domain of dimension L between head boundaries 

H1 and H2, and a large, unspecified width between no-flow 
boundaries. The no-flow boundaries are parallel to the x 1 axis 
and the origin is on the H• boundary. This domain is uniformly 
recharged at a constant rate R. Under these conditions the 
expected value of the head H(x) is given by 

(H(x)) =-2T G + [H2 + x! + H• (5) L 

The mean head gradient is now a function of the x• coordi- 
nates only, that is, J(x) = - V{H) = (J1 (x • ), 0). From (5), 
J• and the recharge are related through 

Jl(Xl) -' J0[1 +/3(Xl - Xo)/I] (6) 

where Jo = Jl(xo) is the gradient at x o,/5 = R!/ToJo, R is 
the recharge, I is the integral scale of Y and T o = exp (m r) 
is the geometric mean of the transmissivity. 

Next, consider the covariance u 22 for separation distances 
along the mean flow direction 

tt22(Xl, X•; X•I, X•) (/•2(Xl, X•)U2(X•I, X•)) 

V02cr 2 = 2 2 y VoO' Y 

1 

+ 2 + + 2] 
18(er-r - 1)-8r2-err2-2r 3 

err 4 

/32(12(1 -e r + r)+ 7r 2 + 7err 2 + 3r 3 
32err 2 

(7) 
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where V0 = V•(x0), r = Ix'• - xl[/I andx 0 = 0was taken. 
As mentioned already, this result is obtained by coupling the 
expressions taken from Rubin and Dagan [1987] with (4). By 
taking x l = x'•, the variance of U2 assumes the nonstation- 
ary form 

U22(X 1, X 2) 1 

.... + + (8) 
The variance U22(X!, x2), (8), changes with distance from 

the origin. The application of (7) and (8) for negative/3s at 
large distances is, of course, limited because of the reversal 
of the flow direction at distance 1/13 from x0. Note that by 
taking/• = 0, the mean velocity V1, as well as the variance 
u2(x•, x2) becomes stationary, with U22(X1, X2) equal to the 
value found by Dagan [!984] for the case of zero-recharge, 
uniform flow. 

The covariance of U• as a function of separation distance 
along the mean flow direction is given by 

Ull(X1, X[; X•I, X•) 

F•o. 2 = (1 + •Xl/I)(1 + [•X•l/I)½ -r Y 

0.16 

• 0.11 

!1 0.06 

,-• O.Ol 

x•/I-O.O 
........ /g=-O.05 

#= 0.00 
/g= 0.05 

-0.04 
0.0 5.0 10.0 I5.0 

Figure 2. The velocity covariance function u22 as a func- 
tion of the distance Ix'• - x•l along the mean flow direction 
forx• = 0. 

1 

+• [(1 + 13x,/I) 2 + (1 + 13x'•/I) 2] 

ß e -r -2+•-5_+•-+ r4 

+ •2err 2 [ 30err2- 62r 2 - 30r 3 
- 3r 4 + 96(e r- 1 - r)] (9) 

By taking the r ---> 0 limit of u 1 l, the nonstationary U1 
variance is given by 

u,l(x,, x 2) 3 /3 2 
2 , = • (1 + •Xi/I) 2 + • (10) V0o' ? 2 

For/3 = 0 the variance becomes stationary and is equal to 
the value obtained by Dagan [1984] for uniform flows. 

The theoretical limitations of the above results emanate from 

the assumptions employed in their derivations. First and fore- 
most is the assumption of small variability in Y, which was 
essential for the linearized solution of the flow equation. This 
assumption is followed by an assumption of flow in an infinite 
domain, which translates to the requirement that the flow 
domain under investigation is sufficiently removed from phys- 
ical flow boundaries. Previous studies [Rubin and Dagan, 
1988, 1989] have shown that a distance of about 2 integral 
scales from the boundary is sufficient to define a nonimpacted 
area. This assumption is adopted for the sake of deriving a 
simplified, closed-form analytical solutions. An additional as- 
sumption made here is that expected values of primed terms 
are negligible. The derivations contained in this section will be 
utilized in section 3 to demonstrate the effects of distributed 

recharge on solute transport. 

0.4 

• 0.3 

II 0.2 

0.0 
o.o .......... io'.6 i5.o 

x•/I=O.O 
........ f=-o.o5 
---- o.oo 

--- ,6'= 0.05 

5.0 

Ixx'-xxl/I 

Figure 1. The velocity covariance function u 11 as a func- 
tion of the distance I x'• - x i I along the mean flow direction 
forx• :0. 

3. Case of Nonuniform, Unidirectional Flow: 
Applications and Numerical Evaluation 

Figure 1 depicts u • as a function of separation distance 
along the mean flow direction using (9) for various 
Positive recharge leads to smaller correlation compared to 
the cases of zero or negative recharge. In all three cases the 
covariance decays to zero, indicating the existence of a finite 
integral scale for u ll. In the case of/3 = 0, previous works 
[Gelhar and Axness, 1983; Dagan, 1984] showed that a finite 
integral scale for the velocity leads to constant macrodisper- 
sion coefficients at sufficiently long travel times. Here, 
however, the nonstationarity of the covariance, as evi- 
denced by the constant increase in the velocity variance, is 
a new factor to reckon with and will be investigated later in 
this work. 

Unlike the case of u•l, the effect of recharge on tt22 is 
hardly noticeable at small lags (Figure 2). Negative correla- 
tions are displayed for medium to large separation distances. 
This behavior exists for all types of/3. It indicates that a 
positive deviation in U2 is expected to prevail over certain 
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,•.o 'i /5'-0.25 
•. t .............. X•/I-O.O 
b 3.0 .\ ..... x•/I=4.0 

• \ --- xl/I=6.0 

• ,• • x•/•=•.o , 
- 

•l.o x 

0.0 
0.0 5.0 •0.0 

practical point of view, this result implies that an increase in 
the mean velocity and its variability do not require an 
increase in the density of the mesh used for numerical 
modeling, which is determined by the magnitude of the 
velocity integral scales [Bellin et al., 1992]. 

The previous relationships were evaluated for accuracy 
using a numerical Monte Carlo study. The numerical scheme 
employed here is the one presented and analyzed in great 
detail by its developers [Bellin et al., 1992], hence its 
description is omitted for brevity. The numerical code com- 
bines a flow equation solver with a particle-tracking scheme. 
Random fields are generated using the Gutjahr method 
[Gutjahr, 1989; Bellin, 1991]. The numerical results pre- 
sented here are based on 1500 replicates of the velocity field. 
To ensure convergence, the number of blocks of constant 
transmissivity per integral scale was set at four, and the finite 
element grid was obtained by dividing each squared integral 
scale into 32 triangular elements. A linear shape function 
was employed for the elements. 

1.o• b /•=0.25 
o.• -]/ ............. x•/]:=o.o 

•\ ..... x1/r-4.o / 

' • •, • x•?r=e.o / /5' = O. 25 a 
• ,,}, .............. x•/I=O.O 
-• • 0.8 ,• ..... xl/I=4.0 

•o • • xl•/I=õ.O 

0.0 5.0 10.0 15.0 • • _ ----:-:--=--:-=-•-- 

Ix•'-x•l/I Figure 3. (a) The velocity covariance function u •, and (b) -0 .......... , ......... , ......... the correlation function Pun as a function of the distance [x'• .0 5.0 10.0 15.0 
- x ]l along the mean flow itirection (x •/I = O. 0; x •/I = 4.0; 
Xl/I: 6.0; x•/!: 8.0). 

distances and be followed by a negative deviation at dis- 
tances larger than 2.5•, and thereby ensuring a flow which is 
unidirectional in the average. In cases of transport this type 
of behavior leads to symmetry of the plume around the mean 
flow direction. 

The scale dependency and scale invariance of the spatial 
correlation structure of the velocity become evident upon 
inspecting Figures 3 and 4, where the covariances and the 
respective correlation functions are depicted as functions of 
lag distance for different reference points x. These figures 
clearly demonstrate the increase in the velocity variance 
with distance from the reference point, and this is in agree- 
ment with (8) and (10). While the velocity covariances are 
scale-dependent, the velocity correlation functions, defined 
as Uu(X l , x•)/(o-i(x•)rri(x'•) ) where cri(x ) denotes the stan- 
dard deviation of the velocity Ui(x), approach a stationary 
behavior at distances of about 41 from the reference point. 
From a physial point of view, this result suggests that the 
increase in the mean velocity and its variance do not lead to 
change in the integral scales of the velocity field. From a 

1'ø I /•=0.25 b o.• l•! ............. xl/I=O.O 
•,, •I• ..... x•/.I:4.0 
-*' 0.6 JI• - - x•Z•=6.o 

.•-•0.4 

•0.2 
-0.0 

-0.2 
0.0 5.0 10.0 15.0 

Ix•'-x•l/I 

Figure 4. (a) The velocity cova•ance function a22 and (b) 
the co,elation function p•, as a function of the dmtance 
- • • along the mean flow •irection (• •/I = O. 0; • •/I = 4. O; 
•!I = 6.0; x•lI = 8.0). 
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From (3) we get the following relation for the mean 
velocity: 

V•(x•) = [1 + 13(xl - Xo)/I]V](xo) (11) 

which is evaluated for/3 = 0.05 and o-• = 0.8 in Figure 5. 
Numerical and analytical results are in excellent agreement. 

Since the flow is unidirectional in the average, the mean 
displacement (X) = (Xl} is obtained by solving the kine- 
matic relation 

d(X) 
•---- Vl((Xl)) (12) 

dt 

leading to 

1 1 

• (Xi(,)) = • [e •r - 1] (13) 
where ß = t Vo/I denotes nondimensional time and V0 = 
V1 (0). This relationship is evaluated in Figure 6 for/3 = 0.05, 
and rr2r = 0.8, and also shows good agreement between 
theoretical and numerical results. 

Figure 7 depicts a series of covariances for the case of 
rr• = 0.8 and/3 = 0.05, With x• denoting distance from the 
reference point x0. Analytical (equation (9)) and numerical 
results are compared. Good agreement between numerical 
and analytical results is observed at all lags. The numerical 
results are slightly lower than the analytical results at 
nonzero lags, and the analytical variance is lower than the 
numerical variance. This type of behavior was also observed 
by Bellin et al. [1992] and Fiorotto [ 1992] in their investiga- 
tion of uniform-in-the-average flows, the former using a finite 
element method and the latter using a spectral method. 

The second moments tensor of the displacement X is 
denoted here by Xjk(t ) = (X)(t)X•:(t)), j, k = 1, 2, where 
Xj.(t) = Xi(t) - (Xj(t)), that is, the deviation of the actual 
displacement of the solute particle from its expected value. 
Using a Lagrangian approach, the displacement covariances 

3.0 

2.õ 

•;0.05, .{ANALYTICAL) 

1.5 

1.0 
0 5 10 15 20 25 30 

x•/I 

Figure 5. Mean longitudinal velocity as a function of dis- 
tance from the reference point along the flow domain (cr2r = 
0.80). Solid line (analytical) is overlain by circles (numeri- 
cal). 

i2- 

..... fi=0.05, NUMERICAL 
........ fi=0.05, ANALYTICAL 

fi=0, (DAGAN, 1984.) 
, 

o 2 4 6 8 lO 

tv•/• 

Figure 6. Lagrangian mean trajectory (or3 = 0.80). 

can be related to the velocity statistics [Dagan, 1984] by the 
following integration: 

Xik(t) = (t', t") dt' dr" j, k = 1, 2 (14) 

L is the tensor of the Lagrangian velocity covari- where ujk 
ances. The computation of Xjk in (14) requires the transfor- 
mation of the previously derived Eulerian covariances into 
Lagrangian covariances using 

r')= x(t")] (is) 
Since X is known only through its moments, the substitu- 

tion of (15) into (14) leads to an implicit integrodifferential 
equation. Following a procedure suggested by Dagan [1984], 
we replace X by its mean (X}. This procedure is consistent 
with the first-order approximation adopted at the previous 
steps 

ujk(t', t") : uyk[{X(t') >, {X(t")>] (16) 

This approximation was tested successfully in previous 
studies [Bellin et al., 1992]. Combining (16) and (14), we get 
the following expression for Xjk: 

f•X,(t)> f(X,(t)) ltjk[X•l, X'i] Xj•(t) = V (x'•)V (x'[ dx'• dx'i (17) JO 1 I ) 

which is evaluated here by numerical integration using (13) 
for (X](t)) and taking (X2(t)) = O. 

Figure 8 shows the nondimensional X• for positive, zero, 
and negative/3s. Negative/3s lead to a smaller X• as a result 
of the reduction in the velocity variance of the fluid particles, 
while an increase in the mean velocity (/3 > 0) leads to a 
substantial growth in X•. The time growth rate of X•l, in 
the form of a macrodispersion coefficient D l i, is inspected in 
Figure 9 (Dij = dX•j/(2 d,). Constant growth rates for X•i 
are attained only for/3 = 0, and a zero asymptotic limit is 
attained for fi < 0. In the case of a positive/3, X• does not 
approach a constant growth rate regime, one that would 
justify the use of a constant dispersion coefficient, even at 
exceedingly large travel distances. 



944 RUBIN AND BELLIN: THE EFFECTS OF RECHARGE ON MACRODISPERSIVITY 

1.0 - 

0.0 
0.0 

x•/I-6.73 
..... /•=0.05, NUMERICAL 

/•=0.05, ANALYTICAL 

o 

øOao 
øOOo 

a oooo 

5.0 !o.o 15.o 

1.0 - 

0.8 

0.• 

0.2 

0.0 
0.0 

x•/I-7.73 
..... /•=0.05, NUMERICAL 

/•=0.05, ANALYTICAL 

o oc• o uoa a,...•p_ ,. _ _ 

5.0 lO.O 15.0 

1.0 
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Figure 7. Numerical and analytical longitudinal velocity covariance function for separation distances along 
the mea.n flow direction for cr• = 0.80: (a) x•/I = 6.73; (b) Xl/I = 7.73; (c) xl/I = 8.73; (d) Xl/I = 9.73. 

Figure 10 depicts the nondimensional X22 for various /3 
values, followed by the macrodispersion coefficients shown 
in Figure 11. A pos!.tive B leads to an increase in the 
transverse spread, although the relative increase is not as 
large as the one observed in the case of the Xll. Negative/• 
leads to an opposite effect. Comparing Figure 11 to Figure 9 
suggests that the lateral spread is not as sensitive to recharge 
as the longitudinal spread, and asymptotic, constant disper- 
sion coefficients are attained. Numerical testing of the re- 
sults for Xll and X22 are depicted on Figures 12 and 13 for 
•r2r = 0.2 and B = 0.02 and show a favorable agreement. 
Good agreement was also found for cr2r = 0.8. 

A particularly useful application of the displacement mo- 
ments is the derivation of the cumulative probability distri- 
bution function (cdf) of the travel time between an injection 
point and any plane in space. For regulatory purposes this 
plane represents the accessible environment. Discussion of 
such an approach with application to the case of uniform-in- 
the-average flow were given by Dagan and Nguyen [1989], 
Rubin and Dagan [i992a], and Cvetkovic et al., [1992]. The 
crossing time cdf F for a plane normal to the mean flow 
direction and a Gaussian X is given generally by 

60 

50 ....... /•=-0.05 
/•= 0.00 
/•= 0.05 

40 
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o 
o.o 
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/ 

/ 

/// 
// 

// 

, 

5.o lo.o •5.o •o.o 

tv0/• 

Figure 8. Longitudinal displacement variance X• for neg- 
ative and positive/3 compared with the uniform case (/3 = 0). 
X• 1 is evaluated numerically from equation (17). 
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Figure 9. Longitudinal macrodispersion coefficient Dll for 
negative and positive/3. D ll is evaluated numerically from 
equation (17). 

Figure 1!. Transverse macrodispersion coefficient D22 for 
negative and positive/3. D22 is evaluated numerically from 
equation (17). 

1 [Xcp •. <X,(,>),] (18> F(•') = • erfc L [2Xll(r)]l/2 
where Xcv denotes the distance of the accessible environ- 
ment from the source, and v is nondimensional time. 

Consider the case o[ a positive/3. The constant increase 
in the mean velocity should lead to earlier crossings, but 
on the other hand, the increase in the X i• may lead to 
an increase in the total crossing time. Yet an examina- 
tion of F(v) in Figure 14 indicates that the overall result is an 
earlier breakthrough and shorter time span between the 
earliest and latest crossing; hence the effect of the increase 
in the mean velocity overwhelms the effect of larger longi- 
tuclinal spread. 

4. Discussion 

In Figures 3 and 4, the covariances u• and u22 are 
depicted with their respective correlation functions.While 
the covariances are found to be nonstationary, the velocity 
correlation functions 

/,t ii(X, 

/3if(X, X') [/,tii(X, X)/,tii(X', X')] 1/2 i 1, 2 (19) 
(no summation over repeated indices implied) are shown to 
be nearly stationary. Recall now that in the Lagrangian 
formalism, the displacement variances are computed using 
(17). Substituting (7) and (9) in tums into (17) yi61ds 

3.0 

2.5 

2.0 

0.0 
0.0 

Figure !0. Transverse displacement variance X22 for neg- 
ative and positive/• compared with the uniform case (/3 = 0). 
X22 is evaluated numerically from equation (17). 

12 ÷ 

lO 2 

2 ..... •=0.02, NUMERICAL 
•=0.02, ANALYTICAL 

(rva=0.2 0 
0 2 4 6 

tVo/I 

Figure 12. Numerical and semianalytical longitudinal dis- 
placement variance versus dimensionless time t Vo/l, (cr•, = 
0.20). 
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Figure 13. Numerical and semianalytical transverse dis- 
placement variance versus dimensionless time t Vo/I, ((r• = 
0.20). 

Xii(t) : o.• f<xt(t)) [ (X'(t)) 
.to Jo 

{ t• il e -r 

..... IFii(r) 1 + fix'•/I + (1 + 
[3 2 

+ ({ + t•x,//)(• + i3x'•/•) F/•(r)} ax, ax; (20) 
where Fii and Fill are stationary functions which can be 
defined by inspection of (7) and (9), (5 is the Kronecker delta, 
and i = 1, 2. Expanding (20) in Taylor series with respect to 
/3 yields 
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Figure 15. Semianalytical (squares and circles) and first- 
order analytical (dashed lines) (a) longitudinal and (b) trans- 
verse displacement variances. (/3 -- -0.05; 0.0; 0.05). 
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Figure 14. Cumulative probability distribution function of 
the travel time at Xc• = 41. 

Xii(t)_ o.• f<xt(,))[<x,(t)) 
-to Jo 

ß {t•ile-r-2Fii(r)} dx 1 dX'l +O(• 2) (21) 
which leads, upon inspection of the velocity covariances 
obtained by Rubin [1990] for the case of/3 = 0, to the result 

Xii(T ) : X•/[T': (e • - 1)//3] + 0(/3 2) (22) 

where Xi• are the displacement variances applicable for the 
case of/3 = 0 [see Dagan, 1984]. While uii are the zero-order 
approximations of u u, Xii are 0(/3) accurate because the 
first-order terms in/• cancel out during the Taylor expansion. 

Equation (22) shows that the displacement variances at 
time r for nonzero/•s can be approximated by the displace- 
ment variances obtained for/3 = 0 but at time r' = (exp (fir) 
- 1)//3 (see (13)). The dependence on space coordinates 
appears only in terms of order/•2. Figures 15a and 15b depict 
X•(r) and X22(T ) for positive and negative/3s, where the 
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Figure 16. Semianalytical (squares and circles) and first- 
order analytical (dashed lines) (a) longitudinal and (b) trans- 
verse macrodispersion coefficients (fi = -0.05; 0.0; 0.05). 

semianalytical results obtained in section 3 are compared 
with their approximations obtained by (22). 

The above development allows the following relationship 
for the macrodispersion coefficient: 

Dii(r) = e•D•/(r ') (23) 

with r' = (exp (fir) - 1)//g, and where D i•(r') are the 
macrodispersion coefficients obtained for the case of • = 0 
[see Dagan, !984]. Here, r and •-' are both nondimensional 
time, defined as in section 3. Figure 16 repeats Figure 15 only 
for Dll and D22. Both Xii and Dtt, i = 1, 2, computed 
through (22) and (23), respectively, are in good agreement 
with the theoretical results. Although the approximation 
introduced in the evaluation of uii is of the same order for 
both u • 1 and u 22, X 11 and D • 1 show a better agreement with 
the theoretical results. This can be attributed to the sensi- 
tivity of both ,!/'22 and D22 to the slightest deviations in u22. 

While Dagan [1984] showed that D l'l asymptotically ap- 
proaches a constant value, (22) shows that for/g > 0, D li 
does not reach a constant limit. At small time, D• is very 

close to the steady state coefficient, but with time there is an 
increasing departure between these two parameters. 

From Dagan [1984, equation (4.8)], we get D u • , :c) = 22 t, 'r ---> 

Volcr3/2r'. Using the transformation r' = (exp (fi•') - 1)/fi, 
and substituting in (23), we get 

D22(,. --> o•) = Volcr•l • (24) 

Hence unlike the fi = 0 case, D22 does not approach zero. 
Large time implies only a constant growth rate of the 
displacement variance. 

Again using equation (4.8) from Dagan [1984] leads to 
D •(•" --> o,) = Vol cry, and hence from (23) 

D•(r) = e•Volcr 2 r (25) 

which can also be expressed in terms of the travel distance 
L, using (13), as 

r (26) 

The effects of flow nonuniformity on the longitudinal 
spread of passive solute were discussed by Gethat and 
Collins [1971] and more recently by Adams and Gelhar 
[1992] (hereafter referred to as AG) and Serrano [1992]. The 
AG study considers flow nonuniformity resulting from a 
trend in the mean logconductivity, such as that observed in 
the Columbus field experiment. 

in order to explain the observed macrodispersivity, AG 
modeled the ensuing mean velocity field as V• = V0(1 + 
!3x•/1) and V2 = VofiX2/I. The factor • indicates the degree 
of flow nonuniformity, and in this sense, is perfectly analo- 
gous to the B we use here (see (6)) although in our study, • 
represents flow nonuniformity coming from a different 
source. The macrodispersion coefficients are then assumed 
by AG to be proportional to V• (x) and ¾2(x) and are given 
byD• = At• V•(x•) andD22 = A22V2(Xl), whereA• and 
A22 are constant dispersivities. 

Hence in the case of D 1 l, recalling (25) and (6), the AG 
conjecture is found valid given that All is taken equal to 
cr•,I. In the case of D22 a comparison is valid only in the 
subdomains where V2 is much smaller than V1, and can be 
neglected altogether. The AG conjecture for that case is in 
disagreement with the present results, which show a persis- 
tent growth in X'22 , that is, a nonzero D22, even if V2 = 0. 

Serrano [1992] also investigated the effect of recharge on 
transport using a conjecture similar to that of AG. Our study 
establishes under what conditions this conjecture is valid 
and applicable for both Serrano's and AG's studies. 

5. Summary 

The fluid velocity in a heterogeneous, uniformly recharged 
aquifer is derived as a space random function (SRF). This 
model includes the expected value and the variance- 
covariance tensor. The recharge leads to nonstationarity of 
these two moments, which constantly increase with distance 
from any arbitrary reference point. 

In the first part of our study the velocity SRF is used to 
derive the single-particle displacement statistics, which are 
needed for estimation of the ensuring concentration field, as 
a function of cry,, the logconductivity variance, and /•, a 
parameter which characterizes the flow nonuniformity. We 
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found that while the velocity covariances are nonstationar- 
ity, the velocity correlation functions, and hence its integral 
scales, are practically stationary. The results compared 
favorably with a numerical Monte Carlo study. 

In the second part of this paper we found that the near 
stationarity of the velocity correlation functions leads to 
simple relationships between the displacement covariance 
tensor and macrodispersion coefficients derived for uniform 
flows and their analogs pertaining to nonuniform flows 
through a nonlinear transformation of the travel time scale. 
This opens the opportunity for a simplified analysis of solute 
dispersion in nonuniform flows in heterogeneous media. 
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